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“What’s one and one and one and one and one and one 
and one and one and one and one and one?”  “I don’t 
know,” said Alice, “I lost count.”  “She can’t do 
addition,” said the Red Queen. 

Lewis Carroll 
  



PREFACE 
 

      As a College Freshman Calculus student (many long years ago), I found myself absolutely 
dumbfounded when in some book containing a table of definite integrals I saw the following: 

∫ 𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅 = √𝝅𝝅
𝟐𝟐

∞
𝟎𝟎   

     At that time, I was knowledgeable enough to know that the function in the integrand of that 
integral did not have an anti-derivative — so how could someone calculate the value of that 
integral?  Well, I pursued the answer to that question as best I could and when I finally stumbled 
upon a solution, I was hooked – I’ve been a fan of definite integrals that do not integrate in the 
conventional sense ever since.  I subsequently learned that I’m evidently in good company.  G.H. 
Hardy (1877-1947), the greatest English mathematician of the first half of the 20th century was 
quoted as saying, “I could never resist an integral”; and, his reputation for doing non-
conventional integration (the kind of integrals that I’m a fan of) was reputed to be phenomenal.  
In this regard, Hardy brought Srinivasa Ramanujan (the genius and self-taught Indian 
mathematician) to Cambridge all the way from India based on a letter that Ramanujan sent to 
Hardy in January of 1913.  Attached to that letter were about 120 theorems, many of which 
involved the solution of definite integrals that completely astounded Hardy.  Up until this time, 
Ramanujan was unknown by the mathematical community.  Here is an example of just one of the 
integrals that was included in the letter received by Hardy: 

� ��
𝟏𝟏 + � 𝒙𝒙

𝒃𝒃+𝒌𝒌+𝟏𝟏�
𝟐𝟐

𝟏𝟏 + � 𝒙𝒙
𝒂𝒂+𝒌𝒌�

𝟐𝟐 �
∞

𝒌𝒌=𝟎𝟎

𝒅𝒅𝒅𝒅 =
𝟏𝟏
𝟐𝟐
𝝅𝝅𝟏𝟏/𝟐𝟐 𝚪𝚪�𝒂𝒂 + 𝟏𝟏

𝟐𝟐�𝚪𝚪(𝒃𝒃 + 𝟏𝟏)𝚪𝚪�𝒃𝒃 − 𝒂𝒂 + 𝟏𝟏
𝟐𝟐�

𝚪𝚪(𝒂𝒂)𝚪𝚪�𝒃𝒃 + 𝟏𝟏
𝟐𝟐�𝚪𝚪(𝒃𝒃 − 𝒂𝒂 + 𝟏𝟏)

∞

𝟎𝟎
. 

     What do we mean by non-conventional integration?  To answer that question, one has to 
agree on what we mean by conventional integration.  We learn in elementary calculus that a 
definite integral 𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎) where 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥).𝑏𝑏

𝑎𝑎   In-other-words, to solve 
for the value of I, one is taught to find the anti-derivative of f(x) and then evaluate that anti-
derivative at both limits of integration and then compute their difference.  However, the value of 
the definite integral between certain specific limits can sometimes be obtained by some other 
techniques, even in cases when the integrand does not have an anti-derivative.  That is, it is 
sometimes possible to arrive at the value of I = F(b) – F(a) without finding the form of F(x) at 

all.  Such a case was that of 𝐼𝐼 = ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑑𝑑 = √𝜋𝜋
2

∞
0  mentioned at the beginning of this preface.  So, 

this is what is meant by non-conventional integration—finding the value of F(b) – F(a) without 
determining F(x).  It sounds like a really good trick if one can do it.  Well, in many cases, it can 
be done and the techniques for doing so are numerous and often of great cleverness and 
ingenuity.  It is not possible to give an exhaustive list of such techniques, but those used most 



often are compiled in a table in Chapter 1 (see Table 4 of Properties/Techniques for Evaluation 
of Integrals).      

     So that’s what this book is about, the evaluation of definite integrals that do not integrate in 
the conventional sense but whose value can be determined.  Actually, it’s not the value of the 
integral that matters so much, but rather the method used to obtain that value.  Most of the 
definite integrals we shall examine are improper (but not all of them).  An improper integral is a 
definite integral that has either or both limits of integration that are infinite or an integrand that 
approaches infinity at one or more points within its range of integration.  Improper integrals that 
converge and whose value can be determined exactly are termed “Properly Improper,” and I’ve 
always thought that term would make a good title for a book (a subtitle might be “A 
Mathematical Oxymoron”).  I also think that it is a good subject for a book because it is a subject 
that contemporary professional mathematicians do not seem to be overly concerned about.  For 
some unknown reason, the methods for evaluating these properly improper integrals do not seem 
to be taught in most math curriculums anymore.  The subject is difficult to teach because there is 
no theory or systematic methodology for evaluating properly improper integrals.  Generally, each 
such integral is a new challenge or puzzle and as such requires techniques of creative 
manipulation for a solution; no two such techniques being necessarily similar (with one or two 
exceptions that we shall study).  The cleverness and creativity of the solution is what I find 
ingenious, interesting, and very intriguing (albeit, in my opinion, when the integral can be 
equated to a value, that expression often gives the integral a rather exotic or mysterious 
appearance and that in itself I find fascinating).  I also think that such solutions should be 
documented so that they do not become a lost art.  So, in a “nutshell” that’s what this book deals 
with, if you enjoy integrals and enjoy computation, this book is for you! 

     I emphasized the word converge in the previous paragraph because the convergence of the 
integrals that we are going to be dealing with is very important.  Apply some of the methods 
detailed in this book to an integral that does not converge (i.e., diverges) and get a finite 
answer—and your answer would be wrong!  However, this book is not about convergence of 
integrals—that’s a subject for another book.  Hopefully, I have not included any divergent 
integrals here, but if I have, I apologize ahead of time; keep in mind, the methodologies of 
manipulating the integrals is being stressed in this book and is much more important and 
interesting than their ultimate value.  Improper integrals whose interval of integration includes a 
singularity of the function in the integrand can be thought of as analogous to an astronomer’s use 
of the word “singularity,” i.e., black hole.  Hopefully, none of us, as we deal with properly 
improper integrals, will fall into the “Mathematical Black Hole.” 

     I would like to say a word or two about how I’ve attempted to organize this book and it hasn’t 
been an easy organization.  I have endeavored to base each chapter on a specific elementary 
definite integral property or technique with examples of how that property/technique is used to 
evaluate the integral.  Since more than one technique is often involved in the evaluation of any 
given integral, the chapters tend to intersect with one another.  Chapter 1 is an exception as it 
deals with the notation used, contains a list of recognizable (elementary) integral forms, and 
contains a list of the integral properties and techniques alluded to above.  The last chapter is also 



an exception.  It is the detailed solution of properly improper integrals whose solution I consider 
to be the crème de la crème of methodologies/derivations.  In my opinion, the solutions are so 
clever that every time I study one, I find myself wishing that I had been clever enough to have 
discovered it.  Further, I’ve included an Appendix.  The appendix contains material that really 
doesn’t fit in with the other chapters, although the material is derived from the integral that opens 
this preface and therefore seems appropriate for this book.   

     Additionally, I’ve tried to include historical vignettes or tidbits of information about the men 
and women of science/mathematics who are responsible for the creative solutions to the integrals 
we will be encountering or whose methodology has been responsible for the solution (these are 
the mathematicians pictured on the title page).  I’ve always maintained that mathematics would 
be a much more popular subject to a greater number of people if the history of math were taught 
along with the math itself.  Mathematics through the centuries has been densely populated with 
crazy stories, zany geniuses, and clever anecdotes.  Further, in some of the derivations, I’ve 
attempted to identify the so-called “aha” moment (that moment of sudden realization, inspiration, 
insight, recognition, or comprehension) that the mathematician responsible for the derivation (or 
proof) must have had.  Of course, it’s just my opinion, but in some cases, it’s pretty obvious.  In 
some cases, it’s my “aha” moment—the moment I realized where the problem was going to take 
me.  Why am I including this sort of revelation in this book?  By revealing what I, a professional 
mathematician, think while I’m working on a problem seems to me to be important—maybe an 
insight for the student (maybe not).  So, in an effort to make this a text book that teaches better 
and makes the subject of computational mathematics come alive with humor, a little bit of 
“pizzazz”, and convey the “spirit of mathematics”, I have done the following whenever I sit 
down to write or work problems for this book: I have imagined that sitting next to me is a 
colleague who is interested in learning what I am doing.  I try to explain to this colleague what I 
am doing and why, and this explanation is what I write—hopefully giving the book a one-on-one 
tutorial aspect.  As I said before, “what a professional mathematician thinks as the problems are 
worked” (or at least, what one professional mathematician thinks).  

     Finally, I would like to dedicate this book to three important women, Cynthia Richey, Debra 
Mairs, and Julia Mitchell; to Cindy, Debbie, and Julie, daughters of my heart. 

Don Cole, June 2015 

  



A man is like a fraction whose numerator is what he is and whose denominator is what he 
thinks of himself.  The larger the denominator, the smaller the fraction. 

—Tolstoy 

Chapter 1.  Preliminaries 
Notation To Be Used 
ℕ =  The set of integers 

ℕ+ = the set of positive integers 

ℝ = the set of real numbers 

ℝ+ =  the set of positive real numbers 

log(𝑥𝑥) =  the natural logarithm 

log2(𝑥𝑥) = [log(𝑥𝑥)]2 

𝜖𝜖 = is a member of 

I n = general notation for a properly improper integral (subscripts distinguish one from another). 

(a, b) → (c, d) = the integration interval (a, b) is transformed to (c, d). 

⇒ = implies 

(2n – 1)!! = 1‧3‧5‧7‧ ‧‧‧ (2n – 1), where 𝑛𝑛 𝜖𝜖 ℕ+  

Recognizable Forms (Elementary Integral Table) 
     Since the creative manipulation of a properly improper integral will hopefully lead one to the 
recognizable form of an elementary integral for the eventual solution of the improper integral, 
the following table of recognizable forms is included below.  Unless otherwise noted, a is 
considered to be a constant and, a 𝜖𝜖 ℝ. 

Table 1:  Recognizable Forms/Elementary Integrals 
1.  ∫𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑎𝑎 8.  ∫ cos(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = 1

𝑎𝑎
sin(𝑎𝑎𝑎𝑎) 

2. ∫𝑎𝑎 ∙ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑎𝑎 ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 9.  ∫ tan(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = − 1
𝑎𝑎

log[cos(𝑎𝑎𝑎𝑎)] 

3. ∫ 𝑥𝑥𝑛𝑛𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
,  𝑛𝑛 𝜖𝜖 ℕ, 𝑛𝑛 ≠ −1 10. ∫ sec(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = 1

𝑎𝑎
log[sec(𝑎𝑎𝑎𝑎) + tan(𝑎𝑎𝑎𝑎)] 

4. ∫ 𝑓𝑓′(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑑𝑑 = log[𝑓𝑓(𝑥𝑥)] 11. ∫ csc(𝑎𝑎𝑎𝑎) = − 1
𝑎𝑎

log[csc(𝑎𝑎𝑎𝑎) − cot(𝑎𝑎𝑎𝑎)] 

5. ∫ 𝑑𝑑𝑑𝑑
𝑥𝑥

= log(𝑥𝑥) 12. ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎2+𝑥𝑥2

= 1
𝑎𝑎

tan−1 �𝑥𝑥
𝑎𝑎
� 

6. ∫ 𝑒𝑒𝑎𝑎𝑎𝑎𝑑𝑑𝑑𝑑 = 1
𝑎𝑎
𝑒𝑒𝑎𝑎𝑎𝑎 13. ∫ 𝑑𝑑𝑑𝑑

�𝑎𝑎2−𝑥𝑥2
= sin−1 �𝑥𝑥

𝑎𝑎
� 

7. ∫ sin(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑 = − 1
𝑎𝑎

cos(𝑎𝑎𝑎𝑎) 14. ∫𝑎𝑎𝑥𝑥𝑑𝑑𝑑𝑑 = 𝑎𝑎𝑥𝑥

log(𝑎𝑎)
 



Some Useful Trigonometric Identities 
     The process of evaluating definite integrals often involves manipulation of the integral’s 
integrand in order to obtain a recognizable form.  Knowledge of trigonometric identities can be 
very helpful with many of the definite integrals that will be encountered in this book.  As a 
result, a table of useful identities is included below. 

Table 2:  Useful Trigonometric Identities 
1.  sin2(𝑥𝑥) + cos2(𝑥𝑥) = 1 7.  sin(𝑥𝑥 ± 𝑦𝑦) = sin 𝑥𝑥 cos𝑦𝑦 ± cos 𝑥𝑥 sin𝑦𝑦 
2. 1+tan2(𝑥𝑥) = sec2(𝑥𝑥) 8.  cos(𝑥𝑥 ± 𝑦𝑦) = cos𝑥𝑥 cos𝑦𝑦 ∓ sin 𝑥𝑥 sin𝑦𝑦 
3.  1 + cot2𝑥𝑥 = csc2𝑥𝑥 9.  tan(𝑥𝑥 ± 𝑦𝑦) = tan𝑥𝑥±tan𝑦𝑦

1∓tan𝑥𝑥 tan𝑦𝑦
 

4. sin 𝑥𝑥 = cos�𝜋𝜋2 − 𝑥𝑥� 10. tan�𝑥𝑥2� = ±�1−cos(𝑥𝑥)
1+cos(𝑥𝑥) = 1−cos(𝑥𝑥)

sin(𝑥𝑥)
= sin(𝑥𝑥)

1+cos(𝑥𝑥)
 

5. sin(2𝑥𝑥) = 2 sin 𝑥𝑥 cos𝑥𝑥 11.  tan−1 �1
𝑥𝑥
� = 𝜋𝜋

2
− tan−1(𝑥𝑥) 

6. cos(2𝑥𝑥) = cos2𝑥𝑥 − sin2𝑥𝑥  
 

Some Useful Infinite Series 
     One of the techniques that can be used for evaluating definite integrals involves expanding 
the integrand (or a portion thereof) into a power series and then integrating the power series term 
by term.  The table included below contains a number of known convergent series that may be 
helpful in this context. 

Table 3:  Useful Infinite Series 
1. 

�
(−1)𝑘𝑘

2𝑘𝑘 + 1
= 1 −

1
3

+
1
5
−

1
7

+ ⋯ =
𝜋𝜋
4

∞

𝑘𝑘=0

 

6. 

�
(−1)𝑘𝑘

(2𝑘𝑘 + 1)3 = 1 −
1

33
+

1
53
−

1
73

+ ⋯ =
𝜋𝜋3

32

∞

𝑘𝑘=0

 

2. 

�
1

(𝑘𝑘 + 1)2 = 1 +
1

22
+

1
32

+
1

42
+ ⋯ =

𝜋𝜋2

6

∞

𝑘𝑘=0

 

7. 

�
1

(𝑘𝑘 + 1)4 = 1 +
1

24
+

1
34

+
1

44
+ ⋯ =

𝜋𝜋4

90

∞

𝑘𝑘=0

 

3. 

�
(−1)𝑘𝑘

(𝑘𝑘 + 1)2 = 1 −
1

22
+

1
32
−

1
42

+ ⋯ =
𝜋𝜋2

12

∞

𝑘𝑘=0

 

8. 

�
1

(2𝑘𝑘 + 1)4 = 1 +
1

34
+

1
54

+
1

74
+ ⋯ =

𝜋𝜋4

96

∞

𝑘𝑘=0

 

4. 

�
1

(2𝑘𝑘 + 1)2 = 1 +
1

32
+

1
52

+
1

72
+ ⋯ =

𝜋𝜋2

8

∞

𝑘𝑘=0

 

9. 

�
(−1)𝑘𝑘

𝑘𝑘 + 1
= 1 −

1
2

+
1
3
−

1
4

+ ⋯ = log(2)
∞

𝑘𝑘=0

 

5. 

�
1

(2𝑘𝑘 + 2)2 =
1

22
+

1
42

+
1

62
+

1
82

+ ⋯ =
𝜋𝜋2

24

∞

𝑘𝑘=0

 

10. 

�
(−1)𝑘𝑘

(2𝑘𝑘 + 1)2 = 1 −
1

32

∞

𝑘𝑘=0

+
1

52
−

1
72

+ ⋯ = 𝐺𝐺∗ 

*G is known as Catalan’s constant (G ⋍ 0.915965594177⋯ )  

Integral Properties/Evaluation Techniques 
     Some simple elementary properties of definite integrals frequently come into play during the 
efforts to evaluate properly improper integrals.  I address them here, just to ensure that we are all 
on the same page; they are delineated without proof.  Unless otherwise specified, a, b, c and d 



are finite constants and 𝜖𝜖 ℝ.  These are the properties alluded to in the preface, some of which 
constitute the subject of the ensuing chapters.  By no means do the properties delineated in this 
table constitute all of the integral properties used in the evaluation of properly improper 
integrals.  They do, however, constitute those used most frequently.  As I stated above, these 
properties are delineated without proof, however, they are explained in more detail at the 
beginning of each chapter that deals with them. 

Table 4:  Properties/Techniques for  Evaluation of Integrals  
  1.  The variable of integration is merely a dummy variable.  It may be denoted by x, y, z, or any 
       other symbol we choose to use; the value of the integral will remain unchanged.  Therefore, 
      ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝑑𝑑(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎
. 

  2.  Change of variable (CV):  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓[ℎ(𝑢𝑢)]ℎ′(𝑢𝑢)𝑑𝑑𝑑𝑑   where 𝑥𝑥 = ℎ(𝑢𝑢) so 𝑢𝑢 = ℎ−1(𝑥𝑥)ℎ−1(𝑏𝑏)
ℎ−1(𝑎𝑎)

𝑏𝑏
𝑎𝑎 . 

  3.  Negation:  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = −∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑.𝑎𝑎
𝑏𝑏

𝑏𝑏
𝑎𝑎  

  4.  Integration by Parts (IBP):  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = [𝑢𝑢𝑢𝑢]𝑎𝑎𝑏𝑏 − ∫ 𝑣𝑣𝑣𝑣𝑣𝑣     where 𝑓𝑓(𝑥𝑥) = 𝑢𝑢(𝑥𝑥)𝑣𝑣(𝑥𝑥).𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎  

  5.  Interval Subdivision:  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + ⋯+ ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑   𝑛𝑛𝑛𝑛ℕ+𝑏𝑏
𝑐𝑐𝑛𝑛

𝑐𝑐2
𝑐𝑐1

𝑐𝑐1
𝑎𝑎

𝑏𝑏
𝑎𝑎  

  6.  Interval Preservation (IP):  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑   where 𝑥𝑥 = 𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎  

  7.  Symmetry:  ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 2∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑   if 𝑓𝑓(𝑥𝑥)  is symmetric about 𝑥𝑥 = (𝑎𝑎 + 𝑏𝑏)/2(𝑎𝑎+𝑏𝑏)/2
𝑎𝑎

𝑏𝑏
𝑎𝑎  

  8.  Odd Function:  ∫ 𝑓𝑓(𝑥𝑥) = 0  if  𝑓𝑓(−𝑥𝑥) = −𝑓𝑓(𝑥𝑥)𝑎𝑎
−𝑎𝑎  

  9.  Interval Normalization (IN):   ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑥𝑥2𝑓𝑓(𝑥𝑥)+𝑓𝑓(1 𝑥𝑥)⁄
𝑥𝑥2

𝑑𝑑𝑑𝑑1
0

∞
0 . 

10.  Differentiation (DUI)*:  If 𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥, 𝑞𝑞)𝑑𝑑𝑑𝑑  then  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∫ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑞𝑞)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑,𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎    a,b not functions of q. 

11.  Interchange of Operations (IO):  ∫ �∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑
𝑐𝑐 � 𝑑𝑑𝑑𝑑 = ∫ �∫ 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 � 𝑑𝑑𝑑𝑑.𝑑𝑑
𝑐𝑐

𝑏𝑏
𝑎𝑎   Also applies to 

       the operations of summation and integration. 
* DUI stands for differentiation under the integral sign 
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Do not worry about your difficulties in mathematics.  I can assure you mine are still greater 

—Albert Einstein 

Chapter 2.  Change of Variable (CV) 
 

     This chapter is devoted to the property of definite integrals that allows the integrand to be 
altered in anticipation that an anti-derivative for the altered integrand can be found.  This is 
property #2 from the table of integral properties delineated in Chapter 1 (Table 4).  Let’s address 
this property in a bit more detail before we resort to seeing how it works with a few examples.  
Here is the property as stated in the table 

𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓[ℎ(𝑢𝑢)]ℎ′(𝑢𝑢)𝑑𝑑𝑑𝑑  where  𝑥𝑥 = ℎ(𝑢𝑢)  so that  𝑢𝑢 = ℎ−1(𝑥𝑥)ℎ−1(𝑏𝑏)
ℎ−1(𝑎𝑎)

𝑏𝑏
𝑎𝑎 .  

This property as shown above looks complicated, but it is not—it’s not even something new.  
Every college freshman Calculus student learns about this property when being taught to 
integrate elementary integrals.  The notation we have used makes it look complex; here is what 
this all means.  In an attempt to evaluate I, you decide to make a substitution for the variable of 
integration that will, hopefully, change the integrand to a form that is easier to evaluate, i.e., a 
recognizable form.  In terms of the notation above, you have decided to use the function x = h(u).  
No problem, however after substituting h(u) for x {which is the f[h(u)] above}, before you can 
claim the resulting integral is equivalent to the original one, I, you must also substitute the 
appropriate term for dx and for the limits of integration, (a, b).  Well, based on your choice of 
h(u),  dx = h′(u)du, and the integration interval, (a, b), will become 2 new values that I have 
designated as h-1(a) and h-1(b), where u = h-1(x).  There is one small problem here.  The function 
x = h(u) must be able to be uniquely inverted on the interval a ≤ x ≤ b, meaning the inverse 
function, which we have called h-1(x) must be single valued on (a, b).  Generally, this is not of 
concern, but it is worth pointing out because there is a way around this dilemma, if your h-1(x) is 
multiple valued on the original integration interval.  We will explain this with the following 
example:  Suppose the integral that you wish to evaluate is 𝐼𝐼 = ∫ 𝑥𝑥2𝑑𝑑𝑑𝑑 = �1

3
𝑥𝑥3�

−1

1
= 2

3
,1

−1   you 
certainly wouldn’t need a change of variable (CV) to evaluate this simple integral, it’s already in 
a recognizable form; however, it illustrates the problem we are trying to address.  Let’s further 
suppose that the CV you wish to use is u = x2.  Under this transformation du = 2xdx or               
dx = du/(2x) = (½du)u–½, but, (–1, 1) → (?, ?).  If x = –1, u becomes 1 and when x = 1, u becomes 
1 again and an integration interval of (1, 1) is preposterous.  The solution to this dilemma is to 
subdivide the original interval, e.g., 𝐼𝐼 = ∫ 𝑥𝑥20

−1 𝑑𝑑𝑑𝑑 + ∫ 𝑥𝑥2𝑑𝑑𝑑𝑑1
0  (see property #5 in Table 4 of integral 

properties of Chapter 1).  In the first integral (the one that goes from –1 to 0) let x = –u½ so that 
dx = –½u–½du and (–1, 0) → (1, 0).  In the second integral (the one that goes from 0 to 1) let       
x = +u½ so that dx = +½u–½du and (0, 1) → (0, 1).  Therefore,   

𝐼𝐼 = −1
2 ∫

𝑢𝑢
√𝑢𝑢
𝑑𝑑𝑑𝑑 + 1

2 ∫
𝑢𝑢
√𝑢𝑢
𝑑𝑑𝑑𝑑 = 1

2 ∫ 𝑢𝑢1/2𝑑𝑑𝑑𝑑 + 1
2 ∫ 𝑢𝑢1/2𝑑𝑑𝑑𝑑 =1

0
1
2

1
0 �2

3
𝑢𝑢3/2�

−1

0
+ 1

2
�2
3
𝑢𝑢3/2�

0

11
0

0
1 = 2

3
.  



So, the dilemma is solved and we get the right answer.  Let’s do a few examples of meaningful 
CV applications. 

Example 2-1.  𝑰𝑰𝟏𝟏 = ∫ 𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)
𝟏𝟏+sin𝟐𝟐(𝒙𝒙)

𝒅𝒅𝒅𝒅𝝅𝝅/𝟐𝟐
𝟎𝟎  

     In my opinion, the aha moment for this integral is right at the beginning when one decides 
that a CV is called for and that it should be u = sin(x).  Under that CV, x = sin–1(u) so that          
dx = 1/(1 – u2)½du, and (0, π/2) → (0, 1).  Further, the cos(x) function in the numerator will 
become (1 – u2)½ and that will cancel with the like term that will be in the denominator due to the 
dx  calculation.  If you are worried about the sin–1(u) being multi-valued, your worries are 
unnecessary in this case.  The function sin–1(u) is a multi-valued function but not on the interval 
of 0 to π/2.  Continuing, we have 

𝐼𝐼1 = ∫ 𝑢𝑢�1−𝑢𝑢2

1+𝑢𝑢2
∙ 1
�1−𝑢𝑢2

𝑑𝑑𝑑𝑑 = ∫ 𝑢𝑢
1+𝑢𝑢2

𝑑𝑑𝑑𝑑 = 1
2 ∫

2𝑢𝑢
1+𝑢𝑢2

𝑑𝑑𝑑𝑑 = �1
2

log(1 + 𝑢𝑢2)�
0

11
0 = 1

2
log(2)   1

0
1
0   

Therefore, 

𝑰𝑰𝟏𝟏 = �
𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)
𝟏𝟏 + sin𝟐𝟐(𝒙𝒙) 𝒅𝒅𝒅𝒅 =

𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐)     Q.E.D.

𝝅𝝅/𝟐𝟐

𝟎𝟎
 

Example 2-2.  𝑰𝑰𝟐𝟐 = ∫ 𝟏𝟏
(𝒙𝒙+𝒂𝒂)√𝒙𝒙−𝟏𝟏

𝒅𝒅𝒅𝒅∞
𝟏𝟏 ,𝒂𝒂 ϵ ℝ 

     Again, in my opinion, the aha moment comes at the beginning from the following chain of 
thought.  It would probably be helpful to get rid of that radical sign in the denominator of the 
integrand.  I can do that by substituting a variable squared for that term under the radical, and it 
will eradicate the radical (a little humor—yes, I know, very little).  So, let 𝑢𝑢2 = 𝑥𝑥 − 1 so that        
dx = 2udu, and (1, ∞) → (0, ∞).  Our integral becomes under this CV the elementary form of the 
inverse tangent. 

𝐼𝐼2 = ∫ 2𝑢𝑢𝑢𝑢𝑢𝑢
(1+𝑎𝑎+𝑢𝑢2)𝑢𝑢

= 2∫ 𝑑𝑑𝑑𝑑
(1+𝑎𝑎)+𝑢𝑢2

= � 2
√1+𝑎𝑎

tan−1 � 𝑢𝑢
√1+𝑎𝑎

��
0

∞∞
0 = 𝜋𝜋

√1+𝑎𝑎
∞
0   

And our final value is 

𝑰𝑰𝟐𝟐 = �
𝟏𝟏

(𝒙𝒙 + 𝒂𝒂)√𝒙𝒙 − 𝟏𝟏
𝒅𝒅𝒅𝒅 =

𝝅𝝅
√𝟏𝟏 + 𝒂𝒂

     Q.E.D.
∞

𝟏𝟏
 

Example 2-3.  𝑰𝑰𝟑𝟑 = ∫ 𝟏𝟏
𝟏𝟏+𝒆𝒆𝒂𝒂𝒂𝒂

𝒅𝒅𝒅𝒅, 𝒂𝒂 𝛜𝛜 ℝ∞
𝟎𝟎  

     Aha, this is an easy one.  If one makes a CV of u = eax we are going to have an integrand 
whose denominator will be the product of two linear expressions in the variable u, one from the 
direct substitution and the other from calculation of the dx term.  A partial fraction expansion 
should then make the resulting integral duck soup to integrate.  Therefore, let u = eax so that      
dx = du/(au) and (0, ∞) → (1, ∞).   

𝐼𝐼3 = ∫ 1
1+𝑢𝑢

∙ 𝑑𝑑𝑑𝑑
𝑎𝑎𝑎𝑎

= 1
𝑎𝑎 ∫

𝑑𝑑𝑑𝑑
𝑢𝑢(1+𝑢𝑢)

∞
1

∞
1 = 1

𝑎𝑎 ∫ �1
𝑢𝑢
− 1

1+𝑢𝑢
�𝑑𝑑𝑑𝑑 = 1

𝑎𝑎 ∫
𝑑𝑑𝑑𝑑
𝑢𝑢
− 1

𝑎𝑎 ∫
𝑑𝑑𝑑𝑑
1+𝑢𝑢

∞
1

∞
1

∞
1  . 



Duck soup indeed!  The last two terms are recognizable forms for the log function.  Thus, 

𝐼𝐼3 = �1
𝑎𝑎

log(𝑢𝑢) − 1
𝑎𝑎

log(1 + 𝑢𝑢)�
1

∞
= 1

𝑎𝑎
�log � 𝑢𝑢

1+𝑢𝑢
��
1

∞
= 1

𝑎𝑎
log(1) − 1

𝑎𝑎
log �1

2
�.  

 And, our final result is 

𝑰𝑰𝟑𝟑 = �
𝟏𝟏

𝟏𝟏 + 𝒆𝒆𝒂𝒂𝒂𝒂
𝒅𝒅𝒅𝒅 =

𝟏𝟏
𝒂𝒂

∞

𝟎𝟎
𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐)     Q.E.D.  

Example 2-4.  𝑰𝑰𝟒𝟒 = ∫ 𝟏𝟏
𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)

𝒅𝒅𝒅𝒅∞
−∞ ,𝒂𝒂 𝛜𝛜 ℝ 

     By definition, cosh(𝑎𝑎𝑎𝑎) = 1
2

(𝑒𝑒𝑎𝑎𝑎𝑎 + 𝑒𝑒−𝑎𝑎𝑎𝑎), so let’s substitute that for the denominator and see 
what thought the result evokes. 

𝐼𝐼4 = ∫ 2
𝑒𝑒𝑎𝑎𝑎𝑎+𝑒𝑒−𝑎𝑎𝑎𝑎

𝑑𝑑𝑑𝑑 = 2∫ 1
𝑒𝑒𝑎𝑎𝑎𝑎+ 1

𝑒𝑒𝑎𝑎𝑎𝑎
𝑑𝑑𝑑𝑑∞

−∞
∞
−∞ . 

Aha, if we do a CV of u = eax, the denominator is going to become something that looks like an 
inverse tangent form.  So let u = eax which implies x = (1/a)log(u) which in turn implies                     
dx = du/(au) and (‒∞, ∞) → (0, ∞).  Our integral becomes 

𝐼𝐼4 = 2∫ 1
𝑢𝑢+1𝑢𝑢

∙ 𝑑𝑑𝑑𝑑
𝑎𝑎𝑎𝑎

∞
0 = 2

𝑎𝑎 ∫
𝑢𝑢

𝑢𝑢2+1
∙ 𝑑𝑑𝑑𝑑
𝑢𝑢

= 2
𝑎𝑎 ∫

𝑑𝑑𝑑𝑑
1+𝑢𝑢2

= �2
𝑎𝑎

tan−1(𝑢𝑢)�
0

∞
=∞

0
∞
0

2
𝑎𝑎
∙ 𝜋𝜋
2
  

It’s exactly an inverse tangent!  Our final result 

𝑰𝑰𝟒𝟒 = �
𝟏𝟏

𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)
𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝒂𝒂

     Q.E.D.
∞

−∞
 

Example 2-5.  𝑰𝑰𝟓𝟓 = ∫ 𝟏𝟏−𝒙𝒙
𝟏𝟏+𝒙𝒙+𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎  

     It is worth remembering that when a quadratic expression appears in the integrand, 
completing the square on that expression is often helpful.  It is a technique that is certainly worth 
trying.  You will recall from high school algebra that in order to complete the square, you take 
the square of one-half the coefficient of the first power term and both add and subtract it from the 
quadratic expression.  Thus, 

1 + 𝑥𝑥 + 𝑥𝑥2 = 1 + 𝑥𝑥 + 𝑥𝑥2 + �1
2
�
2
− �1

2
�
2

= 3
4

+ �𝑥𝑥 + 1
2
�
2
  

Substituting this for the expression in the denominator, we have 

𝐼𝐼5 = ∫ 1−𝑥𝑥
3
4+�𝑥𝑥+

1
2�
2 𝑑𝑑𝑑𝑑 =  ∫ 𝑑𝑑𝑑𝑑

3
4+�𝑥𝑥+

1
2�
2  −1

0
1
0  ∫ 𝑥𝑥𝑥𝑥𝑥𝑥

3
4+�𝑥𝑥+

1
2�
2

1
0    

 Aha!  It’s that moment!  If the integrand is broken into two integrals as shown above, one will 
be an inverse tangent form and the other will be a log function form.  If you don’t see that, make 
a CV of  u = x + ½, dx = du, and (0, 1) → (1/2, 3/2). 



𝐼𝐼5 = ∫
3
2−𝑢𝑢
3
4+𝑢𝑢

2 𝑑𝑑𝑑𝑑 = 3
2 ∫

𝑑𝑑𝑑𝑑
3
4+𝑢𝑢

2 − ∫ 𝑢𝑢
3
4+𝑢𝑢

2 𝑑𝑑𝑑𝑑 = 3
2 ∫

𝑑𝑑𝑑𝑑
3
4+𝑢𝑢

2 −
1
2 ∫

𝑑𝑑�34+𝑢𝑢
2�

3
4+𝑢𝑢

2
3/2
1/2

3/2
1/2

3/2
1/2

3/2
1/2

3/2
1/2   

As advertised, the first integral on the right of the last equal sign is a recognizable form of the 
inverse tangent while the second integral on the right of the last equal sign is a recognizable form 
of the natural logarithm function.  Continuing, we obtain 

𝐼𝐼5 = 3
2
� 2
√3

tan−1 �2𝑢𝑢
√3
��
1/2

3/2
− 1

2
�log �3

4
+ 𝑢𝑢2��1

2

3
2 = 3

√3
�𝜋𝜋
3
− 𝜋𝜋

6
� − 1

2
[log(3) − log(1)].  

And so, our final value is 

𝑰𝑰𝟓𝟓 = �
𝟏𝟏 − 𝒙𝒙

𝟏𝟏 + 𝒙𝒙 + 𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅 =

√𝟑𝟑𝝅𝝅
𝟔𝟔

−
𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥(𝟑𝟑)

𝟏𝟏

𝟎𝟎
     Q.E.D.  

Example 2-6.  𝑰𝑰𝟔𝟔 = ∫ 𝟏𝟏
𝒂𝒂sin𝟐𝟐(𝒙𝒙)+𝒃𝒃cos𝟐𝟐(𝒙𝒙)

𝒅𝒅𝒅𝒅  𝒂𝒂,𝒃𝒃 𝛜𝛜 ℝ+𝝅𝝅/𝟐𝟐
𝟎𝟎  

     It takes a bit of experimentation here to find the winning approach, but once found, the 
integral literally falls apart.  By dividing both numerator and denominator by cos2(x), we get  

𝐼𝐼6 = ∫
1

cos2(𝑥𝑥)

𝑎𝑎sin2(𝑥𝑥)
cos2(𝑥𝑥)

+𝑏𝑏
𝑑𝑑𝑑𝑑 = ∫ sec2(𝑥𝑥)

𝑎𝑎tan2(𝑥𝑥)+𝑏𝑏
𝑑𝑑𝑑𝑑.𝜋𝜋/2

0
𝜋𝜋/2
0   

Now divide both numerator and denominator by the parameter b.  Thus, we obtain 

𝐼𝐼6 = ∫
1
𝑏𝑏sec2(𝑥𝑥)

𝑎𝑎
𝑏𝑏tan2(𝑥𝑥)+1

𝑑𝑑𝑑𝑑 = 1
𝑏𝑏 ∫

sec2(𝑥𝑥)
𝑎𝑎
𝑏𝑏tan2(𝑥𝑥)+1

𝑑𝑑𝑑𝑑𝜋𝜋/2
0

𝜋𝜋/2
0 = 1

𝑏𝑏 ∫
1+tan2(𝑥𝑥)
𝑎𝑎
𝑏𝑏tan2(𝑥𝑥)+1

𝑑𝑑𝑑𝑑𝜋𝜋/2
0  . 

Now make the following CV. Let u = tan(x) so that du = sec2(x)dx or dx = du/(1 + u2) and         
(0, π/2) → (0, ∞).  Hence, 

𝐼𝐼6 = 1
𝑏𝑏 ∫

1+𝑢𝑢2
𝑎𝑎
𝑏𝑏𝑢𝑢

2+1
∙ 𝑑𝑑𝑑𝑑
1+𝑢𝑢2

= 1
𝑏𝑏 ∫

1
𝑎𝑎
𝑏𝑏𝑢𝑢

2+1
𝑑𝑑𝑑𝑑.∞

0
∞
0   

And yet again, make another CV.  Let 𝑧𝑧 = �𝑎𝑎
𝑏𝑏
𝑢𝑢.  Then, 𝑑𝑑𝑑𝑑 = �𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑 and (0, ∞) → (0, ∞).  We then 

have 

𝐼𝐼6 = 1
𝑏𝑏 ∫

1
𝑧𝑧2+1

∙ �𝑏𝑏
𝑎𝑎
𝑑𝑑𝑑𝑑 = 1

√𝑎𝑎𝑎𝑎
∫ 𝑑𝑑𝑑𝑑

𝑧𝑧2+1
∞
0

∞
0 = � 1

√𝑎𝑎𝑎𝑎
tan−1(𝑧𝑧)�

0

∞
= 𝜋𝜋

2√𝑎𝑎𝑎𝑎
.  

This last integral is the recognizable form of the inverse tangent function and our so final result 
is 

𝑰𝑰𝟔𝟔 = �
𝟏𝟏

𝒂𝒂sin𝟐𝟐(𝒙𝒙) + 𝒃𝒃cos𝟐𝟐(𝒙𝒙)
𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐√𝒂𝒂𝒂𝒂

     Q.E.D.
𝝅𝝅/𝟐𝟐

𝟎𝟎
 



Example 2-7.  𝑰𝑰𝟕𝟕 = ∫ �𝟏𝟏+𝒙𝒙
𝟏𝟏−𝒙𝒙

𝒅𝒅𝒅𝒅𝟏𝟏
−𝟏𝟏  

     As another example illustrating the use of CV to solve integrals, let’s take a look at I7, an 
integral that was lifted from the lifting theory of aerodynamics (some more humor).  Actually, 
this is a simple one to solve if you have the least bit of familiarity with trigonometric identities.  
Make the following CV.  Let x = cos(2u) so that dx = –2sin(2u)du and (–1, 1) → (π/2, 0).  Under 
this CV, we have  

𝐼𝐼7 = −∫ 2sin(2𝑢𝑢)
tan(𝑢𝑢)

𝑑𝑑𝑑𝑑 = ∫ 4sin(𝑢𝑢) cos(𝑢𝑢)
tan(𝑢𝑢)

𝑑𝑑𝑑𝑑 = 4∫ cos2(𝑢𝑢)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑𝜋𝜋/2

0
0
𝜋𝜋/2   

Now, using another trigonometric identity, we obtain 

𝐼𝐼7 = 4∫ �1
2

+ 1
2

cos(2𝑢𝑢)� 𝑑𝑑𝑑𝑑 = 2∫ 𝑑𝑑𝑑𝑑 + 2∫ cos(2𝑢𝑢)𝑑𝑑𝑑𝑑 = 2 �𝜋𝜋
2
� + [sin(2𝑢𝑢)]0

𝜋𝜋/2𝜋𝜋/2
0

𝜋𝜋/2
0

𝜋𝜋/2
0   

Our final answer is therefore 

𝑰𝑰𝟕𝟕 = � �𝟏𝟏 + 𝒙𝒙
𝟏𝟏 − 𝒙𝒙

𝒅𝒅𝒅𝒅 = 𝝅𝝅     Q.E.D.
𝟏𝟏

−𝟏𝟏
 

Example 2-8.  𝑰𝑰𝟖𝟖 = ∫ 𝒅𝒅𝒅𝒅
√𝒙𝒙+𝒂𝒂+√𝒙𝒙

, 𝒂𝒂 𝛜𝛜  ℝ+𝒂𝒂
𝟎𝟎  

     This is another pretty simple one to solve.  However, before trying to determine a CV that is 
appropriate, this integral requires one to rationalize the denominator.  One does that by 
multiplying both numerator and denominator by the quantity √𝑥𝑥 + 𝑎𝑎 − √𝑥𝑥.  What right do we have 
to do this?  As long as you multiply both numerator and denominator by the same quantity, you 
are really multiplying by 1 which, of course, does not change the value of the original fraction—
only it’s appearance.  Therefore, 

𝐼𝐼8 = ∫ 𝑑𝑑𝑑𝑑
√𝑥𝑥+𝑎𝑎+√𝑥𝑥

∙ √𝑥𝑥+𝑎𝑎−√𝑥𝑥
√𝑥𝑥+𝑎𝑎−√𝑥𝑥

= ∫ √𝑥𝑥+𝑎𝑎−√𝑥𝑥
𝑥𝑥+𝑎𝑎−𝑥𝑥

𝑑𝑑𝑑𝑑 = 1
𝑎𝑎 ∫ �√𝑥𝑥 + 𝑎𝑎 − √𝑥𝑥�𝑑𝑑𝑑𝑑

𝑎𝑎
0

𝑎𝑎
0

𝑎𝑎
0   

This last expression can be split into two integrals as 

𝐼𝐼8 = 1
𝑎𝑎 ∫ (𝑥𝑥 + 𝑎𝑎)1 2⁄ 𝑑𝑑𝑑𝑑 − 1

𝑎𝑎 ∫ 𝑥𝑥1 2⁄ 𝑑𝑑𝑑𝑑𝑎𝑎
0

𝑎𝑎
0   

Now we are ready for the CV which is applicable to the 1st integral above (the 2nd integral is 
already a recognizable form).  Let x + a = u so that dx = du and (0, a) → (a, 2a).  We then have 

𝐼𝐼8 = 1
𝑎𝑎 ∫ 𝑢𝑢1 2⁄ 𝑑𝑑𝑑𝑑 − 1

𝑎𝑎 ∫ 𝑥𝑥1 2⁄ 𝑑𝑑𝑑𝑑 = � 2
3𝑎𝑎
𝑢𝑢3 2⁄ �

𝑎𝑎

2𝑎𝑎
− � 2

3𝑎𝑎
𝑥𝑥3 2⁄ �

0

𝑎𝑎𝑎𝑎
0

2𝑎𝑎
𝑎𝑎   

This last expression evaluates to 

𝐼𝐼8 = 2
3𝑎𝑎
�23 2⁄ 𝑎𝑎3 2⁄ − 𝑎𝑎3 2⁄ � − 2

3𝑎𝑎
𝑎𝑎3 2⁄   

Then, upon simplification, we have our final result 



𝑰𝑰𝟖𝟖 = �
𝒅𝒅𝒅𝒅

√𝒙𝒙 + 𝒂𝒂 + √𝒙𝒙
=
𝟒𝟒
𝟑𝟑√

𝒂𝒂�√𝟐𝟐 − 𝟏𝟏�     Q.E.D
𝒂𝒂

𝟎𝟎
 

Example 2-9.  𝑰𝑰𝟗𝟗 = ∫ 𝒅𝒅𝒅𝒅
𝒂𝒂+𝟐𝟐𝒃𝒃𝒃𝒃+𝒄𝒄𝒙𝒙𝟐𝟐

,  𝒂𝒂𝒂𝒂 − 𝒃𝒃𝟐𝟐 > 𝟎𝟎  𝒂𝒂,𝒃𝒃, 𝒄𝒄 𝛜𝛜 ℝ∞
−∞  

     Immediately, upon seeing this problem, I have two different thoughts about it.  First, when a 
problem appears that gives a condition (or conditions) on parameters that appear in the problem 
(in this case, the ac – b2 > 0) the question of why always occurs to me.  Here is one possible 
explanation.  The fact that ac – b2 is not allowed to be zero might imply that the final result will 
have that expression in a fraction’s denominator (that is, if it were zero, it would be undefined).  
Additionally, the fact that ac – b2 is not allowed to be negative might imply that the final result 
will contain the square root of that expression (that is, if it were negative, it would be complex 
and that certainly seems unlikely).  Second, the integrand’s denominator contains a quadratic 
expression while the integrand’s numerator does not contain the integration variable at all—this 
implies to me that the final result is going to involve the recognizable form of the inverse tangent 
function although to get there is going to involve manipulation of said denominator.  In-point-of-
fact, this gives us a clue on how to proceed.  Let’s complete the square on the denominator.  I’m 
going to call the denominator D, so D = cx2 + 2bx + a.  Completing the square, we get 

𝐷𝐷 = 𝑐𝑐 �𝑥𝑥2 + 2𝑏𝑏𝑏𝑏
𝑐𝑐

+ 𝑎𝑎
𝑐𝑐
� = 𝑐𝑐 �𝑥𝑥2 + 2𝑏𝑏𝑏𝑏

𝑐𝑐
+ 𝑏𝑏2

𝑐𝑐2
+ 𝑎𝑎

𝑐𝑐
− 𝑏𝑏2

𝑐𝑐2
� = 𝑐𝑐 �𝑥𝑥 + 𝑏𝑏

𝑐𝑐
�
2

+ 𝑎𝑎 − 𝑏𝑏2

𝑐𝑐
  

As a result, 

𝐼𝐼9 = ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎−𝑏𝑏
2
𝑐𝑐 +𝑐𝑐�𝑥𝑥+

𝑏𝑏
𝑐𝑐�
2

∞
−∞   

Now is the time for a CV of u = x + b/c, dx = du, and (‒∞, ∞) → (‒∞, ∞).  We then obtain 

𝐼𝐼9 = ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎−𝑏𝑏
2
𝑐𝑐 +𝑐𝑐𝑢𝑢

2

∞
−∞ = 𝑐𝑐 ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎𝑎𝑎−𝑏𝑏2+𝑐𝑐2𝑢𝑢2
∞
−∞   

Now, another change of variable gives us the recognizable form that we expected, namely, the 
inverse tangent form.  Let cu = z so that du = dz/c and (‒∞, ∞) → (‒∞, ∞).  Thus, 

𝐼𝐼9 = ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎𝑎𝑎−𝑏𝑏2+𝑧𝑧2

= 1
�𝑎𝑎𝑎𝑎−𝑏𝑏2

�tan−1 � 𝑧𝑧
�𝑎𝑎𝑎𝑎−𝑏𝑏2

��
−∞

∞
= 1

�𝑎𝑎𝑎𝑎−𝑏𝑏2
�𝜋𝜋
2

+ 𝜋𝜋
2
�∞

−∞   

And, our final result is 

𝑰𝑰𝟗𝟗 = �
𝒅𝒅𝒅𝒅

𝒂𝒂 + 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝒄𝒄𝒙𝒙𝟐𝟐
=

𝝅𝝅
√𝒂𝒂𝒂𝒂 − 𝒃𝒃𝟐𝟐

     Q.E.D.
∞

−∞
 

Note that our two thoughts about the final result at the beginning of the derivation were correct 
(and helpful). 

Example 2-10.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒅𝒅𝒅𝒅
�(𝒙𝒙−𝜶𝜶)(𝜷𝜷−𝒙𝒙)

  𝜶𝜶,𝜷𝜷 𝛜𝛜 ℝ𝜶𝜶
𝜷𝜷  

     The derivation required to solve this problem is not much different than the previous example 
except for the recognizable form that results from completing the square on the expression in the 



denominator.  Nevertheless, there is something fascinating about this problem and its solution.  
I’m not sure that I can articulate what the fascination is.  See if you agree with me.  Again, 
calling the denominator (sans the radical sign) D, we complete the square as follows 

𝐷𝐷 = (𝑥𝑥 − 𝛼𝛼)(𝛽𝛽 − 𝑥𝑥) = 𝑥𝑥(𝛼𝛼 + 𝛽𝛽) − 𝑥𝑥2 − 𝛼𝛼𝛼𝛼 = �𝛼𝛼+𝛽𝛽
2
�
2
− 𝛼𝛼𝛼𝛼 − �𝑥𝑥 − 𝛼𝛼+𝛽𝛽

2
�
2
  

Our integral then becomes 

𝐼𝐼10 = ∫ 𝑑𝑑𝑑𝑑

��𝛼𝛼+𝛽𝛽2 �
2
−𝛼𝛼𝛼𝛼−�𝑥𝑥−𝛼𝛼+𝛽𝛽2 �

2
𝛼𝛼
𝛽𝛽   

To change the variable, let u = x – (α + β)/2 so that dx = du and (𝛽𝛽,𝛼𝛼) → �𝛽𝛽−𝛼𝛼2 ,   𝛼𝛼−𝛽𝛽2 �. 

Under that change of variable, our integral becomes 

𝐼𝐼10 = ∫ 𝑑𝑑𝑑𝑑

��𝛼𝛼+𝛽𝛽2 �
2
−𝛼𝛼𝛼𝛼−𝑢𝑢2

= ∫ 𝑑𝑑𝑑𝑑

�(𝛼𝛼−𝛽𝛽)2
4 −𝑢𝑢2

= sin−1 � 𝑢𝑢
𝛼𝛼−𝛽𝛽
2
�
𝛽𝛽−𝛼𝛼
2

𝛼𝛼−𝛽𝛽
2

= sin−1(1) − sin−1(−1)
𝛼𝛼−𝛽𝛽
2

𝛽𝛽−𝛼𝛼
2

𝛼𝛼−𝛽𝛽
2

𝛽𝛽−𝛼𝛼
2

  

The recognizable form, as you can see, is the inverse sine function, giving us the fascinating 
result of, but completely independent of the two parameters 𝛼𝛼 and 𝛽𝛽.  Exotic—Yes! 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝒅𝒅𝒅𝒅

�(𝒙𝒙 − 𝜶𝜶)(𝜷𝜷 − 𝒙𝒙)
= 𝝅𝝅     Q.E.D.

𝜶𝜶

𝜷𝜷
 

Example 2-11.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒅𝒅𝒅𝒅
𝟏𝟏+𝟐𝟐𝒙𝒙𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶)+𝒙𝒙𝟐𝟐

   𝜶𝜶 𝝐𝝐 ℝ∞
𝟎𝟎  

     Not to belabor the technique of completing the square, but here is another integral that lends 
itself to said technique. 

𝐷𝐷 = 1 + 2𝑥𝑥 cos(𝛼𝛼) + 𝑥𝑥2 = 𝑥𝑥2 + 2𝑥𝑥 cos(𝛼𝛼) + cos2(𝛼𝛼) + 1 − cos2(𝛼𝛼) = (𝑥𝑥 + cos𝛼𝛼)2 + sin2(𝛼𝛼)  

Hence, 

𝐼𝐼11 = ∫ 𝑑𝑑𝑑𝑑
sin2(𝛼𝛼)+(𝑥𝑥+cos𝛼𝛼)2

∞
0   

Now make the change of variable such that u = x + cos(𝛼𝛼), dx = du, and (0, ∞) → (cos 𝛼𝛼, ∞).  
Thus, 

𝐼𝐼11 = ∫ � 𝑑𝑑𝑑𝑑
sin2(𝛼𝛼)+𝑢𝑢2

�∞
cos𝛼𝛼   

This last integral is, of course, the recognizable form of the inverse tangent.  Therefore, we have 

𝐼𝐼11 = 1
sin(𝛼𝛼)

�tan−1 � 𝑢𝑢
sin𝛼𝛼

��
cos𝛼𝛼

∞
= 1

sin(𝛼𝛼)
�𝜋𝜋
2
− tan−1 �cos𝛼𝛼

sin𝛼𝛼
�� = 1

sin(𝛼𝛼)
�𝜋𝜋
2
− tan−1(cot𝛼𝛼)�  

However, the cotangent of an angle is the same as the tangent of the angle’s compliment.  We 
can therefore write 

𝐼𝐼11 = 1
sin(𝛼𝛼)

�𝜋𝜋
2
− tan−1 �tan �𝜋𝜋

2
− 𝛼𝛼��� = 1

sin(𝛼𝛼)
�𝜋𝜋
2
− �𝜋𝜋

2
− 𝛼𝛼�� = 𝛼𝛼

sin(𝛼𝛼)
  



That is, our final result is 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝒅𝒅𝒅𝒅

𝟏𝟏 + 𝟐𝟐𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) + 𝒙𝒙𝟐𝟐
=

𝜶𝜶
𝐬𝐬𝐬𝐬𝐬𝐬(𝜶𝜶)      Q.E.D.

∞

𝟎𝟎
 

     This integral can also be evaluated on the interval (0, 1).  It is interesting to do so, so let’s do 
that.  The derivation is exactly the same as above until we get to the change of variable step, that 
is, the change of variable is the same, but obviously, the interval for the change is different, i.e., 
here is the change.  Let u = x + cos(α), dx = du, and (0, 1) → (cosα, 1 + cosα).  The integral then 
becomes 

∫ 𝑑𝑑𝑑𝑑
sin2(𝛼𝛼)+𝑢𝑢2

1+cos(𝛼𝛼)
cos(𝛼𝛼) = 1

sin(𝛼𝛼)
tan−1 � 𝑢𝑢

sin(𝛼𝛼)
�
cos(𝛼𝛼)

1+cos(𝛼𝛼)
= 1

sin(𝛼𝛼)
�tan−1 �1+cos𝛼𝛼

sin𝛼𝛼
� − tan−1 �cos𝛼𝛼

sin𝛼𝛼
��  

Now, using the appropriate trigonometric identities, the last expression becomes 
1

sin(𝛼𝛼)
�tan−1 �cot 𝛼𝛼

2
� − tan−1(cot𝛼𝛼)� = 1

sin(𝛼𝛼)
�tan−1 �tan �𝜋𝜋

2
− 𝛼𝛼

2
�� − tan−1 �tan �𝜋𝜋

2
− 𝛼𝛼���  

So we obtain 
1

sin(𝛼𝛼)
�𝜋𝜋
2
− 𝛼𝛼

2
− �𝜋𝜋

2
− 𝛼𝛼�� = 𝛼𝛼

2sin(𝛼𝛼)
  

This value is exactly ½ the value that the integral has on the interval 0 to ∞. 

Example 2-12.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒙𝒙𝟑𝟑𝒅𝒅𝒅𝒅
�𝒂𝒂𝟖𝟖−𝒙𝒙𝟖𝟖

  𝒂𝒂 𝛜𝛜  ℝ+𝒂𝒂
𝟎𝟎  

     This is actually a very easy integral to evaluate, but it illustrates a couple of mathematical 
points that I thought it would be good to emphasize.  I’ll do so after we do the evaluation.  The 
aha moment comes right at the beginning when you realize that the expression under the radical 
in the denominator is the difference of two squares which readily factors into a4 + x4 and a4 – x4.  
Therefore, a change of variable u = x4 so that du = 4x3dx and (0, a) → (0, a4) should produce a 
nice result.  Thus, 

𝐼𝐼12 = 1
4 ∫

𝑑𝑑𝑑𝑑
�(𝑎𝑎4+𝑢𝑢)(𝑎𝑎4−𝑢𝑢)

= 1
4 ∫

𝑑𝑑𝑑𝑑
�𝑎𝑎8−𝑢𝑢2

𝑎𝑎4

0
𝑎𝑎4

0   

However, the last integral is the recognizable form of the inverse sine function, and we have 

𝐼𝐼12 = 1
4

sin−1 � 𝑢𝑢
𝑎𝑎4
�
0

𝑎𝑎4
= 1

4
sin−1(1) = 1

4
�𝜋𝜋
2
� = 𝜋𝜋

8
  

Our final result is therefore 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝒙𝒙𝟑𝟑𝒅𝒅𝒅𝒅

√𝒂𝒂𝟖𝟖 − 𝒙𝒙𝟖𝟖
=
𝝅𝝅
𝟖𝟖

𝒂𝒂

𝟎𝟎
     Q.E.D.  

The points I wish to illustrate come about when we change the original integral by modifying the 
integration interval from (0, a) to (‒a, a), i.e., ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑

√𝑎𝑎8−𝑥𝑥8
𝑎𝑎
−𝑎𝑎 .  Given this new integral, based on entry 

# 8 in Table 4, Chapter 1, one can immediately say that the value of this new integral is zero, that 



is, ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑
√𝑎𝑎8−𝑥𝑥8

= 0.𝑎𝑎
−𝑎𝑎   The integrand is an odd function and one can see this by replacing the 

variable x with –x and obtaining the negation of the original integrand or by examining the graph 
of the integrand as depicted in the accompanying figure.  The graph is symmetric about the 
origin and therefore the area between the curve and below the x-axis cancels with the area 
between the curve and above the x-axis, as can be seen in figure 2-1.  The second point worth 
observing is that if one does not recognize the odd function property and attempts to evaluate the 
integral by making the change of variable u = x4, as we did earlier, we note that the inverse 
function for the change of variable is not single valued on (‒a, a) and we must therefore break 
the integral up into two pieces, ala, ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑

√𝑎𝑎8−𝑥𝑥8
+ ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑

√𝑎𝑎8−𝑥𝑥8
𝑎𝑎
0

0
−𝑎𝑎  (as addressed at the beginning of this 

chapter). 

 

 
 Figure 2-1.  Graph of x3/(a8 – x8) between –a and +a 

Example 2-13.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒅𝒅𝒅𝒅
�𝟏𝟏+𝒙𝒙+𝒙𝒙𝟐𝟐

𝟏𝟏
−½  

     This example is a bit strange—the integration interval looks a little weird, but you will 
subsequently see that it is configured to make life easy later in the derivation.  I, your author, like 
this problem as it illustrates the CV property/technique quite well.  Anyway, here it is!  One 
starts by completing the square on the expression under the radical sign in the denominator of the 
integrand.  This gives us 

1 + 𝑥𝑥 + 𝑥𝑥2 = 3
4

+ 1
4

+ 𝑥𝑥 + 𝑥𝑥2 = 3
4

+ �1
2

+ 𝑥𝑥�
2
  

Our integral then becomes 



𝐼𝐼13 = ∫ 𝑑𝑑𝑑𝑑

�3
4+�

1
2+𝑥𝑥�

2
1
−½   

Aha, I would suggest a CV of the following:  u = ½ + x, so that du = dx and (‒½ , 1) → (0, 3/2). 

That CV simply transforms our integral to 

𝐼𝐼13 = ∫ 𝑑𝑑𝑑𝑑

�34+𝑢𝑢
2

3/2
0   

Look what happens if we now make another CV.  Let 𝑢𝑢 = √3
2 tan(𝜃𝜃) so that 𝑑𝑑𝑑𝑑 = √3

2 sec2(𝜃𝜃)𝑑𝑑𝑑𝑑 and 
(0, 3/2) → (0, π/3).  Wait a minute, you might say.  This is making things worse, isn’t it?  A 
knowledge of trigonometric identities is what drives this aha moment.  As I said, look what 
happens. 

𝐼𝐼13 = ∫
√3
2 sec2(𝜃𝜃)𝑑𝑑𝑑𝑑

�34+
3
4tan2(𝜃𝜃)

= ∫
√3
2 sec2(𝜃𝜃)𝑑𝑑𝑑𝑑

√3
2 �1+tan2(𝜃𝜃)

= ∫ sec(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/3
0

𝜋𝜋/3
0

𝜋𝜋/3
0 = [log(sec𝜃𝜃) + tan𝜃𝜃]0

𝜋𝜋/3 = log�2 + √3�  

Of course, this last integral is a recognizable form and we have our final solution, namely 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝒅𝒅𝒅𝒅

√𝟏𝟏 + 𝒙𝒙 + 𝒙𝒙𝟐𝟐
=

𝟏𝟏

−½
𝐥𝐥𝐥𝐥𝐥𝐥�𝟐𝟐 + √𝟑𝟑�      Q.E.D.  

Example 2-14.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒅𝒅𝒅𝒅

�𝒂𝒂𝟐𝟐+𝒙𝒙𝟐𝟐�𝟐𝟐
  𝒂𝒂 𝝐𝝐 ℝ∞

−∞  

 
Figure 2-2.  Italian Mathematician Maria Gaetana Agnesi (1718 – 1799) 

 “Analytics is the Art of resolving all kinds of Mathematical Questions, by finding or computing unknown numbers, 
or quantities, by the means of others that are known or given.”—Maria Gaetana Agnesi  

     Mathematician Maria Agnesi is not responsible for the evaluation of I14 (it’s probably too 
simple a problem for anybody to claim responsibility for its solution), however, she has a much 
more interesting connection to this integral.  I will explain that connection shortly.   

javascript:window.close();


     Appointed to the University of Bologna by Pope Benedict XIV at the age of 32, Maria Agnesi 
became the first female professor of mathematics on a faculty anywhere in the world.  Evidently, 
she displayed her mathematical ability at a very early age; she was a gifted and precocious child.  
Her father, Don Pietro Agnesi, actively encouraged his daughter in her studies and, proud of her, 
exhibited her in the kinds of academic meetings fashionable at that time.   

     Maria Agnesi was the author of a famous two-volume work on the methods of Calculus.  This 
work by Agnesi is the first surviving mathematical work by a woman.  Although Newton and 
Leibniz had invented Calculus many years before, communication of new ideas and discoveries 
was slow to spread in that time; as a result, Calculus was a relatively new mathematical field to 
Agnesi and her Italian contemporaries.  Her book on the subject was translated into French and 
published under the license of the Royal Academy of Sciences and declared to be the most 
complete and the best done in this field.  The book includes a discussion of the curve now known 
as "the Witch of Agnesi."  It is fate that this curve has come down to us through the years with 
this name, for it is certainly not the name that Ms. Agnesi intended, or for that matter, the name 
which anybody else intended.  The curve was first discussed by Fermat and a construction for the 
curve was given by Grandi in 1703.  In 1718 Grandi gave the curve the Latin name versoria 
which means turning curve, so named because of its shape (see the graph in figure 2-3).  Grandi 
also gave the Italian versiera for the Latin versoria and indeed, Agnesi quite correctly states in 
her book that the curve was called la versiera.  However, an Englishman by the name of John 
Colson translated Agnesi’s book from Italian into English and Colson mistook la versiera for 
laversiera which means ungodly woman or she-devil.  Hence, today we know the curve as the 
Witch.  By-the-way, John Colson (1680-1760) was the Lucasian Professor of Mathematics at 
Cambridge.  In my opinion, Colson, through his mis-translation, actually did Agnesi a favor.  If 
the name turning curve had caught on, Agnesi’s name would undoubtedly not have been 
associated with the curve and this “romantic” name Witch of Agnesi would have been lost 
forever. 

 

Figure 2-3.  Graph of the Witch of Agnesi 



     Before we discuss Maria Agnesi’s connection with the integral I14, let’s attempt to solve the 
integral first and then we will address her association with it. 

𝐼𝐼14 = ∫ 𝑑𝑑𝑑𝑑
(𝑎𝑎2+𝑥𝑥2)2

∞
−∞   

 
Whenever you have an integral that exhibits a constant plus the variable of integration squared, 
as I14 does in the denominator (i.e., a2 + x2) it is a good idea to consider a change of variable in 
which the variable of integration is set equal to the square root of the constant times the tangent 
of the new variable.  In this case that would mean let x = atan(θ).  The reason for this is that 
when you form the term a2 + x2 in terms of the new variable, you will get a2 +a2tan2(θ) which 
reduces to a2sec2(θ) by means of a trigonometric identity and that may be very helpful, 
particularly since dx will equal asec2(θ)dθ and the two sec2(θ) terms will often annihilate one-
another (i.e., cancel) and, in this case, they do, leaving a simple sec2(θ) term in the denominator.  
Continuing, (‒∞, ∞) → (‒π/2, π/2), thus 
 

𝐼𝐼14 = ∫ 𝑎𝑎sec2(𝜃𝜃)𝑑𝑑𝑑𝑑
𝑎𝑎4sec4(𝜃𝜃)

𝜋𝜋/2
−𝜋𝜋/2 = 1

𝑎𝑎3 ∫
𝑑𝑑𝑑𝑑

sec2(𝜃𝜃)
= 1

𝑎𝑎3 ∫ cos2(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2
−𝜋𝜋/2

𝜋𝜋/2
−𝜋𝜋/2   

 
Now, using another trigonometric identity, namely cos2(θ) = ½ + ½cos(2θ), we have 

𝐼𝐼14 = 1
𝑎𝑎3 ∫ �1

2
+ 1

2
cos(2𝜃𝜃)� 𝑑𝑑𝑑𝑑𝜋𝜋/2

−𝜋𝜋/2 = 1
2𝑎𝑎3 ∫ 𝑑𝑑𝑑𝑑 + 1

2𝑎𝑎3 ∫ cos(2𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2
−𝜋𝜋/2

𝜋𝜋/2
−𝜋𝜋/2   

And, of course, these last two integrals can be integrated in the conventional sense and we have 

𝐼𝐼14 = 1
2𝑎𝑎3

[𝜃𝜃]−𝜋𝜋/2
𝜋𝜋/2 + 1

4𝑎𝑎3
[sin(2𝜃𝜃)]−𝜋𝜋/2

𝜋𝜋/2 = 𝜋𝜋
2𝑎𝑎3

  

So, as the final value 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝟏𝟏

(𝒂𝒂𝟐𝟐 + 𝒙𝒙𝟐𝟐)𝟐𝟐 𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟐𝟐𝒂𝒂𝟑𝟑

     Q.E.D.
∞

−∞
 

     Finally, here is the connection between this integral and Ms. Agnesi.  If you take Ms. 
Agnesi’s curve, the Witch of Agnesi, and form a solid-of-revolution (SOR) from it by rotating it 
about the x-axis, and then compute the volume of that solid of revolution, this integral will be 
involved in that volume calculation.  Quite interesting!  (See figure 2-4 for an explanation.) 

 
Figure 2-4. The Volume of the SOR formed from the Witch of Agnesi 



Example 2-15.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝒙𝒙
𝟑𝟑
𝟐𝟐

√𝟐𝟐𝒂𝒂−𝒙𝒙
𝒅𝒅𝒅𝒅  𝒂𝒂 𝝐𝝐 ℝ+𝟐𝟐𝒂𝒂

𝟎𝟎  
     Evaluation of this integral will allow us to immediately write down the value of another 
integral.  The other integral is ∫ (3𝑎𝑎 − 𝑥𝑥)� 𝑥𝑥

2𝑎𝑎−𝑥𝑥
𝑑𝑑𝑑𝑑∞

0 ; I will explain after we solve I15. 

The CV needed here is the following.  Let x = 2asin2(θ) so that dx = 4asin(θ)cos(θ)dθ and        
(0, 2a) → (0, π/2).  Further, x3/2 = (2a)3/2sin3(θ) and (2a – x)½ = (2a)½cos(θ).  Under this CV, our 
integral becomes 

𝐼𝐼15 = ∫ (2𝑎𝑎)3/2sin3(𝜃𝜃)4𝑎𝑎 sin(𝜃𝜃) cos(𝜃𝜃)
(2𝑎𝑎)1/2 cos(𝜃𝜃)

𝑑𝑑𝑑𝑑𝜋𝜋/2
0 = 8𝑎𝑎2 ∫ sin4(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2

0   

Now, using the trigonometric identity sin2(θ) = ½ ‒ ½cos(2θ), this becomes 

𝐼𝐼15 = 8𝑎𝑎2 ∫ [½ − ½ cos(2𝜃𝜃)]2𝑑𝑑𝑑𝑑𝜋𝜋/2
0 = 8𝑎𝑎2 ∫ [¼ − ½ cos(2𝜃𝜃) + ¼cos2(2𝜃𝜃)]𝜋𝜋/2

0 𝑑𝑑𝑑𝑑  

This last expression can, of course, be written as three separate integrals.  Hence 

𝐼𝐼15 = 2𝑎𝑎2 ∫ 𝑑𝑑𝑑𝑑𝜋𝜋/2
0 − 4𝑎𝑎2 ∫ cos(2𝜃𝜃)𝑑𝑑𝑑𝑑 + 2𝑎𝑎2 ∫ cos2(2𝜃𝜃)𝜋𝜋/2

0
𝜋𝜋/2
0 𝑑𝑑𝑑𝑑  

Obviously, the first two integrals above are tractable; to integrate the last integral above, we must 
use the trigonometric identity cos2(2θ) = ½ + ½cos(4θ), which gives us 

𝐼𝐼15 = 2𝑎𝑎2[𝜃𝜃]0
𝜋𝜋/2 − 2𝑎𝑎2[sin(2𝜃𝜃)]0

𝜋𝜋/2 + 𝑎𝑎2[𝜃𝜃]0
𝜋𝜋/2 + �𝑎𝑎

2

4
sin(4𝜃𝜃)�

0

𝜋𝜋/2
  

The 1st term above is πa2, the 2nd term is zero, the 3rd is πa2/2 and the 4th is also zero.  So we 
obtain as a final value 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝒙𝒙
𝟑𝟑
𝟐𝟐

√𝟐𝟐𝟐𝟐 − 𝒙𝒙
𝒅𝒅𝒅𝒅

𝟐𝟐𝟐𝟐

𝟎𝟎
=
𝟑𝟑𝟑𝟑𝒂𝒂𝟐𝟐

𝟐𝟐
     Q.E.D.  

     We said, at the beginning of this example that we would be able to immediately write down 
the value of another integral upon evaluating I15, and the other integral was the following one: 

∫ (3𝑎𝑎 − 𝑥𝑥)� 𝑥𝑥
2𝑎𝑎−𝑥𝑥

𝑑𝑑𝑑𝑑∞
0 = 3𝜋𝜋𝑎𝑎2

2
.  

As you can plainly see, we did immediately write down a value for it, namely the same value that 
we obtained for I15.  How do we know that this value is correct?  To answer that question, we 
need to examine the integrand of I15 and the Cartesian equation of a classic curve known as the 
Cissoid of Diocles.  Figure 2-5 shows a graph of the Cissoid of Diocles along with its equation, 
namely, y2 = x3/(2a – x).  Note that the integrand of I15 is simply the square root of the right side 
of the equation representing the Cissoid of Diocles, or y.  Now, suppose that we wished to 
calculate the area in the first quadrant between the Cissoid of Diocles and its asymptote.  One 
way to do that is to consider that the area is composed of many, many vertical rectangles of 
height y and of an infinitely small width dx.  Of course the area of one of those rectangles will be 
the height y times the width dx which we have set equal to dA in figure 2-5 (see ① in the figure).  
Integrating that from x = 0 to x = 2a will then produce the desired area.  So, the value of I15 
represents the area between the Cissoid of Diocles and its asymptote in the first quadrant.  



     However, one could also compute that same area by considering it to be composed of many 
horizontal rectangles of width 2a – x and infinitely small height dy.  In this case, dA = (2a – x)dy, 
and the first quadrant area would be as shown in the figure (see ② in figure 2-5).  Wait-a-
minute, you might say.  That integral is different than the one claiming to also be equal to 3πa2/2.  
Yes, but if you calculate dy from the equation for the Cissoid of Diocles and then substitute that 
value for dy in the integral, you obtain the proper properly improper integral (humor, again?).  
Note, that we have demonstrated the value of this integral through a purely geometric argument.  
Quite interesting and certainly a case of non-conventional integration!! 

 
Figure 2-5.  The area encompassed by the Cissoid of Diocles and its asymptote 

Example 2-16.   𝑰𝑰𝟏𝟏𝟏𝟏 =  ∫ 𝒅𝒅𝒅𝒅
�𝒂𝒂𝒂𝒂− 𝒙𝒙𝟐𝟐

𝒂𝒂
𝟎𝟎     𝒂𝒂 𝝐𝝐 ℝ+ 

     We will end this chapter with a very simple integral to compute; we do so not to necessarily 
show another example of “Change of Variable”, but to echo what was said in the preface in that 
the value of the integral sometimes seems intriguing and/or exotic.  Completing the square of the 
expression  inside  the  radical gives  𝐼𝐼16 =  ∫ 𝑑𝑑𝑑𝑑

�𝑎𝑎2
4 − �𝑥𝑥− 𝑎𝑎2�

2 𝑎𝑎
0 .  Now, a CV of  u = x – a/2 so that du = dx and 

(0, a) → (‒a/2, +a/2).  We therefore have, ∫ 𝑑𝑑𝑑𝑑
�𝑎𝑎2 4−𝑢𝑢2⁄

= sin−1 �2𝑢𝑢
𝑎𝑎
�
−𝑎𝑎/2

+𝑎𝑎/2
= sin−1(1)𝑎𝑎/2

−𝑎𝑎/2 −  sin−1(−1) = 𝜋𝜋
2

+ 𝜋𝜋
2
 = π. 

So, our final result is π—completely independent of the value of a.  In other words, no matter 
what value we assign to the parameter a (under the constraint of it being positive and real), the 
integral’s value is always π.  That seems to me to be quite magical! 

𝑰𝑰𝟏𝟏𝟏𝟏 =  �
𝒅𝒅𝒅𝒅

√𝒂𝒂𝒂𝒂 − 𝒙𝒙𝟐𝟐
= 𝝅𝝅     𝐐𝐐.𝐄𝐄.𝐃𝐃.

𝒂𝒂

𝟎𝟎

 



 

I must study politics and war that my sons may have the liberty to study mathematics and 
philosophy 

—John Adams 

Chapter 3.  Interval Preservation (IP) 
 

     This chapter is devoted to the property that we designated as “Interval Preservation” in Table 
4 of integral properties of Chapter 1 (property #6).  That doesn’t mean that the solution of the 
integrals that we will attempt in this chapter can’t also embody some of the other properties from 
that table, in point-of-fact, they more than likely will.  However, every integral evaluation in this 
chapter will definitely use the IP property to arrive at a value since the object of this chapter is to 
understand how this particular property can be used.  Before we look at any integrals, however, 
let’s address the property in a bit more detail.  Here is the property as stated in the table: 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑  where 𝑥𝑥 = 𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

First of all, this property is a special case of property #2, i.e., “Change of Variable” but a change 
of variable to accomplish the specific purpose of leaving the integral’s interval of integration 
unchanged.  If we go through the usual process of seeing what happens when we substitute         
a + b – u for our variable of integration, x, we get dx = –du and (a, b) → (b, a).  It flips the 
interval and we obtain  

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 =𝑏𝑏
𝑎𝑎 − ∫ 𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑𝑎𝑎

𝑏𝑏 = ∫ 𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑.𝑏𝑏
𝑎𝑎   

But, of course, the leading negative sign flips it right back (property #3—Negation) and our 
integration interval is preserved albeit the original integrand is now changed.  This property can 
be quite helpful in the evaluation of integrals, particularly integrals involving trigonometric 
functions.  Let’s do such an integral. 

Example 3-1.  𝑰𝑰𝟏𝟏 = ∫ �𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)
�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)+�𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)

𝒅𝒅𝒅𝒅𝝅𝝅/𝟐𝟐
𝟎𝟎  

     This is quite a formidable looking integral.  My first thought upon seeing this integral was to 
rationalize the denominator, that is, get rid of the radical signs in the denominator.  One can do 
that by multiplying both numerator and denominator by�sin(𝑥𝑥) −�cos(𝑥𝑥).  It doesn’t take long 
before one realizes that this approach gets you nowhere.  However, by applying the IP change of 
variable x = π/2 – u, the integral literally solves itself.  Under that change of variable we get      
dx = –du and (0, π/2) → (π/2, 0) and we have 

𝐼𝐼1 = −∫
�sin�𝜋𝜋2−𝑢𝑢�

�sin�𝜋𝜋2−𝑢𝑢�+�cos�
𝜋𝜋
2−𝑢𝑢�

𝑑𝑑𝑑𝑑 = ∫ �cos(𝑢𝑢)
�cos(𝑢𝑢)+�sin(𝑢𝑢)

𝑑𝑑𝑑𝑑.𝜋𝜋/2
0

0
𝜋𝜋/2   

This last step is so because the sine of an angle is the same as the cosine of its compliment and 
vice-versa (this is the “aha moment”).  We can therefore write  



2𝐼𝐼1 = ∫ �sin(𝑥𝑥)
�sin(𝑥𝑥)+�cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 + ∫ �cos(𝑥𝑥)
�cos(𝑥𝑥)+�sin(𝑥𝑥)

𝑑𝑑𝑑𝑑 = ∫ �sin(𝑥𝑥)+�cos(𝑥𝑥)
�sin(𝑥𝑥)+�cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 = ∫ 𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

.𝜋𝜋/2
0

𝜋𝜋/2
0

𝜋𝜋/2
0

𝜋𝜋/2
0   

Don’t forget, the variable u is just a dummy variable and we can use any symbol we choose in its 
place (property #1).  If we use x, the fact that our interval of integration has been preserved 
allows us to combine the two integrals into one and viola, our integral solves itself and our final 
result is 

𝑰𝑰𝟏𝟏 = �
�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)

�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) + �𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)
𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐𝟐𝟐

     Q.E.D
𝝅𝝅/𝟐𝟐

𝟎𝟎
.  

     Now that you’ve seen an example of how the IP property can be used let’s discuss a further 
use of this interval preserving change of variable.  Suppose that we have a definite integral of 
known value.  Let’s call that value V1, that is 𝑉𝑉1 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑.𝑏𝑏

𝑎𝑎   Also suppose that we are confronted 
with solving 𝑉𝑉2 = ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑.𝑏𝑏

𝑎𝑎   Interestingly enough, the IP property can always be used to crack 
V2 given that we already know V1.  Let’s do it.  Let x = a + b – u, dx = –du, and (a, b) → (b, a) 
and we have 

𝑉𝑉2 = −∫ (𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑 = ∫ (𝑎𝑎 + 𝑏𝑏)𝑏𝑏
𝑎𝑎

𝑎𝑎
𝑏𝑏 𝑓𝑓(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑 − ∫ 𝑢𝑢𝑢𝑢(𝑎𝑎 + 𝑏𝑏 − 𝑢𝑢)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 .  

Now, focus on the two terms of the above expression to the right of the 2nd equal sign.  The first 
term is simply (a + b)V1 and the second term is V2.  So, the IP property gives us 

2𝑉𝑉2 = (𝑎𝑎 + 𝑏𝑏)𝑉𝑉1     or     𝑉𝑉2 = �𝑎𝑎+𝑏𝑏
2
� 𝑉𝑉1.  

This result is basically a theorem, so let’s call it the IP theorem and see how it works using the 
previous example, meaning we will attempt to solve the following: 

Example 3-2.  𝑰𝑰𝟐𝟐 = ∫ 𝒙𝒙�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)
�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)+�𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)

𝒅𝒅𝒅𝒅.𝝅𝝅/𝟐𝟐
𝟎𝟎  

     We know from working example 3-1 that 𝐼𝐼1 = ∫ �sin(𝑥𝑥)
�sin(𝑥𝑥)+�cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 𝜋𝜋
4

𝜋𝜋/2
0 .  Our IP theorem tells us 

that the value of I2 is simply 𝐼𝐼2 = 1
2
�𝜋𝜋
2
� 𝐼𝐼1.  We can simply write down the result without doing any 

work at all.  That is 

𝑰𝑰𝟐𝟐 = �
𝒙𝒙�𝐬𝐬𝐢𝐢𝐢𝐢(𝒙𝒙)

�𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) + �𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)
𝒅𝒅𝒅𝒅 =

𝝅𝝅𝟐𝟐

𝟐𝟐𝟒𝟒
     Q.E.D.

𝝅𝝅/𝟐𝟐

𝟎𝟎
 

Let’s carry this little theorem a bit further.  Once we know the value ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑,𝑏𝑏
𝑎𝑎  we can then use 

that result to obtain the value of ∫ 𝑥𝑥2𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝑎𝑎+𝑏𝑏
2 ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑 = �𝑎𝑎+𝑏𝑏

2
�
2
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑.𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   Generalizing this 

idea, we have the very delicious result that 

∫ 𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = �𝑎𝑎+𝑏𝑏
2
�
𝑛𝑛
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑     𝑛𝑛 𝜖𝜖 ℕ+𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

For the particular integrals in examples 3-1 and 3-2, this gives us 

∫ 𝑥𝑥𝑛𝑛�sin(𝑥𝑥)
�sin(𝑥𝑥)+�cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 𝜋𝜋𝑛𝑛+1

22(𝑛𝑛+1)
𝜋𝜋/2
0   



Example 3-3.  𝑰𝑰𝟑𝟑 = ∫ 𝒙𝒙𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)
𝟏𝟏+cos𝟐𝟐(𝒙𝒙)

𝒅𝒅𝒅𝒅.𝝅𝝅
𝟎𝟎  

     Here we can solve this integral by solving the simpler integral (the integrand sans  the 
numerator x-term) and then use the IP theorem to arrive at the final result.  That is, 

∫ sin(𝑥𝑥)
1+cos2(𝑥𝑥)

𝑑𝑑𝑑𝑑 = −∫ 𝑑𝑑[cos(𝑥𝑥)]
1+𝑐𝑐𝑐𝑐𝑠𝑠2(𝑥𝑥)

= −[tan−1(cos 𝑥𝑥)]0𝜋𝜋 = −[tan−1(−1) − tan−1(1)] = 𝜋𝜋
2

𝜋𝜋
0

𝜋𝜋
0 . 

Thus, by our IP theorem, I3 = (π/2)(π/2) = π2/4.  Formally, we write 

𝑰𝑰𝟑𝟑 = �
𝒙𝒙𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)

𝟏𝟏 + cos𝟐𝟐(𝒙𝒙)
𝒅𝒅𝒅𝒅 =

𝝅𝝅𝟐𝟐

𝟒𝟒
     Q.E.D.

𝝅𝝅

𝟎𝟎
 

Example 3-4.  𝑰𝑰𝟒𝟒 = ∫ sin𝟐𝟐(𝒙𝒙)
𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)+𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)

𝒅𝒅𝒅𝒅𝝅𝝅/𝟐𝟐
𝟎𝟎 . 

     Again, let’s use the IP property to see where it leads with I4.  Letting x = π/2 – u, so that            
dx = –du, and (0, π/2) → (π/2, 0), we obtain 

𝐼𝐼4 = −∫
sin2�𝜋𝜋2−𝑢𝑢�

sin�𝜋𝜋2−𝑢𝑢�+cos�
𝜋𝜋
2−𝑢𝑢�

𝑑𝑑𝑑𝑑 = ∫ cos2(𝑢𝑢)
cos(𝑢𝑢)+sin(𝑢𝑢)

𝑑𝑑𝑑𝑑.𝜋𝜋/2
0

0
𝜋𝜋/2   

Therefore, we can write 

2𝐼𝐼4 = ∫ sin2(𝑥𝑥)
sin(𝑥𝑥)+cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 + ∫ cos2(𝑥𝑥)
cos(𝑥𝑥)+sin(𝑥𝑥)

𝑑𝑑𝑑𝑑 = ∫ 𝑑𝑑𝑑𝑑
sin(𝑥𝑥)+cos(𝑥𝑥)

𝜋𝜋/2
0

𝜋𝜋/2
0

𝜋𝜋/2
0 . 

Well, we certainly have a simpler integral, but this one still requires a bit more work before we 
can write down the final value.  Another change of variable should help; let y = tan(x/2) meaning 
that x = 2tan-1(y), dx = 2dy/(1+y2),  and (0, π/2) → (0, 1).  We now need to figure out what sin(x) 
and cos(x) are equal to in terms of our new variable, y.  If we take the trigonometric identity 
tan�𝑥𝑥2� = ±�1−cos(𝑥𝑥)

1+cos(𝑥𝑥)
 and solve it for cos(x), we get cos(𝑥𝑥) =

1−tan2�𝑥𝑥2�

1+tan2�𝑥𝑥2�
= 1−𝑦𝑦2

1+𝑦𝑦2
.  Now we need a similar 

conversion for sin(x).  We do know that sin(𝑥𝑥) = 2 sin�𝑥𝑥2� cos�𝑥𝑥2�.  If we both multiply and divide the 
right side of this expression by cos(x/2) we get sin(𝑥𝑥) = 2 tan�𝑥𝑥2�cos2�𝑥𝑥2� =

2 tan�𝑥𝑥2�

sec2�𝑥𝑥2�
=

2 tan�𝑥𝑥2�

1+tan2�𝑥𝑥2�
= 2𝑦𝑦

1+𝑦𝑦2
.  

So, under this new variable, our integral becomes 

2𝐼𝐼4 = ∫
2

1+𝑦𝑦2

2𝑦𝑦
1+𝑦𝑦2

+1−𝑦𝑦
2

1+𝑦𝑦2

𝑑𝑑𝑑𝑑 = 2∫ 1
1+2𝑦𝑦−𝑦𝑦2

𝑑𝑑𝑑𝑑1
0

1
0 .  

If we now complete the square on the denominator of the integrand we get 2 – (y – 1)2.  And this 
is the “aha moment”.  A further expansion of the denominator into partial fractions should allow 
us to actually perform the integration and get a value for the integral.  However, this “aha 
moment” is a bit uncommon.  What I mean by that is It seems to me that the “aha moment” 
should have been when one sees that the change of variable of y = tan(x/2) is going to lead to a 
solution.  Personally, I didn’t see that.  Making that change of variable was, to me, more of an 
experiment, i.e., is this change of variable going to lead anywhere?  But, I didn’t see my way 
clear to a solution until the last expression above.  The denominator of the last integral above can 
be factored as the difference of two squares.  That then gives us the idea of further expansion 
into partial fractions.  Anyway, let’s continue—factoring and then expanding the last integrand 
into partial fractions gives us 



𝐼𝐼4 = ∫ 1
2−(𝑦𝑦−1)2

𝑑𝑑𝑑𝑑 = ∫ 1
�√2+1−𝑦𝑦��√2−1+𝑦𝑦�

𝑑𝑑𝑑𝑑1
0

1
0 = 1

2√2
∫ 1

√2+1−𝑦𝑦
𝑑𝑑𝑑𝑑 + 1

2√2
∫ 1

√2−1+𝑦𝑦
𝑑𝑑𝑑𝑑.1

0
1
0   

Both integrals on the right side of the equal sign in the above expression can easily be doctored 
into recognizable forms that constitute the natural log function.  That is, 

𝐼𝐼4 = − 1
2√2

∫ 𝑑𝑑(√2+1−𝑦𝑦)
√2+1−𝑦𝑦

+ 1
2√2

∫ 𝑑𝑑�√2−1+𝑦𝑦�
√2−1+𝑦𝑦

1
0

1
0 . 

And, of course, we can now see that integration gives us 

𝐼𝐼4 = �− 1
2√2

log�√2 + 1 − 𝑦𝑦��
0

1
+ � 1

2√2
log�√2 − 1 + 𝑦𝑦��

0

1
= 1

2√2
�log�√2 + 1� − log�√2 − 1��. 

By the property of logarithms, we combine these last two terms into one and we have the final 
value for the original integral—all as a result of that simple IP change of variable at the very 
beginning. 

𝑰𝑰𝟒𝟒 = �
sin𝟐𝟐(𝒙𝒙)

𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) + 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)
𝒅𝒅𝒅𝒅 =

𝟏𝟏
𝟐𝟐√𝟐𝟐

𝐥𝐥𝐥𝐥𝐥𝐥�
√𝟐𝟐 + 𝟏𝟏
√𝟐𝟐 − 𝟏𝟏

�    Q.E.D.
𝝅𝝅/𝟐𝟐

𝟎𝟎
 

Example 3-5.  𝑰𝑰𝟓𝟓 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙+𝟏𝟏)
𝒙𝒙𝟐𝟐+𝟏𝟏

𝟏𝟏
𝟎𝟎 𝒅𝒅𝒅𝒅 

     So far, in all of the examples showing how the IP property can lead to a solution, the IP 
change of variable was always the first step taken in the derivation.  That is not necessarily 
always going to be the case, and this example illustrates that fact.  In I5, the x2 + 1 in the 
denominator looks suspect to me.  If we were to make a change of variable of x = tan(θ), the 
denominator becomes sec2(θ) and so does dx.  So the two cancel and that’s just so convenient.  
Let’s try it, remembering to also change the integration interval, that is, (0, 1) → (0, π/4). 

𝐼𝐼5 = ∫ log[tan(𝜃𝜃)+1]
tan2(𝜃𝜃)+1

[sec2(𝜃𝜃)𝑑𝑑𝑑𝑑] = ∫ log[tan(𝜃𝜃) + 1]𝑑𝑑𝑑𝑑𝜋𝜋/4
0

𝜋𝜋/4
0 .  

 Now we’ve got an integrand that is composed of a trig function and we know that often the IP 
property can be helpful, so let’s try that.  Let θ = π/4 – u, dθ = –du, and (0, π/4) → (π/4, 0). 

𝐼𝐼5 = −∫ log �tan �𝜋𝜋
4
− 𝑢𝑢� + 1� 𝑑𝑑𝑑𝑑 = ∫ log �tan �𝜋𝜋

4
− 𝑢𝑢� + 1�𝜋𝜋/4

0
0
𝜋𝜋/4 𝑑𝑑𝑑𝑑  

Now, recall, from entry #9 in the table of useful trigonometric identities in Chapter 1, we have  

tan �𝜋𝜋
4
− 𝑢𝑢� =

tan�𝜋𝜋4�−tan(𝑢𝑢)

1+tan�𝜋𝜋4� tan(𝑢𝑢)
= 1−tan(𝑢𝑢)

1+tan(𝑢𝑢)
.  

Thus, our integral becomes 

𝐼𝐼5 = ∫ log �1−tan(𝑢𝑢)
1+tan(𝑢𝑢)

+ 1� 𝑑𝑑𝑑𝑑 = ∫ log �1−tan(𝑢𝑢)+1+tan(𝑢𝑢)
1+tan(𝑢𝑢)

� 𝑑𝑑𝑑𝑑 = ∫ log � 2
1+tan(𝑢𝑢)

� 𝑑𝑑𝑑𝑑𝜋𝜋/4
0

𝜋𝜋/4
0

𝜋𝜋/4
0 .  

Aha!  It’s that moment!  Because of the property of logarithms, this last integral becomes 

𝐼𝐼5 = log(2)� 𝑑𝑑𝑑𝑑 −� log[1 + tan(𝑢𝑢)]𝑑𝑑𝑑𝑑 =
𝜋𝜋
4

log(2) − 𝐼𝐼5.
𝜋𝜋/4

0

𝜋𝜋/4

0
 

Magnificent!!!  We have our final solution which is 



𝑰𝑰𝟓𝟓 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙 + 𝟏𝟏)
𝒙𝒙𝟐𝟐 + 𝟏𝟏

𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟖𝟖
𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐)     Q.E.D.

𝟏𝟏

𝟎𝟎
 

     The magnificent derivation above (example 3-5) is due to Joseph Alfred Serret and the 
integral is known as Serret’s integral.  He published this solution in 1844 at the age 25 (Oh, to be 
25 again).  Following is a brief bio of him. 

 

Figure 3-1.  French Mathematician Joseph Serret (1819-1885) 

          Serret was admitted to the École Polytechnique in Paris in 1838 and, after two years of 
study, graduated in 1840.  Some years later, he was appointed as an examiner at the College 
Sainte Barbe.  At the same time he undertook research for a doctorate in mathematical sciences 
at the Faculty of Sciences in Paris. On 25 October 1847 he submitted two theses to the Faculty of 
Science for his doctorate; for his two theses, following an oral examination, Serret was awarded 
his doctorate in 1847 and, in the following year, he was appointed as an entrance examiner for 
the École Polytechnique; he held this position until 1862. 

     Serret did important work in Differential Geometry (and, in my opinion, Differential 
Geometry is one of the most difficult mathematical subjects!!!!); he made major advances in this 
topic. The fundamental formulae in the theory of space curves are the Frenet-Serret formulae. In 
Differential Geometry, the Frenet-Serret formulas describe the kinematic properties of a particle 
moving along a continuous differentiable curve in three-dimensional Euclidean space R3 (see 
what I mean!!!!).  Serret also published papers on number theory, calculus, the theory of 
functions, group theory, mechanics, differential equations and astronomy.  However, he was best 
known during his lifetime as the author of a number of extremely well-received textbooks.  He 
published Cours d'algèbre supérieure in 1849. The book, based on lectures he gave to the 
Faculty of Science in Paris. It contains a presentation of classical Galois theory (named after 
Evariste Galois—another French mathematician), which today forms much of the basis of 

javascript:win1('../Glossary/differential_geometry',350,200)
javascript:win1('../Glossary/number_theory',350,200)
http://www-history.mcs.st-and.ac.uk/Mathematicians/Galois.html
javascript:enlarge('Serret')


modern cryptography.  During his lifetime Serret was honored with election to the Paris 
Academy of Sciences and, after his death, he was honored with a Paris street named for him. 

Example 3-6.  𝑰𝑰𝟔𝟔 = ∫ 𝒙𝒙
𝟏𝟏+𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) 𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)

𝒅𝒅𝒅𝒅  𝜶𝜶 𝝐𝝐 ℝ𝝅𝝅
𝟎𝟎  

     Here is an example of an integral that can be evaluated using the IP tool as one step in a very 
long and complicated series of trigonometric manipulations to eventually arrive at a final result.  
Let’s begin!  Make the interval preserving change of variable right here at the beginning, that is, 
let x = π – u so that dx = –du and (0, π) → (π, 0).  We then have 

𝐼𝐼6 = −∫ 𝜋𝜋−𝑢𝑢
1+cos(𝛼𝛼) sin(𝜋𝜋−𝑢𝑢)

𝑑𝑑𝑑𝑑 = 𝜋𝜋 ∫ 1
1+cos(𝛼𝛼) sin(𝑢𝑢)

𝑑𝑑𝑑𝑑 − 𝐼𝐼6
𝜋𝜋
0

0
𝜋𝜋   

Hence, transposing we obtain 

2𝐼𝐼6 = 𝜋𝜋 ∫ 1
1+cos(𝛼𝛼) sin(𝑢𝑢)

𝑑𝑑𝑑𝑑 = 𝜋𝜋 ∫ 1
1+2cos(𝛼𝛼) sin�𝑢𝑢2� cos�

𝑢𝑢
2�
𝑑𝑑𝑑𝑑𝜋𝜋

0 .𝜋𝜋
0   

Replacing sin(u) with 2sin(u/2) cos(u/2) in this last integral is a very non-intuitive step.  This 
must have been the aha moment for whoever first did this derivation, however, it’s difficult to be 
sure because wherever this approach is leading is certainly not clear, at least not yet.  The same 
thing can also be said about the next few steps also.  Nevertheless, the next step is to divide both 
the numerator and denominator of the integrand by cos2(u/2).  Doing that, we obtain 

2𝐼𝐼6 = 𝜋𝜋 ∫
sec2�𝑢𝑢2�

sec2�𝑢𝑢2�+2cos(𝛼𝛼) tan�𝑢𝑢2�
𝑑𝑑𝑑𝑑 = 𝜋𝜋 ∫

sec2�𝑢𝑢2�

1+2cos(𝛼𝛼) tan�𝑢𝑢2�+tan2�𝑢𝑢2�
𝑑𝑑𝑢𝑢𝜋𝜋

0
𝜋𝜋
0 .  

Aha! Now I see it!  And it’s clever as can be.  The 1 that is the first term in the denominator can 
be replaced by sin2(α) + cos2(α) and then we will have the perfect square of binomial term in the 
denominator  plus the square of a constant term and that makes the integrand start to look like the 
recognizable form of an inverse tangent function.  This has promise!  Continuing, we get 

2𝐼𝐼6 = 𝜋𝜋 ∫
sec2�𝑢𝑢2�

sin2(𝛼𝛼)+cos2(𝛼𝛼)+2cos(𝛼𝛼) tan�𝑢𝑢2�+tan2�𝑢𝑢2�
𝑑𝑑𝑑𝑑 = 𝜋𝜋 ∫

sec2�𝑢𝑢2�

sin2(𝛼𝛼)+�cos(𝛼𝛼)+tan�𝑢𝑢2��
2 𝑑𝑑𝑑𝑑

𝜋𝜋
0

𝜋𝜋
0  . 

Yes, indeed!  If we now make the following change of variable z = cos(α) + tan(u/2) so that      
dz = ½sec2(u/2) and (0, π) → (cos(α), ∞).  This CV gives us 

2𝐼𝐼6 = 𝜋𝜋 ∫ 2𝑑𝑑𝑑𝑑
sin2(𝛼𝛼)+𝑧𝑧2

∞
cos(𝛼𝛼) = 2𝜋𝜋 � 1

sin(𝛼𝛼)
tan−1 � 𝑧𝑧

sin𝛼𝛼
��
cos𝛼𝛼

∞
= 2𝜋𝜋

sin(𝛼𝛼)
�𝜋𝜋
2
− tan−1 �cos𝛼𝛼

sin𝛼𝛼
�� = 2𝜋𝜋

sin(𝛼𝛼)
�𝜋𝜋
2
− 𝜋𝜋

2
+ 𝛼𝛼�  

As a result, our final answer is 

𝑰𝑰𝟔𝟔 = �
𝒙𝒙

𝟏𝟏 + 𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) 𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)𝒅𝒅𝒅𝒅 =
𝝅𝝅𝝅𝝅

𝐬𝐬𝐬𝐬𝐬𝐬(𝜶𝜶)      Q.E.D.
𝝅𝝅

𝟎𝟎
 

  

http://www-history.mcs.st-and.ac.uk/Societies/Paris.html
http://www-history.mcs.st-and.ac.uk/Societies/Paris.html


There is something fascinating about science (and mathematics).  One gets such wholesale 
returns of conjecture out of such a trifling investment of fact 

—Mark Twain 

Chapter 4.  Integration By Parts (IBP) 
 

     This chapter is devoted to the integral property/technique termed integration by parts.  Again, 
this is not a subject that should be foreign to the reader.  It is generally taught in beginning 
Calculus, but is also a very valuable tool or technique in the evaluation of properly improper 
integrals.  Here is the property as stated in the table of integral properties (Chapter 1—Table 4, 
entry #4): 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = [𝑢𝑢𝑢𝑢]𝑎𝑎𝑏𝑏 − ∫ 𝑣𝑣𝑣𝑣𝑣𝑣     where 𝑓𝑓(𝑥𝑥) = 𝑢𝑢(𝑥𝑥)𝑣𝑣(𝑥𝑥).𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

This equation is merely derived from the equation from differential calculus that deals with 
differentiating the product of two functions.  In-other-words, if we start with the product of two 
functions designated as u(x) and v(x) and differentiate, here is what we get 

𝑑𝑑𝑑𝑑(𝑥𝑥)
𝑑𝑑𝑥𝑥

= 𝑑𝑑[𝑢𝑢(𝑥𝑥)𝑣𝑣(𝑥𝑥)]
𝑑𝑑𝑑𝑑

= 𝑢𝑢′(𝑥𝑥)𝑣𝑣(𝑥𝑥) + 𝑢𝑢(𝑥𝑥)𝑣𝑣′(𝑥𝑥)  

We can write this more simply as 

𝑑𝑑[𝑓𝑓(𝑥𝑥)] = 𝑑𝑑(𝑢𝑢𝑢𝑢) = 𝑢𝑢𝑢𝑢(𝑣𝑣) + 𝑣𝑣𝑣𝑣(𝑢𝑢)  

If we now transpose and integrate, we get 

∫ 𝑢𝑢𝑢𝑢𝑢𝑢 = ∫ 𝑑𝑑(𝑢𝑢𝑢𝑢) − ∫ 𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

However, the middle integral above is simply the product of u and v evaluated at the integrals 
limits of integration, e.g., 

∫ 𝑢𝑢𝑢𝑢𝑢𝑢 = [𝑢𝑢𝑢𝑢]𝑎𝑎𝑏𝑏 − ∫ 𝑣𝑣𝑣𝑣𝑣𝑣𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎 .  

So that’s where that integration by parts formula comes from.  To use this formula, how one 
divides the integrand up into a u(x) and a v(x) usually has to be decided.  Often, there is more 
than one way to do it.  If IBP is a viable methodology for a particular integral, the choice can 
very well impact whether or not one is able to evaluate the original integral or not.  We will 
certainly see how it is done in the examples of this chapter.   

Example 4-1.  𝑰𝑰𝟏𝟏 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏+𝒙𝒙)
𝒙𝒙𝟑𝟑/𝟐𝟐 𝒅𝒅𝒅𝒅∞

𝟎𝟎  
     Here, if IBP is the proper way to proceed, there are only two logical choices for u, that is, 
either u will be set equal to the numerator and dv the denominator (times dx), or visa-versa.  
Since the choice of dv must ultimately be integrable, it seems prudent to let dv = x–3/2dx and        



u = log(1 + x).  Under that assumption, let’s continue.  Letting u = log(1 + x) ⇒ du = dx/(1 + x) 
and dv = x–3/2dx ⇒ v = –2x–1/2.  Therefore, 

𝐼𝐼1 = �−2 log(1+𝑥𝑥)
√𝑥𝑥

�
0

∞
+ 2∫ 1

√𝑥𝑥(1+𝑥𝑥)
𝑑𝑑𝑑𝑑∞

0 = 2∫ 1
√𝑥𝑥(1+𝑥𝑥)

𝑑𝑑𝑑𝑑∞
0   

If you have trouble seeing that the first term in I1 above approaches zero in both limits, use 
L’Hopital’s rule to perform the evaluation.  The remaining integral can easily be evaluated with a 
simple CV. Let x = z2 so that dx = 2zdz and (0, ∞) → (0, ∞).  Hence, 

𝐼𝐼1 = 2∫ 2𝑧𝑧
𝑧𝑧(1+𝑧𝑧2)

𝑑𝑑𝑑𝑑 = 4∫ 1
1+𝑧𝑧2

𝑑𝑑𝑑𝑑 = 4[tan−1(𝑧𝑧)]0∞ = 2𝜋𝜋.∞
0

∞
0   

Thus, our final result is 

𝑰𝑰𝟏𝟏 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒙𝒙)

𝒙𝒙𝟑𝟑/𝟐𝟐 𝒅𝒅𝒅𝒅 = 𝟐𝟐𝟐𝟐     Q.E.D.
∞

𝟎𝟎
 

Example 4-2.  𝑰𝑰𝟐𝟐 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏 + 𝒂𝒂𝟐𝟐

𝒙𝒙𝟐𝟐
� 𝒅𝒅𝒅𝒅  𝒂𝒂 𝝐𝝐 ℝ∞

𝟎𝟎  
     In this very nice example, there is really only one choice for u, namely, let u = log(1 + a2/x2) 
and dv = dx.  Proceeding, 

𝑢𝑢 = log �1 + 𝑎𝑎2

𝑥𝑥2
� = log �𝑥𝑥

2+𝑎𝑎2

𝑥𝑥2
� = log(𝑥𝑥2 + 𝑎𝑎2) − log(𝑥𝑥2) = log(𝑥𝑥2 + 𝑎𝑎2) − 2 log(𝑥𝑥)  

𝑑𝑑𝑑𝑑 = 2𝑥𝑥𝑥𝑥𝑥𝑥
𝑎𝑎2+𝑥𝑥2

− 2𝑑𝑑𝑑𝑑
𝑥𝑥

= − 2𝑎𝑎2𝑑𝑑𝑑𝑑
𝑥𝑥(𝑎𝑎2+𝑥𝑥2)

     and     𝑑𝑑𝑣𝑣 = 𝑑𝑑𝑑𝑑 ⇒ 𝑣𝑣 = 𝑥𝑥  

Therefore, 

𝐼𝐼2 = �𝑥𝑥 log�1 + 𝑎𝑎2

𝑥𝑥2
��
0

∞
+ 2𝑎𝑎2 ∫ 𝑥𝑥

𝑥𝑥(𝑎𝑎2+𝑥𝑥2)
𝑑𝑑𝑑𝑑 = 2𝑎𝑎 �tan−1 �𝑥𝑥

𝑎𝑎
��
0

∞
= 𝜋𝜋𝜋𝜋.∞

0   

Our final result being, 

𝑰𝑰𝟐𝟐 = � 𝐥𝐥𝐥𝐥𝐥𝐥�𝟏𝟏 +
𝒂𝒂𝟐𝟐

𝒙𝒙𝟐𝟐
�𝒅𝒅𝒅𝒅

∞

𝟎𝟎
= 𝝅𝝅𝝅𝝅     Q.E.D.  

Example 4-3.  𝑰𝑰𝟑𝟑 = ∫ 𝒙𝒙 𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏 + 𝒙𝒙
𝟐𝟐
� 𝒅𝒅𝒅𝒅𝟏𝟏

𝟎𝟎  
     Again, for IBP we have our choice for u and dv, and again the prudent choice is                      
u = log(1 + x/2) and dv = xdx.  With that choice, du = dx/(2 + x) and v = ½x2.  This gives us 

𝐼𝐼3 = �1
2
𝑥𝑥2 log �1 + 𝑥𝑥

2
��
0

1
− 1

2 ∫
𝑥𝑥2

2+𝑥𝑥
𝑑𝑑𝑑𝑑 = 1

2
log �3

2
� − 1

2
�∫ �𝑥𝑥 − 2 + 4

𝑥𝑥+2
� 𝑑𝑑𝑑𝑑1

0 �1
0   

This last remaining integral is “duck soup.”  Upon integration and evaluation, we get 

𝐼𝐼3 = 1
2

log �3
2
� − 1

2
�1
2
𝑥𝑥2 − 2𝑥𝑥 + 4 log(𝑥𝑥 + 2)�

0

1
= 1

2
log �3

2
� − 1

2
�1
2
− 2 + 4 log(3) − 4 log(2)�  

And finally, upon simplification, our final result is 



𝑰𝑰𝟑𝟑 = � 𝒙𝒙 𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏 +
𝒙𝒙
𝟐𝟐
�𝒅𝒅𝒅𝒅 =

𝟑𝟑
𝟒𝟒
�𝟏𝟏 − 𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥 �

𝟑𝟑
𝟐𝟐�
�

𝟏𝟏

𝟎𝟎
     Q.E.D.  

Example 4-4.  𝑰𝑰𝟒𝟒 = ∫ 𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏(𝒙𝒙)

�𝟏𝟏−𝒙𝒙𝟐𝟐�𝟑𝟑/𝟐𝟐 𝒅𝒅𝒅𝒅
𝟏𝟏/√𝟐𝟐
𝟎𝟎  

     This example looks complex, but it’s a dead giveaway!  Integrating by parts with u = sin‒1(x) 
will result in, upon differentiating to get du, a term with a square root in the denominator and 
integrating with dv = (1 – x2)3/2dx will also put an equal square root term in the denominator.  
Upon setting up the IBP equation, those two terms will multiply together thereby rationalizing 
the denominator and giving us an integral that is manageable—aha!  Therefore, let u = sin‒1(x) so 
that 𝑑𝑑𝑢𝑢 =  1

�1−𝑥𝑥2
𝑑𝑑𝑑𝑑 and let 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

(1−𝑥𝑥2)3/2 so that 𝑣𝑣 = ????  Whoops, my aha moment has turned to 
an “uh-huh”.  Can’t do it that way—can’t integrate that dv!  The problem is not such a dead 
giveaway after all!  This problem comes from a massive 1900 page, two volume set of books by 
Joseph Edwards entitled “A Treatise on the Integral Calculus”.  It was an unworked exercise 
problem at the end of the chapter on integration by parts.  After re-thinking the problem, I’ve had 
a second aha!  Look at the upper limit of integration—it’s the dead giveaway and I should have 
realized it immediately.  The upper limit, 1/√2, is the ratio that the side of a 45-45-90 right 
triangle would have to the hypotenuse.  That is just too much of a coincidence—it implies to me 
that the integral requires a CV before any IBP is involved for if we let x = sin(θ) so that             
dx = cos(θ)dθ, then when we calculate the change to the integration interval we get a nice 
mapping, i.e., the interval becomes (0, 1/√2) → (0, π/4).  We also have sin‒1(x) = θ and              
(1 – x2)3/2 = cos3(θ).  Thus,   

𝐼𝐼4 = ∫ 𝜃𝜃 cos(𝜃𝜃)
cos3(𝜃𝜃)

𝜋𝜋/4
0 𝑑𝑑𝑑𝑑 = ∫ 𝜃𝜃sec2(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/4

0 . 

 Now it’s time for the IBP.  Let u = θ so that du = dθ.  Let dv = sec2(θ) so that v = tan(θ).  So, our 
IBP equation becomes 

𝐼𝐼4 = [𝜃𝜃 tan(𝜃𝜃)]0
𝜋𝜋/4 − ∫ tan(𝜃𝜃)𝑑𝑑𝑑𝑑 = 𝜋𝜋

4
+ [log{cos(𝜃𝜃)}]0

𝜋𝜋/4 = 𝜋𝜋
4

+ log � 1
√2
�𝜋𝜋/4

0   

Hence, our final result is 

𝑰𝑰𝟒𝟒 = �
𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏(𝒙𝒙)

(𝟏𝟏 − 𝒙𝒙𝟐𝟐)𝟑𝟑/𝟐𝟐 𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟒𝟒

+ 𝐥𝐥𝐥𝐥𝐥𝐥 �
𝟏𝟏
√𝟐𝟐

�=
𝝅𝝅
𝟒𝟒
−
𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐)      Q.E.D.

𝟏𝟏/√𝟐𝟐

𝟎𝟎
 

Example 4-5.  𝑰𝑰𝟓𝟓 = ∫ 𝒆𝒆−𝒂𝒂𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜(𝒃𝒃𝒃𝒃)𝒅𝒅𝒅𝒅  𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ∞
𝟎𝟎  

      Most students should already be familiar with this integral.  It is usually solved in elementary 
calculus class.  To solve it, one does an integration by parts twice which results in a linear 
equation in I5, which can then be solved for I5, giving us the integral’s value.  (By-the-way, this 
methodology of obtaining a linear equation which when solved, gives the integral’s value is 
certainly an example of non-conventional integration, which, of course, is the subject of this 
book.)  Continuing, let u = e‒ax so that du = ‒ae‒axdx and let dv = cos(bx)dx so that                       
v = (1/b)sin(bx).  Therefore, 



𝐼𝐼5 = �𝑒𝑒
−𝑎𝑎𝑎𝑎 sin(𝑏𝑏𝑏𝑏)

𝑏𝑏
�
0

∞
+ 𝑎𝑎

𝑏𝑏 ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 sin(𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑 = 𝑎𝑎
𝑏𝑏 ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 sin(𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑.∞

0
∞
0   

Now, a second integration by parts with u = e‒ax and dv = sin(bx), we get 

𝐼𝐼5 = 𝑎𝑎
𝑏𝑏
��−𝑒𝑒

−𝑎𝑎𝑎𝑎 cos(𝑏𝑏𝑏𝑏)
𝑏𝑏

�
0

∞
− 𝑎𝑎

𝑏𝑏 ∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 cos(𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑∞
0 � = 𝑎𝑎

𝑏𝑏
In an analogous manner, the integral 𝐼𝐼6 =

∫ 𝑒𝑒−𝑎𝑎𝑎𝑎 sin(𝑏𝑏𝑏𝑏)𝑑𝑑𝑑𝑑∞
0  can be solved, that is, d�1

𝑏𝑏
− 𝑎𝑎

𝑏𝑏
𝐼𝐼5�  

As a result, the final value is 

𝑰𝑰𝟓𝟓 = � 𝒆𝒆−𝒂𝒂𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜(𝒃𝒃𝒃𝒃)𝒅𝒅𝒅𝒅 =
𝒂𝒂

𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐
     Q.E.D.

∞

𝟎𝟎
 

Doing two integrations by parts and then solving the resulting equation for I6.   

𝑰𝑰𝟔𝟔 = � 𝒆𝒆−𝒂𝒂𝒂𝒂 𝐬𝐬𝐬𝐬𝐬𝐬(𝒃𝒃𝒃𝒃)𝒅𝒅𝒅𝒅 =
𝒃𝒃

𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐
     Q.E.D.

∞

𝟎𝟎
 

Example 4-6.  𝑰𝑰𝟕𝟕 =  ∫ 𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏(𝒙𝒙)𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎  

     This pesky little integral gave me a week’s worth of trouble.  I had mistakenly thought that its 
solution illustrated the technique of IP (Interval Preservation) so well that I was willing to use it 
in the IP chapter regardless of the fact that the damn integral was not even improper.  How 
wrong I was.  My first mistake was that I immediately thought change of variable, i.e., x = sin(u).  
Well, that got me in all kinds of trouble; I won’t go into the details, however having spent so 
much time working on this simple problem, I’ll be damned if I’ll leave it out of the book now. 

Let u = sin-1(x) and dv = dx. Then, du = dx(1 – x2)‒1/2 and v = x.  Hence, 

            𝐼𝐼7 =  ∫ sin−1(𝑥𝑥)1
0 𝑑𝑑𝑑𝑑 = [𝑥𝑥 ∙ sin−1 𝑥𝑥]01 −  ∫ 𝑥𝑥𝑥𝑥𝑥𝑥

�1−𝑥𝑥2
1
0 =  𝜋𝜋

2
−  ∫ 𝑥𝑥𝑥𝑥𝑥𝑥

�1−𝑥𝑥2
1
0  

Now, a CV of x = sin(θ) with dx = cos(θ)dθ and (0, 1) → (0, π/2) should take care of this final integral, that is 

𝐼𝐼7 =  𝜋𝜋
2
−  ∫ sin𝜃𝜃 cos𝜃𝜃𝜃𝜃𝜃𝜃

�1−sin2(𝜃𝜃)
=  𝜋𝜋

2
𝜋𝜋/2
0 −  ∫ sin𝜃𝜃 cos𝜃𝜃𝜃𝜃𝜃𝜃

cos𝜃𝜃
=  𝜋𝜋

2
−  ∫ sin𝜃𝜃𝜃𝜃𝜃𝜃 = 𝜋𝜋

2
−  [− cos𝜃𝜃]0

𝜋𝜋/2 =  𝜋𝜋
2
−  1𝜋𝜋/2

0
𝜋𝜋/2
0

   

And our final solution is 

𝑰𝑰𝟕𝟕 =  �𝐬𝐬𝐬𝐬𝐬𝐬−𝟏𝟏(𝒙𝒙)
𝟏𝟏

𝟎𝟎

𝒅𝒅𝒅𝒅 =  
𝝅𝝅
𝟐𝟐
−  𝟏𝟏     𝐐𝐐.𝐄𝐄.𝐃𝐃.  

 

 

 

 



It is a mathematical fact that fifty percent of all doctors graduate in the bottom half of their 
class. 

̶ Unknown  

Chapter 5.  Differentiation Under the Integral 
(DUI) 

 

     This chapter is devoted to the property designated as differentiation in Table 4 of chapter 1.  
Here is the property as stated in the table:  If 𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥, 𝑞𝑞)𝑑𝑑𝑑𝑑  then  𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= ∫ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑞𝑞)

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑,𝑏𝑏

𝑎𝑎
𝑏𝑏
𝑎𝑎  a,b not 

functions of q.  It looks very complex and mysterious, but it is not.  We will subsequently 
address just what this means, why we want to do it, and how it works.  But first let me digress 
slightly before we get into it.  I have heard that this technique is sometimes referred to as 
Feynman Integration—named after the late physics Nobel Prize recipient Richard Feynman 
(1918 – 1988).  Here is a passage from his book, “Surely You’re Joking Mr. Feynman” that 
explains why some refer to it as Feynman Integration. 

      I had learned to do integrals by various methods shown in a book that my high school 
physics teacher Mr. Bader had given me. [It] showed how to differentiate parameters under the 
integral sign.  It turns out that it’s not taught very much in the universities; they don't emphasize 
it. But I caught on how to use that method and I used that one damn tool again and again. [If] 
guys at MIT or Princeton had trouble doing a certain integral, [then] I come along and try 
differentiating under the integral sign, and often it worked. So I got a great reputation for doing 
integrals, only because my box of tools was different from everybody else's, and they had tried 
all their tools before giving the problem to me.  Richard Feynman 
 
     Later, in the same book, Feynman writes of an incident that occurred during his work on the 
Atomic Bomb project in New Mexico.  One of his co-workers was stumped by an integral that 
needed to be solved and this co-worker and his colleagues had been trying to solve it for some 
time without success.   
 
     When one of the guys was explaining [his] problem, I said, “Why don’t you do it by 
differentiating under the integral sign?”  In half an hour he had it solved, and they’d been 
working on it for three weeks.  So I did something, using my different box of tools. 
 – Richard Feynman 
 
     Actually, this technique predates Feynman by approximately 3 centuries.  It was developed by 
Leibniz (1646 – 1716) in the late 17th century.  We will state the theorem that deals with it, 
verbally describe how it can be used, and then give a number of examples of the way it works. 
 



Theorem:  Let f(x,y) be a function such that both f(x,y) and its partial derivatives with respect to 
x are continuous in both x and y in some region of the (x,y)-plane, including a(x) ≤ y ≤ b(x), and  
x0 ≤ x ≤ x1.  Also suppose that the functions a(x) and b(x) are both continuous and both have 
continuous derivatives for x0 ≤ x ≤ x1.  Then, for the interval x0 ≤ x ≤ x1, we have 

𝑑𝑑
𝑑𝑑𝑑𝑑

� � 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑

𝑏𝑏(𝑥𝑥)

𝑎𝑎(𝑥𝑥)

� = 𝑓𝑓[𝑥𝑥, 𝑏𝑏(𝑥𝑥)] ∙ 𝑏𝑏′(𝑥𝑥) − 𝑓𝑓[𝑥𝑥,𝑎𝑎(𝑥𝑥)] ∙ 𝑎𝑎′(𝑥𝑥) + �
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑

𝑏𝑏(𝑥𝑥)

𝑎𝑎(𝑥𝑥)

 

 
where x is the parameter we are trying to differentiate with respect to, and y is the variable of 
integration.  This statement is the general and modern form of the Leibniz integral rule and can 
be derived using the fundamental theorem of calculus.  It looks very daunting and complicated, 
but it assumes that the limits of the interval of integration are also a function of the parameter 
that the derivative is to be taken with respect to.  In our use of this theorem, the limits of the 
interval of integration will almost always be constants.  As a result, the first two terms on the 
right side of the equation will be zero and the rule can be stated simply as: 

𝑑𝑑
𝑑𝑑𝑑𝑑

��𝑓𝑓(𝑥𝑥,𝑦𝑦)
𝑏𝑏

𝑎𝑎

𝑑𝑑𝑑𝑑� = �
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

 

     In other words, in order to differentiate the integral with respect to the parameter x, simply 
take the partial derivative with respect to x of the integrand, thereby treating the variable of 
integration, y, as a constant.  In still other words, it is perfectly alright to interchange the order of 
the operations of differentiation and integration, that is, to differentiate the integral, we simply 
differentiate the integrand.  SIMPLE! 
 
     Wait a minute you may say!  We are trying to integrate—not differentiate, what’s going on?  
How can we solve integrals by differentiating?   It sounds paradoxical!  Now, let me verbally 
explain why we want to differentiate a definite integral in order to determine its ultimate value.  
Consider the definite integral I =∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 .  If this integral converges, it represents a constant 
value and the variable x has no meaning; it is a dummy variable as we explained in Chapter1.  
We can turn the expression into a function however by inserting a new variable into the 
integrand.  Let us call this new variable q; when we do this, we basically have                    
 𝐼𝐼(𝑞𝑞) =  ∫ 𝑓𝑓(𝑥𝑥, 𝑞𝑞)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎 .  The whole idea now, is to differentiate this expression with respect to the 

new variable, q, that is, 𝐼𝐼′(𝑞𝑞) =  ∫ 𝜕𝜕
𝜕𝜕𝜕𝜕

𝑏𝑏
𝑎𝑎 𝑓𝑓(𝑥𝑥, 𝑞𝑞) 𝑑𝑑𝑑𝑑, under the assumption that when we do, the 

resulting integral can then be integrated (with respect to the variable x).  If it can, it will result in 
a differential equation in the variable q.  If we can then solve that differential equation, it will 
give us I(q) (sans an integration operation), but with an unknown constant, C.  If C can be 
determined by some initial condition (such as when q has some value that we know or can 
determine), then we will have a solution to the original integral.  Sounds simple, but of course 
there can be pitfalls. However, the technique also has great versatility and hopefully you will see 
later in the book how often this technique can be used.  One more thing before we take a look at 
some examples.  Some definite integrals may have integrands that are already a function of a 
parameter and insertion of a parameter is not necessary.  However, if insertion is required to use 



this technique, it can be expedient to use some foresight when inserting the variable q into the 
integrand.  Once inserted, the next step is to differentiate with respect to q with the expectation 
of being able to evaluate the resulting integral.  The insertion can, more than likely, be done in a 
variety of ways, i.e., by multiplying some argument in the integrand by q, replacing some 
exponent in the integrand with q, adding q as the argument of some other function, etc.  
Foresight can assure one of being able to perform the integration after the differentiation.  This 
will hereinafter be referred to as “insertion insight.”  Examples follow and hopefully will make 
this all clear.  Oh again, one more thing before we turn to the examples.  You differentiate with 
respect to the integral’s parameter with the expectation that the result can be integrated.  If it 
cannot, there is no reason why you cannot differentiate again; maybe then the result will 
integrate.  Of course the resulting differential equation would then be of second order, but if it 
can be solved—do it!    

Example 5-1.  𝑰𝑰𝟏𝟏  =  ∫ 𝒙𝒙𝟐𝟐−𝟏𝟏
𝐥𝐥𝐥𝐥𝐥𝐥 𝒙𝒙

𝒅𝒅𝒅𝒅.𝟏𝟏
𝟎𝟎  

     It would be very convenient if after insertion of q and differentiating with respect to q we get 
a log(x) term in the numerator of the integrand.  Of course that would cancel with the like term in 
the denominator giving us a relatively simple integral to evaluate (this is our insertion insight).  
Sure enough, replacing the exponent 2 in the numerator with q gives us exactly what we want.  
Hence, 

𝐼𝐼1(𝑞𝑞) =  ∫ 𝑥𝑥𝑞𝑞−1
log𝑥𝑥

1
0 𝑑𝑑𝑑𝑑.  

First note that I1(2) is the value we are ultimately interested in and that I1(0) = 0, can be used to 
determine the constant of integration that results from solving the subsequent differential 
equation.  Now, performing the differentiation with respect to q, gives us the following 

𝑑𝑑𝐼𝐼1
𝑑𝑑𝑑𝑑

=  ∫ 𝑥𝑥𝑞𝑞 log𝑥𝑥
log𝑥𝑥

𝑑𝑑𝑑𝑑1
0 =  ∫ 𝑥𝑥𝑞𝑞𝑑𝑑𝑑𝑑 =  �𝑥𝑥

𝑞𝑞+1

𝑞𝑞+1
�
0

1
= 1

𝑞𝑞+1
1
0   

Notice that the next to the last term above comes from recognizable form 3 and evaluates to the 
1/(q + 1) term.  The last term on the right when we integrate to solve the differential equation 
will be recognizable form 4.  So, solving this differential equation, we have 

∫𝑑𝑑𝐼𝐼1 = ∫ 𝑑𝑑𝑑𝑑
𝑞𝑞+1

 or 𝐼𝐼1(𝑞𝑞) = log(𝑞𝑞 + 1) + 𝐶𝐶  

where C is the constant of integration.  We know that I1(0) = 0 and this allows us to evaluate the 
constant C, namely C = 0.  Further, we are interested in the value of I1(2), the value of the 
exponent in the original integral, and hence, I1(2) = log(2+1). Therefore, we can now state with 
assurance that 

𝑰𝑰𝟏𝟏  =  �
𝒙𝒙𝟐𝟐 − 𝟏𝟏
𝐥𝐥𝐥𝐥𝐥𝐥𝒙𝒙

𝒅𝒅𝒅𝒅
𝟏𝟏

𝟎𝟎
=  𝐥𝐥𝐥𝐥𝐥𝐥 𝟑𝟑     Q.E.D.  

     The steps necessary to arrive at the value of I1 above were rather straight forward and simple.  
Keep in mind that to successfully apply this method, some experimentation may be required to 



discover the appropriate insertion—in other words insertion insight is helpful but not always 
obvious.  Additionally, after insertion and differentiation with respect to q, some further 
manipulation of the integrand may be necessary in order integrate I ′(q).  Also keep in mind that 
in some cases it is possible to dream up an insertion that does indeed allow the resulting integral 
(after differentiation) to be solved, but the resulting differential equation cannot be solved.  Even 
more frustrating is when the differential equation can be solved but no initial conditions can be 
found in order to determine the constant of integration (so close and yet not close enough).  
These are some of the pitfalls I alluded to previously.  By-the-way, note that by inserting q and 
substituting it for the exponent 2 in the previous example, a much more general integral results, 
whose evaluation we have also obtained, namely, log(q + 1). 

Example 5-2.  𝑰𝑰𝟐𝟐 = ∫ 𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)𝒆𝒆−𝒃𝒃𝟐𝟐𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅  𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ∞
𝟎𝟎  

     Here we have an integral that already has a parameter, so no insertion is required if DUI is 
going to be the proper methodology.  And, aha, I see that it is.  When we differentiate with 
respect to the parameter, a, it will result in the integrand being multiplied by x and that should 
make an integration by parts quite applicable.  Let’s give it a try and let us call I2, I2(a), to 
remind us that we are going to differentiate with respect to a (i.e., that I2 is a function of a). 
 

𝑑𝑑𝐼𝐼2(𝑎𝑎)
𝑑𝑑𝑑𝑑

= −∫ 𝑥𝑥 sin(𝑎𝑎𝑎𝑎)𝑒𝑒−𝑏𝑏2𝑥𝑥2𝑑𝑑𝑑𝑑∞
0   

 
For the integration by parts, let u = sin(ax) so that du = acos(ax)dx and let 𝑑𝑑𝑑𝑑 = −𝑥𝑥𝑒𝑒−𝑏𝑏2𝑥𝑥2𝑑𝑑𝑑𝑑 so 
that 𝑣𝑣 = 1

2𝑏𝑏2
𝑒𝑒−𝑏𝑏2𝑥𝑥2 .  We then have 

𝑑𝑑𝐼𝐼2(𝑎𝑎)
𝑑𝑑𝑑𝑑

= � 1
2𝑏𝑏2

sin(𝑎𝑎𝑎𝑎)𝑒𝑒−𝑏𝑏2𝑥𝑥2�
0

∞
− 𝑎𝑎

2𝑏𝑏2 ∫ cos(𝑎𝑎𝑎𝑎)𝑒𝑒−𝑏𝑏2𝑥𝑥2𝑑𝑑𝑑𝑑∞
0   

 
The first term on the right above vanishes and the integral is our original I2(a).  So, we have the 
simple differential equation 

𝑑𝑑𝐼𝐼2(𝑎𝑎)
𝑑𝑑𝑑𝑑

= − 𝑎𝑎
2𝑏𝑏2

𝐼𝐼2(𝑎𝑎)     or     𝑑𝑑𝐼𝐼2(𝑎𝑎)
𝐼𝐼2(𝑎𝑎)

= − 𝑎𝑎
2𝑏𝑏2

𝑑𝑑𝑑𝑑  

This equation is easily solved as 

log[𝐼𝐼2(𝑎𝑎)] = − 𝑎𝑎2

4𝑏𝑏2
+ 𝐶𝐶  

where C is the constant of integration, yet to be determined.  But first, let us solve for I2(a). 

𝐼𝐼2(𝑎𝑎) = 𝑒𝑒−
𝑎𝑎2

4𝑏𝑏2
+𝐶𝐶 = 𝑒𝑒−

𝑎𝑎2

4𝑏𝑏2𝑒𝑒𝐶𝐶 = 𝐾𝐾𝑒𝑒−
𝑎𝑎2

4𝑏𝑏2  

Where K = eC, just a constant, yet to be determined.  I said at the beginning of this chapter, that 
after the differential equation is solved, one needs an initial condition in order to determine the 
constant of integration.  Look at I2(0) for an initial condition in this case, that is, 
 

𝐼𝐼2(0) = ∫ 𝑒𝑒−𝑏𝑏2𝑥𝑥2𝑑𝑑𝑑𝑑.∞
0   



 Does this look familiar?  It should, except for the b2 term in the exponent of e, it’s the integral in 
the preface that dumbfounded me as a college freshman. The value given in the preface is √𝜋𝜋 2⁄  
and the value with the addition of the b2 in the exponent gives this a value of √𝜋𝜋/2𝑏𝑏.  Therefore 
we have our needed initial condition.  Of course, we haven’t derived this result, we have just 
stated it.  Let’s accept it for now, and we will derive it in a subsequent chapter.  Anyway, with 
that as our initial condition, solving for K gives us 𝐾𝐾 = √𝜋𝜋 2𝑏𝑏⁄  and our final integral value is 

𝑰𝑰𝟐𝟐 = � 𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅 =
√𝝅𝝅
𝟐𝟐𝟐𝟐

𝒆𝒆−𝒂𝒂𝟐𝟐 𝟒𝟒𝒃𝒃𝟐𝟐⁄      Q.E.D.
∞

𝟎𝟎
 

     Isn’t this DUI technique fantastic—it makes for relatively easy solutions to integrals that 
would, by other means, be very difficult?  I can’t imagine why it’s not taught in school 
curriculums.  Further, in the preface I mentioned that sometimes the solutions to these integrals 
took on a rather exotic or mysterious quality.  Look what happens if we assign the value of b = ½ 
and a = √2/2 to the two parameters in I2 above.  𝐼𝐼2 = �𝜋𝜋 𝑒𝑒⁄ .  WOW!  What could be more exotic 
than the square root of the ratio of two of the most fundamental constants of mathematics? 

Example 5-3.  𝑰𝑰𝟑𝟑 = ∫ 𝐬𝐬𝐬𝐬𝐬𝐬(𝒂𝒂𝒂𝒂)
𝒙𝒙

𝒅𝒅𝒅𝒅  𝒂𝒂 𝝐𝝐 ℝ∞
𝟎𝟎  

     In this example, we are going to study an integral known as the Dirichlet Discontinuous 
Integral.  Evidently, there are a number of integrals that Dirichlet studied in relation to his 
research into the attraction of ellipsoids and each of them is referred to as Dirichlet’s 
Discontinuous Integral.  The one we are going to address is I3 above. This integral, however, 
appeared earlier in the works of Fourier, Poisson, and Legendre.  But first let’s discuss a little bit 
about the man himself, Johann Peter Gustav Lejeune Dirichlet (pronounced “Dear-a-clay). 

     Lejeune Dirichlet's family was from Belgium, although Dirichlet was born in Germany and 
was therefore a German citizen.  By the age of 16, Dirichlet completed his school qualifications  

 
German Mathematician Johann Peter Gustav Lejeune Dirichlet (1805-1859) 



 and was ready to enter university. However, the standards in German universities were not high 
at this time so Dirichlet decided to study in Paris; this was a very fortuitous decision on 
Dirichlet’s part because it brought him in contact with some of the leading mathematicians of the 
time; this included Fourier, Laplace, Legendre and Poisson, to name just a few.  Not too many 
years later, the standards in German universities became the best in the world, thanks in part, to 
Dirichlet himself. 

     Dirichlet was a hit in Paris.  His first original research brought him instant fame for it 
concerned the famous Fermat’s Last Theorem.  This theorem states that no three positive 
integers a, b, and c can satisfy the equation an + bn = cn for any integer value of n greater than 
two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of his copy of 
Arithmetica where he claimed he had a proof that was too large to fit in the margin. There is no 
doubt today that Fermat was mistaken because the first successful proof was not released until 
1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by many 
mathematicians; Wiles’ proof makes use of mathematics that were unknown in Fermat’s time. 
However, back in Dirichlet’s time, it was an unsolved problem that was already approximately 
200 years old.  The cases n = 3 and n = 4 had been proved by Euler, and Dirichlet attacked the 
theorem for n = 5, which he subsequently proved.  As alluded to above, it brought Dirichlet 
immediate fame as it was the first advance in the theorem since Euler’s proof.  This theretofore 
unsolved problem stimulated the development of algebraic number theory in the 19th century 
and the proof of the modularity theorem in the 20th century. It is among the most notable 
theorems in the history of mathematics and prior to its proof it was in the Guinness Book of 
World Records for "most difficult mathematical problems".   

     Dirichlet’s fame spread and as a result, in 1831, Dirichlet was appointed to the Berlin 
Academy and an improving salary from the university put him in a position to marry.  He 
married Rebecca Mendelssohn, one of the sisters of composer Felix Mendelssohn.  Today, there 
is a crater on the moon named for Dirichlet and also an asteroid. 

    Dirichlet is credited with being the first mathematician to give the modern formal definition of 
a function; while trying to gauge the range for which convergence of the Fourier series can be 
shown, Dirichlet defines a function by the property that “to any x there corresponds a single 
finite y.”  This work undoubtedly led him to dream up a function which today is known as the 
(what else) Dirichlet Function (not to be confused with his integral).  There are functions that can 
be made-up that do not bound an area and are therefore not integrable in the Riemannian sense.  
Probably, the most famous of these functions is this one due to Dirichlet which is defined as 

𝐷𝐷(𝑥𝑥) =   �   0     when 𝑥𝑥 is rational
     1    when 𝑥𝑥 is irrational 

This function is discontinuous everywhere!  You cannot graph it, for in any interval of finite 
length there are an infinite quantity of both rational and irrational numbers and so Dirichlet’s 
function is an extremely busy one, ping-ponging back and forth from 0 to 1 like, as a 
knowledgeable professor I know of once said, “an over-caffeinated frog on a sugar-high”; I 
prefer as a caffeinated cricket on cocaine (same idea but the alliteration is appealing). 

     Enough about this famous mathematician; let’s get back to his discontinuous integral: 



𝐼𝐼3 = ∫ sin(𝑎𝑎𝑎𝑎)
𝑥𝑥

∞
0 𝑑𝑑𝑑𝑑.  

The first thing one might ask oneself is “why is this integral termed discontinuous?”  Examine 
the integrand and realize that if the parameter a = 0, the value of the integral is zero over the 
entire range of integration.  If it should turn out that when we eventually evaluate the integral 
that its value is non-zero at non-zero values of a and independent of a, then obviously a 
discontinuity exists at zero; and, indeed, this does turn out to be the case as we shall soon see. 

      There are many ways to attack this integral, and we shall examine a few of them.  If we were 
to attempt to use the DUI methodology by differentiating with respect to the parameter a and 
attempt to take that calculation to its logical conclusion, we would end up having to evaluate 
∫ cos(𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑∞
0 .  This integral is indeterminate in the sense that it cannot be evaluated at the upper 

limit of integration.  Therefore differentiating with respect to a appears to be a dead end.  So if 
the DUI methodology is to be used, it becomes obvious that an entirely new parameter (i.e., q) 
will have to be somehow inserted into the integrand. Trying to practice a little insertion insight, it 
would surely be less complicated if the differentiation with respect to q after insertion creates a 
numerator with a term that cancels with the denominator.   Here is the winning insertion insight; 
multiply the integrand by 𝑒𝑒−𝑞𝑞𝑞𝑞.  When we differentiate with respect to q, the x term in the 
denominator will cancel with an x term in the numerator and we will be left with an integrand of   
̶ 𝑒𝑒−𝑞𝑞𝑥𝑥 ⋅ sin𝑎𝑎𝑎𝑎 and that is an integral that we have already dealt with in the chapter on IBP.   
Further, the integrated result will have an e–qx term in the numerator and this will go to zero when 
evaluated at the upper integration limit.  We will still have to solve the resulting differential 
equation and then find an initial condition so we can evaluate the constant of integration.  
Nevertheless, let’s give it a try. 

𝐼𝐼3(𝑞𝑞) = ∫ 𝑒𝑒−𝑞𝑞𝑞𝑞 sin(𝑎𝑎𝑥𝑥)
𝑥𝑥

∞
0 𝑑𝑑𝑑𝑑  

𝑑𝑑𝑑𝑑3(𝑞𝑞)
𝑑𝑑𝑑𝑑

= −∫ 𝑒𝑒−𝑞𝑞𝑞𝑞 sin(𝑎𝑎𝑎𝑎)∞
0 𝑑𝑑𝑑𝑑  

 And, as stated above, we know the value from our IBP chapter, which is 

𝑑𝑑𝑑𝑑3(𝑞𝑞)
𝑑𝑑𝑑𝑑

= − 𝑎𝑎
𝑎𝑎2+𝑞𝑞2

  

Solving this differential equation, we have 

𝐼𝐼3(𝑞𝑞) = −𝑎𝑎 �1
𝑎𝑎

tan−1 �𝑞𝑞
𝑎𝑎
�� + 𝐶𝐶 = 𝐶𝐶 − tan−1 �𝑞𝑞

𝑎𝑎
�  

where C is the arbitrary constant that results from solving the differential equation.  We can 
calculate C by realizing that in the original formulation, I3(q) → 0 as q → ∞ (i.e., the e–qx factor 
in the integrand  goes to zero everywhere as q → ∞ because over the entire interval of integration 
x ≥ 0).  Thus, 

𝐶𝐶 = tan−1(±∞) = ± 𝜋𝜋
2
  



where we use the plus sign if a > 0 and the negative sign if a < 0.  And, since we already know 
that when a = 0, I3 also equals zero, we have the stunning result, 

𝑰𝑰𝟑𝟑 = �
𝐬𝐬𝐬𝐬𝐬𝐬(𝒂𝒂𝒂𝒂)

𝒙𝒙

∞

𝟎𝟎

𝒅𝒅𝒅𝒅 = �
𝝅𝝅 𝟐𝟐⁄     if 𝒂𝒂 > 0
𝟎𝟎          if 𝒂𝒂 = 𝟎𝟎
−𝝅𝝅 𝟐𝟐⁄  if 𝒂𝒂 < 0

     Q.E.D.  

Example 5-4.  𝑰𝑰𝟒𝟒 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥[𝒂𝒂 + 𝒃𝒃 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)]𝒅𝒅𝒅𝒅𝝅𝝅
𝟎𝟎 ,   𝒂𝒂 > 𝒃𝒃    𝒂𝒂 & 𝒃𝒃 𝝐𝝐 𝑹𝑹+ 

     Here’s an integral that already has two parameters.  If DUI is applicable, which parameter do 
we differentiate with respect to?  Well, it will certainly be simpler if the answer to that question 
is the parameter a.  Let’s see what happens—we will call the integral I4(a,b). 

𝑑𝑑𝐼𝐼4(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= ∫ 1
𝑎𝑎+𝑏𝑏 cos(𝑥𝑥)

𝑑𝑑𝑑𝑑𝜋𝜋
0   

A change of variable is now called for in order to evaluate the above.  Let u = tan(x/2) so that   
du = ½sec2(x/2) and (0, π) → (0, ∞).  Additionally, cos(x) = (1 ‒ u2)/(1 + u2)  while                       
dx = 2du/(1 + u2). 

𝑑𝑑𝐼𝐼4(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= ∫ 1

𝑎𝑎+𝑏𝑏�1−𝑢𝑢
2

1+𝑢𝑢2
�
� 2
1+𝑢𝑢2

� 𝑑𝑑𝑑𝑑 = 2∫ 1
𝑎𝑎(1+𝑢𝑢2)+𝑏𝑏(1−𝑢𝑢2)

𝑑𝑑𝑑𝑑∞
0

∞
0   

Rearranging the denominator of this last expression gives us 

𝑑𝑑𝐼𝐼4(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= 2∫ 1
𝑎𝑎+𝑏𝑏+𝑢𝑢2(𝑎𝑎−𝑏𝑏)

𝑑𝑑𝑑𝑑 = 2
𝑎𝑎−𝑏𝑏 ∫

1
𝑎𝑎+𝑏𝑏
𝑎𝑎−𝑏𝑏+𝑢𝑢

2
𝑑𝑑𝑑𝑑∞

0
∞
0   

This last integral is merely the recognizable form of the inverse tangent function.  Hence, 

𝑑𝑑𝐼𝐼4(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= 2
𝑎𝑎−𝑏𝑏

1

�𝑎𝑎+𝑏𝑏
𝑎𝑎−𝑏𝑏

tan−1 � 𝑢𝑢

�𝑎𝑎+𝑏𝑏
𝑎𝑎−𝑏𝑏

�

0

∞

= 2
�𝑎𝑎2−𝑏𝑏2

tan−1 �𝑢𝑢�𝑎𝑎−𝑏𝑏
𝑎𝑎+𝑏𝑏

�
0

∞

= 𝜋𝜋
�𝑎𝑎2−𝑏𝑏2

  

So, our differential equation is  

𝑑𝑑𝐼𝐼4(𝑎𝑎, 𝑏𝑏) = 𝜋𝜋𝜋𝜋𝜋𝜋
�𝑎𝑎2−𝑏𝑏2

     or     𝐼𝐼4(𝑎𝑎, 𝑏𝑏) = 𝜋𝜋 ∫ 𝑑𝑑𝑑𝑑
�𝑎𝑎2−𝑏𝑏2

+ 𝐶𝐶.  

So, to arrive at a final value, all we have to do is integrate this last integral and then find an 
initial condition to figure out the value of C, the constant of integration.  To do this last integral 
requires a change of variable.  Let a = bcsc(θ) so that da = ‒bcsc(θ)cot(θ).  Under this change of 
variable the integral becomes 

−𝜋𝜋∫ 𝑏𝑏 csc(𝜃𝜃) cot(𝜃𝜃)
𝑏𝑏 cot(𝜃𝜃)

𝑑𝑑𝑑𝑑 = −𝜋𝜋∫ csc(𝜃𝜃)𝑑𝑑𝑑𝑑 = −𝜋𝜋 log[csc(𝜃𝜃) − cot(𝜃𝜃)]  



Because this is an indefinite integration, we must change back to the original variable.  Of 
course, csc(θ) = a/b and cot(𝜃𝜃) = 1

𝑏𝑏
√𝑎𝑎2 − 𝑏𝑏2.     Hence, 

𝐼𝐼4(𝑎𝑎, 𝑏𝑏) = −𝜋𝜋 log �𝑎𝑎
𝑏𝑏
−

�𝑎𝑎2−𝑏𝑏2

𝑏𝑏
� + 𝐶𝐶 = −𝜋𝜋 log �𝑎𝑎−

�𝑎𝑎2−𝑏𝑏2

𝑏𝑏
� + 𝐶𝐶  

This last term can be algebraically manipulated to obtain 

𝐼𝐼4(𝑎𝑎, 𝑏𝑏) = 𝜋𝜋 log�𝑎𝑎 + √𝑎𝑎2 − 𝑏𝑏2� + 𝐾𝐾  

where K is just a different constant then in the previous expression.  And now we need to see if 
we can figure out the value of K.  When b = 0, the original integral becomes 𝐼𝐼4(𝑎𝑎, 0) = ∫ log(𝑎𝑎)𝑑𝑑𝑑𝑑.𝜋𝜋

0   
This integrates to πlog(a) and can therefore be used to determine K.  That is, 

𝜋𝜋 log(𝑎𝑎) = 𝜋𝜋 log(2𝑎𝑎) + 𝐾𝐾     or     𝐾𝐾 = 𝜋𝜋 log �1
2
�. 

After all this calculation, we can write down the final result   

𝑰𝑰𝟒𝟒 = � 𝐥𝐥𝐥𝐥𝐥𝐥[𝒂𝒂 + 𝒃𝒃 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)]𝒅𝒅𝒅𝒅 = 𝝅𝝅 𝐥𝐥𝐥𝐥𝐥𝐥�
𝒂𝒂 + √𝒂𝒂𝟐𝟐 + 𝒃𝒃𝟐𝟐

𝟐𝟐
�

𝝅𝝅

𝟎𝟎
     Q.E.D  

Earlier in the chapter I said how easy this DUI technique could solve difficult integrals.  That 
doesn’t imply that all difficult integrals will be easy. 

Example 5-5.  𝑰𝑰𝟓𝟓 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥�𝟏𝟏+𝒂𝒂𝟐𝟐𝒙𝒙𝟐𝟐�
𝒃𝒃𝟐𝟐+𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅,    𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ+∞
𝟎𝟎  

     Aha!  This integral is going to be tough algebraically, but simple in terms of methodology.  
By differentiating with respect to the parameter a, we will end up with an integrand whose 
denominator is the product of two quadratic terms, namely, (1 + a2x2) and (b2 + x2).  Partial 
fractions can then be used to give us recognizable inverse tangent forms or recognizable 
logarithm forms, depending on what is in the respective numerators of the partial fractions.  
Well, we will see— 

𝑑𝑑𝐼𝐼5(𝑎𝑎)
𝑑𝑑𝑑𝑑

= ∫ 2𝑎𝑎𝑥𝑥2

(1+𝑎𝑎2𝑥𝑥2)(𝑏𝑏2+𝑥𝑥2)
𝑑𝑑𝑑𝑑∞

0 = 2
1−𝑎𝑎2𝑏𝑏2 ∫ � 𝑎𝑎

1+𝑎𝑎2𝑥𝑥2
− 𝑎𝑎𝑏𝑏2

𝑏𝑏2+𝑥𝑥2
� 𝑑𝑑𝑑𝑑∞

0   

 Since the numerators contain no integration variables, inverse tangent forms shall govern.  The 
best way to see this is to divide both numerator and denominator of the first fraction by a2 and to 
leave the second fraction just as it is.  Thus 

𝑑𝑑𝐼𝐼5(𝑎𝑎)
𝑑𝑑𝑑𝑑

= 2
1−𝑎𝑎2𝑏𝑏2 ∫ �1

𝑎𝑎
∙ 1
1
𝑎𝑎2

+𝑥𝑥2
− 𝑎𝑎𝑏𝑏2 ∙ 1

𝑏𝑏2+𝑥𝑥2
� 𝑑𝑑𝑑𝑑.∞

0   

 Now, upon integration, we have 
𝑑𝑑𝐼𝐼5(𝑎𝑎)
𝑑𝑑𝑑𝑑

= � 2
1−𝑎𝑎2𝑏𝑏2

tan−1(𝑎𝑎𝑎𝑎)�
0

∞
− � 2𝑎𝑎𝑎𝑎

1−𝑎𝑎2𝑏𝑏2
tan−1 �𝑥𝑥

𝑏𝑏
��
0

∞
 . 



This, upon evaluation at the upper and lower limits, becomes the differential equation that we 
still have to solve 

𝑑𝑑𝐼𝐼5(𝑎𝑎)
𝑑𝑑𝑑𝑑

= 2
1−𝑎𝑎2𝑏𝑏2

�𝜋𝜋
2
� − 2

1−𝑎𝑎2𝑏𝑏2
�𝑎𝑎𝑎𝑎𝑎𝑎

2
� = 𝜋𝜋(1−𝑎𝑎𝑎𝑎)

1−𝑎𝑎2𝑏𝑏2
= 𝜋𝜋

1+𝑎𝑎𝑎𝑎
.  

Solving, we obtain 

𝐼𝐼5(𝑎𝑎) = 𝜋𝜋
𝑏𝑏

log(1 + 𝑎𝑎𝑎𝑎) + 𝐶𝐶  

where C is the constant of integration.  Note that I(0) = 0.  (Look back at the original statement 
of the integral and let a = 0.  The value of the integral is obviously zero.)  Thus, C = 0 and we 
have our final result. 

𝑰𝑰𝟓𝟓 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒂𝒂𝟐𝟐𝒙𝒙𝟐𝟐)

(𝒃𝒃𝟐𝟐 + 𝒙𝒙𝟐𝟐) 𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝒃𝒃
𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒂𝒂𝒂𝒂)     Q.E.D.

∞

𝟎𝟎
 

Example 5-6.  𝑰𝑰𝟔𝟔 = ∫
𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏�𝒙𝒙𝒂𝒂�

𝒙𝒙�𝒙𝒙𝟐𝟐+𝒃𝒃𝟐𝟐�
𝒅𝒅𝒅𝒅∞

𝟎𝟎  𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ+ 

     This example looks extremely complex, however, the aha moment occurs immediately.  If we 
differentiate with respect to the parameter a, we will get an integrand denominator that is merely 
the product of two quadratic binomial expressions.  The technique of partial fractions should 
then give us two elementary recognizable forms.  Hopefully, the resulting differential equation 
can be solved.  Let’s give it a go— 

𝑑𝑑𝐼𝐼6(𝑎𝑎)
𝑑𝑑𝑑𝑑

= ∫
𝑥𝑥�− 1

𝑎𝑎2
�𝑑𝑑𝑑𝑑

𝑥𝑥�𝑥𝑥
2

𝑎𝑎2
+1�(𝑥𝑥2+𝑏𝑏2)

= −∫ 𝑑𝑑𝑑𝑑
(𝑥𝑥2+𝑎𝑎2)(𝑥𝑥2+𝑏𝑏2)

= 1
𝑎𝑎2−𝑏𝑏2 ∫ � 1

𝑥𝑥2+𝑎𝑎2
− 1

𝑥𝑥2+𝑏𝑏2
� 𝑑𝑑𝑑𝑑∞

0
∞
0

∞
0   

Sure enough, the two recognizable forms are, of course, inverse tangent functions.  We therefore 
have 

𝑑𝑑𝐼𝐼6(𝑎𝑎)
𝑑𝑑𝑑𝑑

= 1
𝑎𝑎2−𝑏𝑏2

�1
𝑎𝑎

tan−1 �𝑥𝑥
𝑎𝑎
� − 1

𝑏𝑏
tan−1 �𝑥𝑥

𝑏𝑏
��
0

∞
= 1

𝑎𝑎2−𝑏𝑏2
� 𝜋𝜋
2𝑎𝑎
− 𝜋𝜋

2𝑏𝑏
� = − 𝜋𝜋

2𝑎𝑎𝑎𝑎(𝑎𝑎+𝑏𝑏)
  

We now have the differential equation, but, at first glance, it doesn’t look solvable—but then, a 
second aha moment.  If we write the last expression as the following, it’s “duck soup” to solve 
the equation. 

𝑑𝑑𝐼𝐼6(𝑎𝑎)
𝑑𝑑𝑑𝑑

= 𝜋𝜋
2𝑏𝑏2

� 1
𝑎𝑎+𝑏𝑏

− 1
𝑎𝑎
�  

Solving, we obtain 

𝐼𝐼6(𝑎𝑎) = 𝜋𝜋
2𝑏𝑏2

log �𝑎𝑎+𝑏𝑏
𝑎𝑎
� + 𝐶𝐶  



where C is the constant of integration.  We now need an initial condition and we can get it from 
the fact that when a → ∞, I(a) → 0 and  

lim
𝑎𝑎→∞

log �𝑎𝑎+𝑏𝑏
𝑎𝑎
� = lim

𝑎𝑎→∞
log �1+𝑏𝑏 𝑎𝑎⁄

1
� → log(1) = 0  

We can therefore conclude that C = 0 and our final result is 

𝑰𝑰𝟔𝟔 = �
𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 �𝒙𝒙𝒂𝒂�
𝒙𝒙(𝒙𝒙𝟐𝟐 + 𝒃𝒃𝟐𝟐)𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐𝒃𝒃𝟐𝟐

𝐥𝐥𝐥𝐥𝐥𝐥 �
𝒂𝒂 + 𝒃𝒃
𝒂𝒂 �

∞

𝟎𝟎
     Q.E.D.  

Example 5-7.  𝑰𝑰𝟕𝟕 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥[𝟏𝟏+𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)]
𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)

𝝅𝝅/𝟐𝟐
𝟎𝟎 𝒅𝒅𝒅𝒅   𝜶𝜶 𝝐𝝐 ℝ 

     Since the current chapter is about DUI, one can surmise that I7 can probably be solved by 
using DUI and differentiating with respect to the parameter α, and that would be correct.  
However, suppose you encountered this integral out of context of this DUI tutorial; in-other-
words, in a setting where there is no clue as to which properly improper technique you should 
use to crack this integral.  How do you decide which technique(s) to use?  That is a difficult 
question and one that I don’t have a nice patent answer for.  I can only answer by saying “based 
upon 46 years of experience, here is what I would do!”   DUI is one of the many integral solving 
tools that I possess in my bag of tricks.  But, before deciding upon DUI as the methodology I 
would use, I exercise a little insight into what will happen to this integrand if I differentiate with 
respect to α.  The argument of the log function will appear in the integrand’s denominator 
multiplied by the cos(x) function that is already in the denominator and the numerator of the 
integrand will also contain a cos(x) due to differentiating the log’s argument.  Aha, those two 
cosine functions will cancel and that is very promising; the odds for DUI being applicable here 
have just increased.  The next thing I would do is look for an initial condition that could be used 
to evaluate the constant of integration that will result from solving the differential equation if I 
use DUI.  And indeed, there is such a condition, namely I7 = 0 when α = π/2; the odds for DUI 
being applicable here have just increased even more.  Let’s go ahead and try DUI! 

𝑑𝑑𝑑𝑑(𝛼𝛼)
𝑑𝑑𝑑𝑑

= ∫ −  sin(𝛼𝛼)cos(𝑥𝑥)𝑑𝑑𝑑𝑑
[1+cos(𝛼𝛼) cos(𝑥𝑥)] cos(𝑥𝑥)

= − sin(𝛼𝛼)∫ 𝑑𝑑𝑑𝑑
1+cos(𝛼𝛼) cos(𝑥𝑥)

𝜋𝜋/2
0

𝜋𝜋/2
0   

Aha, we’ve seen an integrand very similar to what we now have and it calls for a CV of              
u = tan(x/2).  That is, x = 2tan‒1(u), dx = 2du/(1 + u2), and (0, π/2) → (0, 1).  We now have to 
figure out what cos(x) equals as a function of our new variable, namely, u.  Note the following 
trigonometric identity 

cos(𝑥𝑥) = cos2 �
𝑥𝑥
2
� − sin2 �

𝑥𝑥
2
� =

cos2�𝑥𝑥2� − sin2�𝑥𝑥2�
cos2�𝑥𝑥2� + sin2�𝑥𝑥2�

=
1 − sin2�𝑥𝑥2�

cos2�𝑥𝑥2�

1 + sin2�𝑥𝑥2�
cos2�𝑥𝑥2�

=
1 − tan2�𝑥𝑥2�
1 + tan2�𝑥𝑥2�

=
1 − 𝑢𝑢2

1 + 𝑢𝑢2
 

As a result, we can now write 



𝑑𝑑𝐼𝐼7(𝛼𝛼)
𝑑𝑑𝑑𝑑

= − sin(𝛼𝛼)∫
2𝑑𝑑𝑑𝑑
1+𝑢𝑢2

1+cos(𝛼𝛼)�1−𝑢𝑢
2

1+𝑢𝑢2
�

1
0 = −2sin(𝛼𝛼)

1−cos(𝛼𝛼)∫
𝑑𝑑𝑑𝑑

1+cos(𝛼𝛼)
1−cos(𝛼𝛼)+𝑢𝑢

2

1
0   

This last integral is now the recognizable form of the inverse tangent function.  We therefore 
have 

𝑑𝑑𝐼𝐼7(𝛼𝛼)
𝑑𝑑𝑑𝑑

= −2sin(𝛼𝛼)
1−cos(𝛼𝛼)

∙ �1−cos(𝛼𝛼)
�1+cos(𝛼𝛼)

�tan−1 �𝑢𝑢�1−cos(𝛼𝛼)
�1+cos(𝛼𝛼)

��
0

1
= −2sin(𝛼𝛼)

�1−cos(𝛼𝛼)�1+cos(𝛼𝛼)
�tan−1 ��1−cos(𝛼𝛼)

�1+cos(𝛼𝛼)
��  

Upon further simplification, we finally obtain a differential equation that when solved, will yield 
the solution we seek (and quite a simple differential equation it turns out to be). 

𝑑𝑑𝐼𝐼7(𝛼𝛼)
𝑑𝑑𝑑𝑑

= −2 tan−1 ��1−cos(𝛼𝛼)
1+cos(𝛼𝛼)

� = −2 tan−1 �tan �𝛼𝛼
2
�� = −𝛼𝛼  

Solving, we get 

𝐼𝐼7(𝛼𝛼) = −1
2
𝛼𝛼2 + 𝐶𝐶  

where C is an arbitrary constant of integration.  But, our initial condition allows us to evaluate C. 

𝐼𝐼7 �
𝜋𝜋
2
� = 0 ⟹ 𝐶𝐶 = 𝜋𝜋2

8
  

We have our final value 

𝑰𝑰𝟕𝟕 = � 𝐥𝐥𝐥𝐥𝐥𝐥[𝟏𝟏 + 𝐜𝐜𝐜𝐜𝐜𝐜(𝜶𝜶) 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)]
𝒅𝒅𝒅𝒅

𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙) =
𝟏𝟏
𝟐𝟐
�
𝝅𝝅𝟐𝟐

𝟒𝟒
− 𝜶𝜶𝟐𝟐�

𝝅𝝅/𝟐𝟐

𝟎𝟎
     Q.E.D.  

 

  



At the age of eleven, I began Euclid, with my brother as my tutor.  This was one of the great 
events of my life, as dazzling as first love.  I had not imagined there was anything so delicious 
in the world.  From that moment, mathematics was my chief interest and my chief source of 
happiness. 

—Bertrand Russell 

Chapter 6.  Interchange of Operations (IO) 
 

     This chapter is devoted to solving integrals by using the property designated “interchange of 
operations” in table 4 of chapter 1 (property #11).  Here is what was shown in the table as an 
illustration of this property: 

� �� 𝑓𝑓(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑
𝑑𝑑

𝑐𝑐
� 𝑑𝑑𝑑𝑑 = � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦)

𝑏𝑏

𝑎𝑎
𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑

𝑑𝑑

𝑐𝑐

𝑏𝑏

𝑎𝑎
 

Clearly, the interchange we are alluding to here is the order in which a double integral is 
integrated—standard notation (see the left side of the above equation) dictates first integrating 
with respect to the variable inside the square brackets (in this case x) and only when that has 
been done, then integrate with respect to the outside variable (in this case y).  However, in some 
cases it is legitimate to reverse that order and reversing that order can, sometimes, allow for the 
integration to be tractable when it was not to begin with.  When is it legitimate?  Fubini's 
theorem, introduced by Guido Fubini (1907), is a result that gives conditions under which it is 
possible to compute a double integral using iterated integrals. One may switch the order of 
integration if the double integral yields a finite answer when the integrand is replaced by its 
absolute value.  As a consequence it allows the order of integration to be changed in iterated 
integrals.  

     We are dealing with properly improper integrals, none of which are double integrals.  Why do 
we need this property of switching the order of integration?   The answer is that a factor of the 
function to be integrated (i.e., a factor in the integrand) may, itself, be the result of a known 
integration between certain constant limits, that is, this factor is the result of a known definite 
integral.  Upon substituting this known integral for the factor, a double integral is created.  
Sometimes it is possible to either interchange the order of integration in the double integral or 
transform the entire double integral itself to a new system of coordinates (such as from 
rectangular to polar) and obtain the sought-after value.  The upcoming examples will certainly 
illustrate this concept and clarify the process.   

     Before doing so however, there is one more thing to address about this idea of interchange of 
operations.  Entry #11 in the aforementioned table additionally has the statement “also applies to 
operations of summation and integration”.  What’s that all about?  One of the techniques that can 
be used for evaluating properly improper integrals involves expanding the integrand (or a portion 
thereof) into a power series and then integrating the power series term-by-term.  This can be 
expressed in the following way: 



� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = � �𝑓𝑓𝑘𝑘(𝑥𝑥)𝑑𝑑𝑑𝑑 = �� 𝑓𝑓𝑘𝑘(𝑥𝑥)𝑑𝑑𝑑𝑑
𝑏𝑏

𝑎𝑎

∞

𝑘𝑘=0

∞

𝑘𝑘=0

𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎
 

  The mere fact that we wish to integrate term-by-term means we need to interchange the order of 
the integration operation with that of the summation operation.  One of the elementary properties 
of integrals says that the integral of a sum is the sum of the integrals, however, when the sum 
itself is infinite (as all power series expansions are), how legitimate is this interchange?  Fubini 
comes to the rescue again.  The same theorem that applies to the order of integration of a double 
integral also applies to this situation.  Now let’s examine a few examples. 

Example 6-1.  𝑰𝑰𝟏𝟏 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏+𝒙𝒙)
𝒙𝒙

𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎  

     For a power series expansion of log(1 + x), consider the following:  From the recognizable 
forms table, we know that 

∫ 𝑑𝑑𝑑𝑑
1+𝑢𝑢

= log[1 + 𝑢𝑢]0𝑥𝑥 = log(1 + 𝑥𝑥)𝑥𝑥
0 . 

However, if you just divide 1 + u into 1 (do the actual long division) you obtain 
1

1 + 𝑢𝑢
= 1 − 𝑢𝑢 + 𝑢𝑢2 − 𝑢𝑢3 + ⋯ = �(−1)𝑘𝑘𝑢𝑢𝑘𝑘

∞

𝑘𝑘=0

 

Now, if we integrate from 0 to x both sides of the above equation, we can set whatever we get 
equal to log(1 + x) and viola, we have the sought after power series for the function log(1 + x).  
So, doing that we obtain 

log(1 + 𝑥𝑥) = �
𝑑𝑑𝑑𝑑

1 + 𝑢𝑢
= � ��(−1)𝑘𝑘𝑢𝑢𝑘𝑘

∞

𝑘𝑘=0

� 𝑑𝑑𝑑𝑑
𝑥𝑥

0

𝑥𝑥

0
 

And now you should see why we need to change the order of operations.  Mathematically, I want 
to integrate term-by-term, but that means interchange the summation operation with the 
integration operation.  The mathematical question here is, if I do it in the order shown, will I get 
the same result if I interchange those two operations.  If the answer is yes, and in this case it is, 
then I’m not making an error and I won’t come to an incorrect evaluation when I attempt I1 (at 
least not for reasons of the interchange).  Continuing, 

log(1 + 𝑥𝑥) = �(−1)𝑘𝑘 � 𝑢𝑢𝑘𝑘𝑑𝑑𝑑𝑑 = �(−1)𝑘𝑘 �
𝑢𝑢𝑘𝑘+1

𝑘𝑘 + 1
�
0

𝑥𝑥∞

𝑘𝑘=0

𝑥𝑥

0

∞

𝑘𝑘=0

= �
(−1)𝑘𝑘

𝑘𝑘 + 1
𝑥𝑥𝑘𝑘+1.

∞

𝑘𝑘=0

 

 Now we are prepared to attempt the solution to I1.  I’m going to substitute the power series I’ve 
just developed for the numerator of the integrand of I1. 

𝐼𝐼1 = �
log(1 + 𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑 =

1

0
�

1
𝑥𝑥
�

(−1)𝑘𝑘

𝑘𝑘 + 1
𝑥𝑥𝑘𝑘+1

∞

𝑘𝑘=0

𝑑𝑑𝑑𝑑
1

0
 

Now I need to do the interchange operation again, and doing so gives me 

𝐼𝐼1 = ��
(−1)𝑘𝑘

𝑥𝑥(𝑘𝑘 + 1) 𝑥𝑥
𝑘𝑘+1𝑑𝑑𝑑𝑑 = �

(−1)𝑘𝑘

𝑘𝑘 + 1
� 𝑥𝑥𝑘𝑘𝑑𝑑𝑑𝑑 = �

(−1)𝑘𝑘

𝑘𝑘 + 1
�
𝑥𝑥𝑘𝑘+1

𝑘𝑘 + 1
�
0

1

=
∞

𝑘𝑘=0

1

0

∞

𝑘𝑘=0

1

0

∞

𝑘𝑘=0

�
(−1)𝑘𝑘

(𝑘𝑘 + 1)2

∞

𝑘𝑘=0

 

Now examine Table 3 in Chapter 1, entry #3.  The series that we have just shown is identical to 
the value of I1 and converges to π2/12.  We therefore have our final result, namely 
 

𝑰𝑰𝟏𝟏 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒙𝒙)

𝒙𝒙
𝒅𝒅𝒅𝒅 =

𝝅𝝅𝟐𝟐

𝟏𝟏𝟏𝟏
     Q.E.D.

𝟏𝟏

𝟎𝟎
 



Example 6-2.  𝑰𝑰𝟐𝟐 = ∫ log𝟐𝟐(𝒙𝒙)
𝟏𝟏+𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎  

     The solution of this integral is required for one of my selections in the final chapter (the 
crème de la crème chapter), so we will be seeing this integral again.  The best way of attacking 
this integral is to first make a change of variable.  That is, let x = e–t ⇒ t = –log(x), dx = –e–tdt 
and (0, 1) → (∞, 0).  Under this change of variable, our integral becomes 

𝐼𝐼2 = −∫ 𝑡𝑡2

1+𝑒𝑒−2𝑡𝑡
𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑 = ∫ 𝑡𝑡2𝑒𝑒−𝑡𝑡

1+𝑒𝑒−2𝑡𝑡
∞
0 𝑑𝑑𝑑𝑑0

∞ .  

 If we now expand the denominator into a power series (by simply performing the long division) 
we obtain 

𝐼𝐼2 = � 𝑡𝑡2𝑒𝑒−𝑡𝑡(1 − 𝑒𝑒−2𝑡𝑡 + 𝑒𝑒−4𝑡𝑡 − 𝑒𝑒−6𝑡𝑡 + ⋯ )𝑑𝑑𝑑𝑑 = � 𝑡𝑡2 ��𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡
∞

𝑘𝑘=0

� 𝑑𝑑𝑑𝑑
∞

0

∞

0
 

Guess what’s next—swapping the order of summation and integration, of course—and we obtain 

𝐼𝐼2 = ��� 𝑡𝑡2𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

 

The integral we are now left with can easily be evaluated using the integration by parts 
technique.  Let u = t2 so that du = 2tdt and let dv = e–(2k+1)tdt  so that v = –e–(2k+1)t/(2k+1).  
Therefore 

𝐼𝐼2 = ���−
𝑡𝑡2

2𝑘𝑘 + 1
𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡�

0

∞

+
2

2𝑘𝑘 + 1
� 𝑡𝑡𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

= ��
2

2𝑘𝑘 + 1
� 𝑡𝑡𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

 

A second integration by parts with u = t and dv = e–(2k+1)tdt gives us 

𝐼𝐼2 = ��
2

2𝑘𝑘 + 1
�−

𝑡𝑡
2𝑘𝑘 + 1

𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡�
0

∞
+

1
2𝑘𝑘 + 1

� 𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡𝑑𝑑𝑑𝑑
∞

0
� = �

2
(2𝑘𝑘 + 1)2 � 𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡𝑑𝑑𝑑𝑑

∞

0

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

Finally, we can make the final integration to arrive at 

𝐼𝐼2 = 2��
1

(2𝑘𝑘 + 1)2 �−
1

2𝑘𝑘 + 1
𝑒𝑒−(2𝑘𝑘+1)𝑡𝑡�

0

∞

�
∞

𝑘𝑘=0

= 2�
1

(2𝑘𝑘 + 1)3

∞

𝑘𝑘=0

 

Table 3, entry #7 of Chapter 1 tells us that this final sum is π3/32.  Hence our final result is 

𝑰𝑰𝟐𝟐 = �
log𝟐𝟐(𝒙𝒙)
𝟏𝟏 + 𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝝅𝝅𝟑𝟑

𝟏𝟏𝟏𝟏
     Q.E.D.

𝟏𝟏

𝟎𝟎
 

Example 6-3.  𝑰𝑰𝟑𝟑 = ∫ 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙) 𝐥𝐥𝐥𝐥𝐥𝐥[𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)]𝒅𝒅𝒅𝒅𝝅𝝅/𝟐𝟐
𝟎𝟎  

     To do this integral, we first need a change of variable.  Let y = cos(x) so that dy = –sin(x)dx 
and our integration interval goes from (0, π/2) → (1, 0).  We also have, 𝑑𝑑𝑑𝑑 = −𝑑𝑑𝑑𝑑 �1 − 𝑦𝑦2⁄ , 
log[sec(𝑥𝑥)] = log(1 𝑦𝑦⁄ ), and cot(𝑥𝑥) = 𝑦𝑦 �1 − 𝑦𝑦2.⁄   So our integral, under this change of 
variable, becomes 

𝐼𝐼3 = ∫ 𝑦𝑦
�1−𝑦𝑦2

log �1
𝑦𝑦
� �− 𝑑𝑑𝑑𝑑

�1−𝑦𝑦2
� = −∫ 𝑦𝑦 log(𝑦𝑦)

1−𝑦𝑦2
𝑑𝑑𝑑𝑑1

0
0
1   



Now, writing the denominator of this last expression as a power series, we have 

𝐼𝐼3 = −� 𝑦𝑦 log(𝑦𝑦)(1 + 𝑦𝑦2 + 𝑦𝑦4 + ⋯ )𝑑𝑑𝑑𝑑 = −� log(𝑦𝑦)��𝑦𝑦2𝑘𝑘+1
∞

𝑘𝑘=0

�𝑑𝑑𝑑𝑑
1

0

1

0
 

Now comes the interchange of the summation operation and the integration operation, giving us 

𝐼𝐼3 = −�� 𝑦𝑦2𝑘𝑘+1 log(𝑦𝑦)𝑑𝑑𝑑𝑑
1

0

∞

𝑘𝑘=0

 

This last integral is easily evaluated using the integration by parts technique.  Let u = log(y) so 
that du = dy/y and let dv = y2k+1dy so that v = y2(k+1)/2(k+1). 

𝐼𝐼3 = −�� �
𝑦𝑦2(𝑘𝑘+1) log(𝑦𝑦)

2(𝑘𝑘 + 1)
�
0

1

−
1

2(𝑘𝑘 + 1)
�

𝑦𝑦2(𝑘𝑘+1)

𝑦𝑦

1

0
𝑑𝑑𝑑𝑑�

∞

𝑘𝑘=0

= �
1

2(𝑘𝑘 + 1)
� 𝑦𝑦2𝑘𝑘+1𝑑𝑑𝑑𝑑 =

1
4
�

1
(𝑘𝑘 + 1)2

∞

𝑘𝑘=0

1

0

∞

𝑘𝑘=0

 

This last sum converges to π2/6 (see Table 3, entry #2, Chapter 1).  The final value is therefore 

𝑰𝑰𝟑𝟑 = � 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙) 𝐥𝐥𝐥𝐥𝐥𝐥[𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙)]𝒅𝒅𝒅𝒅 =
𝝅𝝅𝟐𝟐

𝟐𝟐𝟐𝟐
     Q.E.D.

𝝅𝝅/𝟐𝟐

𝟎𝟎
 

Example 6-4.  𝑰𝑰𝟒𝟒 = ∫ 𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅∞
𝟎𝟎  

     Well, well, well—here’s our old friend that dumfounded me as a college freshman and is 
ultimately responsible for the writing of this book.  (If I hadn’t gotten hooked on the puzzle 
aspect of non-conventional integration, I’m sure this book would never have occurred to me.)  
I’ve subsequently learned many methods of evaluating this integral, but the one I’d like to 
present here is the one I stumbled upon back in college.  This is a very famous integral that was 
first evaluated in 1810 by the famous French mathematician Pierre-Simon Laplace (1749-1827).  
Although Laplace is given credit for first evaluating this integral, the name of Carl Friedrich 
Gauss (1777-1855) is usually associated with this integral because it forms the basis in 
probability theory of the Gaussian probability density function.  As a result, I’m going to write a 
little bit about Gauss instead of Laplace (Laplace will be written about subsequently).  

 
German mathematician Carl Friedrich Gauss (1777-1855) 

 “Surely it is not knowledge, but learning; not owning, but earning; not being there, but getting there; that gives us 
the greatest pleasure.”—Carl Friedrich Gauss 

javascript:enlarge('Gauss.jpeg')


          Gauss was to mathematics as Mozart was to music.  History tells us that Mozart wrote a 
minuet at the age of four, while Gauss pointed out an arithmetical error in his father’s payroll 
calculations at the age of three.  His father, a bricklayer by trade, was adding up a long column of 
numbers and when writing down the sum he had calculated, his three-year old son told him he 
had made a mistake and that the sum was really this other value—and his three-year old son was 
correct.  By the age of five, he was keeping his father’s books.  He could do this all mentally—he 
was a lightening calculator.  His father wanted him to become a bricklayer also; fortunately for 
the world of mathematics, those plans never came to fruition.  My favorite story about him was 
an incident that occurred in elementary school at the age of 7.  The class had evidently been 
acting up and to punish the class, the teacher told every student to add up the numbers from 1 to 
100.  Gauss immediately put his head down on his desk and closed his eyes, as though he were 
sleeping.  The teacher, seeing this said, “Young Gauss, have you completed the sum?”  “Yes, I 
have” said Gauss and then proceeded to enunciate his total, namely 5050 (five thousand fifty).  
The teacher was stunned, as that was the correct total.  What Gauss had done was recognized that 
within the first 100 integers, there are 50 unique pairs of numbers that total 101(namely, 1+100, 
2+99, 3+98,  … on up to 50+51) and therefore the correct total was simply the product of 50 and 
101 which he could easily do in his head.  Not much of a punishment when you are dealing with 
a genius. 

     At school, his cleverness attracted attention and eventually came to be known by the Duke of 
Brunswick who took an interest in young Gauss.  (Brunswick is the town in which Gauss was 
born and currently lived with his parents.)  If it weren’t for this Duke, the world might very well 
have lost the genius of Gauss.  Parental protests aside, the Duke sent young Gauss to the 
Collegium Carolinum and, in 1795, to Gottingen.  At Gottingen, Gauss was exposed to 
influences that caused mathematics to become the study that he pursued the rest of his life.   

     I remember seeing a write-up on the life and times of Gauss wherein he was referred to as the 
“Prince of Mathematicians”.  He has had a remarkable influence in many fields of mathematics 
and science and is ranked as one of history's most influential mathematicians.  However, being 
referred to as the Prince of Mathematicians sort of implies there must be a King of 
Mathematicians and I can’t imagine who that would be (given the remarkable impact Gauss had 
on the field of mathematics it is difficult to imagine anybody above his level).  

     Throughout his career Gauss wrote voluminously but austerely; he would cut away all but the 
essential results. His works take a great deal of patience by the reader but with mathematics that 
are exceptionally stimulating.  But, he probably wrote just like he thought; he possessed that 
inexplicable ability that allowed him to leap to the correct conclusion without, seemingly, to plod 
through the intermediate logic that the rest of us need in order to arrive at the same conclusion.  
A very good example of that is provided by his Prime Number Theorem.  It is not known 
whether he proved this theorem or not, but he certainly stated it with the correct conclusion; a 
proof of the theorem was finally given in the 1920’s.  It deals with the distribution of prime 
numbers; it describes the asymptotic distribution of the prime numbers among the positive 
integers. It formalizes the intuitive idea that primes become less common as they become larger 
by precisely quantifying the rate at which this occurs. 

     Gauss kept a diary which contains notes on nearly all of his discoveries; the diary reveals 
work on higher trigonometry, elliptic function theory, and aspects of non-Euclidean geometry. 
Gauss was the last complete mathematician; since his time, mathematics has increased so 



extensively, that no one can hope to master the whole.  One last thing about Gauss and that is 
Bernard Riemann, the German mathematical genius, whose integral is the subject of this book, 
was a student of Gauss. 

     Let’s get back to the evaluation of the integral. 

𝐼𝐼4 = ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑑𝑑 = ∫ 𝑒𝑒−𝑦𝑦2𝑑𝑑𝑑𝑑∞
0

∞
0   

After all, the variable x is just a dummy variable and we can call it y if we want to.  However, 
doing so allows us to write 

(𝐼𝐼4)2 = �∫ 𝑒𝑒−𝑥𝑥2∞
0 𝑑𝑑𝑑𝑑��∫ 𝑒𝑒−𝑦𝑦2𝑑𝑑𝑑𝑑∞

0 � = ∫ ∫ 𝑒𝑒−�𝑥𝑥2+𝑦𝑦2�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∞
0

∞
0   

Aha, a double integral!  Note that changing the order of which variable to integrate with respect 
to in this case is useless because of the symmetry in x and y of the integrand (i.e., you can change 
x to y and y to x and you get the same integrand that you started with).  However, a change to 
polar coordinates so that 𝑥𝑥2 + 𝑦𝑦2 = 𝑟𝑟2 and dxdy = rdrdθ can make the integration tractable.  To 
change the intervals of integration for polar coordinates, one must look at the region of 
integration.  In this case, x and y are both positive and increase without bound.  That translates to 
the entire first quadrant.  To cover the first quadrant in polar coordinates, r must go from 0 to ∞ 
and θ must go from 0 to π/2.  Hence, 

(𝐼𝐼4)2 = ∫ ∫ 𝑟𝑟𝑒𝑒−𝑟𝑟2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ∫ �− 1
2
𝑒𝑒−𝑟𝑟2�

0

∞
𝑑𝑑𝑑𝑑 = �1

2
𝜃𝜃�

0

𝜋𝜋 2⁄
= 𝜋𝜋

4
𝜋𝜋 2⁄
0

∞
0

𝜋𝜋 2⁄
0   

Obviously, if (I4)2 = π/4, then we have the expected result. 

𝑰𝑰𝟒𝟒 = � 𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅 =
√𝝅𝝅
𝟐𝟐

     Q.E.D.
∞

𝟎𝟎
 

     I certainly don’t mean to slight Laplace, who, as mentioned previously, was the first to solve 
I4; to see how Laplace solved I4, see Appendix A which contains Laplace’s solution and other 
material related to I4. 

Example 6-5.  𝑰𝑰𝟓𝟓 = ∫ 𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)−𝐜𝐜𝐜𝐜𝐜𝐜(𝒃𝒃𝒃𝒃)
𝒙𝒙𝟐𝟐

∞
𝟎𝟎 𝒅𝒅𝒅𝒅   𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ 

     The integrand of I5 by itself can be written as an integral.  Namely, 
cos(𝑎𝑎𝑎𝑎)−cos(𝑏𝑏𝑏𝑏)

𝑥𝑥2
= ∫ sin(𝑥𝑥𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎   

If you are puzzled by this last equation, you just have to do integration of a definite integral 
backwards.  That is, 

cos(𝑎𝑎𝑎𝑎)−cos(𝑏𝑏𝑏𝑏)
𝑥𝑥2

= 1
𝑥𝑥
�− cos(𝑥𝑥𝑥𝑥)

𝑥𝑥
�
𝑎𝑎

𝑏𝑏
= 1

𝑥𝑥 ∫ sin(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ sin(𝑥𝑥𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

If you still don’t see it, work the last equation backwards from right to left!  Don’t forget, the 
integration is with respect to the variable that I’ve called u and therefore x can be handled like a 
constant.  Anyway, continuing, we can now substitute this integral for the integrand of I5, the 
integral we are attempting to evaluate.  When we do, we obtain the following double integral. 

𝐼𝐼5 = ∫ �∫ sin(𝑥𝑥𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎 � 𝑑𝑑𝑑𝑑∞

0   



In keeping with the theme of this chapter, interchange the order of integration and we get 

𝐼𝐼5 = ∫ ∫ sin(𝑥𝑥𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑∞
0

𝑏𝑏
𝑎𝑎   

Aha!  The inner integral should look familiar—it’s Dirichlet’s discontinuous integral from 
Chapter 5, example 3.  So, we know the value of the inner integral; it’s π/2 (we are assuming that 
u is positive).  Thus, 

𝐼𝐼5 = ∫ 𝜋𝜋
2
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
(𝑏𝑏 − 𝑎𝑎)𝑏𝑏

𝑎𝑎   

Or, our final result is 

𝑰𝑰𝟓𝟓 = �
𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒙𝒙) − 𝐜𝐜𝐜𝐜𝐜𝐜(𝒃𝒃𝒃𝒃)

𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐

(𝒃𝒃 − 𝒂𝒂)     Q.E.D.
∞

𝟎𝟎
 

Example 6-6.  𝑰𝑰𝟔𝟔 = ∫ 𝒆𝒆−𝒂𝒂𝒙𝒙
𝟐𝟐
−𝒆𝒆−𝒃𝒃𝒙𝒙

𝟐𝟐

𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅  𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ∞

𝟎𝟎  
     Chapter 5 was devoted to the technique of differentiating an integral’s integrand with respect 
to some parameter to eventually evaluate the integral.  If one can differentiate an integral, it 
doesn’t seem unreasonable to surmise that one can probably integrate an integral also.  For this 
example, let’s start with our old friend ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑑𝑑 = √𝜋𝜋 2⁄∞

0 .  Let’s do a change of variable on our 
old friend.  Let 𝑥𝑥 = 𝑦𝑦�𝑝𝑝 where p is just some parameter.  So, 𝑑𝑑𝑑𝑑 = �𝑝𝑝dy and (0, ∞) → (0, ∞).  

So we have              ∫ 𝑒𝑒−𝑝𝑝𝑦𝑦2(�𝑝𝑝)𝑑𝑑𝑑𝑑 = √𝜋𝜋
2

     or     ∫ 𝑒𝑒−𝑝𝑝𝑦𝑦2𝑑𝑑𝑑𝑑 = √𝜋𝜋
2√𝑝𝑝

∞
0

∞
0   

Now, integrate with respect to p both sides of this last expression from a to b. 

∫ �∫ 𝑒𝑒−𝑝𝑝𝑦𝑦2𝑑𝑑𝑑𝑑∞
0 �𝑑𝑑𝑑𝑑 = √𝜋𝜋

2 ∫
𝑑𝑑𝑑𝑑

√𝑝𝑝
= �√𝜋𝜋

2
(2)𝑝𝑝1/2�

𝑎𝑎

𝑏𝑏
= √𝜋𝜋�√𝑏𝑏 − √𝑎𝑎�

𝑏𝑏
𝑎𝑎

𝑏𝑏
𝑎𝑎   

Let’s reverse the order of integration in the double integral.  Doing that yields 

∫ ∫ 𝑒𝑒−𝑝𝑝𝑦𝑦2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =𝑏𝑏
𝑎𝑎

∞
0 √𝜋𝜋�√𝑏𝑏 − √𝑎𝑎�. 

But, now the inner integral gives us the following 

∫ �− 𝑒𝑒−𝑝𝑝𝑦𝑦
2

𝑦𝑦2
�
𝑎𝑎

𝑏𝑏

𝑑𝑑𝑑𝑑 = −∫ �𝑒𝑒
−𝑏𝑏𝑦𝑦2

𝑦𝑦2
− 𝑒𝑒−𝑎𝑎𝑦𝑦

2

𝑦𝑦2
� 𝑑𝑑𝑑𝑑 = ∫ 𝑒𝑒−𝑎𝑎𝑦𝑦

2
−𝑒𝑒−𝑏𝑏𝑦𝑦

2

𝑦𝑦2
𝑑𝑑𝑑𝑑∞

0
∞
0

∞
0   

WOW—that’s I6, the integral that we set out to solve!   

𝑰𝑰𝟔𝟔 = �
𝒆𝒆−𝒂𝒂𝒙𝒙𝟐𝟐 − 𝒆𝒆−𝒃𝒃𝒙𝒙𝟐𝟐

𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅 = √𝝅𝝅�√𝒃𝒃 − √𝒂𝒂�     Q.E.D.

∞

𝟎𝟎
 

This last beautiful solution certainly (in my mind) epitomizes unconventional integration!!!! 

Quite ingenious!!! 



Example 6-7.  𝑰𝑰𝟕𝟕 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐+𝟏𝟏

𝒅𝒅𝒅𝒅∞
𝟏𝟏  

     A change of variable of x = ey, dx = eydy, and (1, ∞) → (0, ∞) gives us 

𝐼𝐼7 = ∫ log(𝑒𝑒𝑦𝑦)𝑒𝑒𝑦𝑦

𝑒𝑒2𝑦𝑦+1
∞
0 𝑑𝑑𝑑𝑑 = ∫ 𝑦𝑦𝑒𝑒𝑦𝑦

𝑒𝑒2𝑦𝑦+1
𝑑𝑑𝑑𝑑∞

0   

Now, expanding the denominator into a power series, we obtain 

𝐼𝐼7 = � 𝑦𝑦𝑒𝑒𝑦𝑦 ��(−1)𝑘𝑘𝑒𝑒−2𝑘𝑘𝑘𝑘
∞

𝑘𝑘=0

�
∞

0
𝑑𝑑𝑑𝑑 

As you probably suspect, we now change the order of the sum and integral.  Thus, we have 

𝐼𝐼7 = �(−1)𝑘𝑘 �� 𝑦𝑦𝑒𝑒−(2𝑘𝑘+1)𝑦𝑦𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

 

This integral yields quite readily to integration by parts, with u = y and dv = e‒(2k+1)ydy, making 
du = dy and v = ‒e‒(2k+1)y/(2k+1).  Hence 

𝐼𝐼7 = �(−1)𝑘𝑘 ��
−𝑦𝑦𝑒𝑒−(2𝑘𝑘+1)𝑦𝑦

2𝑘𝑘 + 1
�
0

∞

+
1

2𝑘𝑘 + 1
� 𝑒𝑒−(2𝑘𝑘+1)𝑦𝑦𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

 

The square-bracketed term vanishes at both limits leaving us with the integral that integrates 
directly.  We therefore have (see series #10 in Table 3 of Chapter 1). 

𝑰𝑰𝟕𝟕 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐 + 𝟏𝟏

𝒅𝒅𝒅𝒅
∞

𝟏𝟏
= �

(−𝟏𝟏)𝒌𝒌

(𝟐𝟐𝟐𝟐 + 𝟏𝟏)𝟐𝟐 = 𝑮𝑮
∞

𝒌𝒌=𝟎𝟎

     Q.E.D.  

     Catalan’s constant is a constant that commonly appears in estimates of combinatorial 
functions, certain classes of sums, and in many definite integrals (hence our interest in it).  It is 
usually denoted by G and may be defined simply as the summation above.  Interestingly, it has 
not been proven that G is irrational although I don’t believe that there is a mathematician on the 
planet who believes it is rational.  It has been computed to 31,026,000,000 decimal places 
without any repetitive pattern.  It is named for Eugene Catalan (1814-1894), a French and 
Belgian mathematician who first gave an equivalent series and expressions in terms of integrals. 

Example 6-8.  𝑰𝑰𝟖𝟖 = ∫ 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏(𝒙𝒙)
𝒙𝒙

𝒅𝒅𝒅𝒅𝟏𝟏
𝟎𝟎   

     First, note that the numerator of I8’s integrand can be written as: 

tan−1(𝑥𝑥) = �
𝑑𝑑𝑑𝑑

1 + 𝑢𝑢2
𝑥𝑥

0
 



But, 
1

1 + 𝑢𝑢2
= 1 − 𝑢𝑢2 + 𝑢𝑢4 − 𝑢𝑢6 + ⋯ = �(−1)𝑘𝑘𝑢𝑢2𝑘𝑘

∞

𝑘𝑘=0

 

Therefore, we can write 

tan−1(𝑥𝑥) = � ��(−1)𝑘𝑘𝑢𝑢2𝑘𝑘
∞

𝑘𝑘=0

�
𝑥𝑥

0
𝑑𝑑𝑑𝑑 

Now using the IO property, that is, interchange the integration and summation operations, giving 
us 

tan−1(𝑥𝑥) = �(−1)𝑘𝑘 �� 𝑢𝑢2𝑘𝑘𝑑𝑑𝑑𝑑
𝑥𝑥

0
�

∞

𝑘𝑘=0

 

Upon evaluating the integral we obtain 

tan−1(𝑥𝑥) = �(−1)𝑘𝑘 �
1

2𝑘𝑘 + 1
𝑢𝑢2𝑘𝑘+1�

0

𝑥𝑥

= �
(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

2𝑘𝑘 + 1

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

I8, the integral we are trying to crack, can now be obtained by simply dividing both sides of this 
last equation by x, integrating from 0 to 1 by using the IO property once again as follows: 

𝐼𝐼8 = �
tan−1(𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑 =

1

0
� �

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘

2𝑘𝑘 + 1
𝑑𝑑𝑑𝑑 = ��

(−1)𝑘𝑘𝑥𝑥2𝑘𝑘+1

(2𝑘𝑘 + 1)2 �
0

1

= �
(−1)𝑘𝑘

(2𝑘𝑘 + 1)2

∞

𝑘𝑘=0

∞

𝑘𝑘=0

∞

𝑘𝑘=0

1

0
 

And, remarkably, we have the final value 

𝑰𝑰𝟖𝟖 = �
𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏(𝒙𝒙)

𝒙𝒙
𝒅𝒅𝒅𝒅 = 𝑮𝑮     Q.E.D.

𝟏𝟏

𝟎𝟎
 

     Formulae for Catalan’s constant abound.  Not all involve properly improper integrals, but 
there are a plethora of such integrals.  We could go on and derive many of them, but it would not 
contribute much more about methods of doing properly improper integrals and that, don’t forget, 
is the purpose of this book.  Instead, we’ve built a table that shows merely a representative 24 
such integrals.  We will examine one more, simply to show that once you have some results, 
others may follow; in-other-words, a power series of a portion of the integrand is not necessarily 
required nor is use of the IO property, as has been the case up until now.  

Example 6-9.  𝑰𝑰𝟗𝟗 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙+𝟏𝟏)
𝒙𝒙𝟐𝟐+𝟏𝟏

𝒅𝒅𝒅𝒅∞
𝟎𝟎  

     I9 is entry #6 in the table of Catalan integrals that appears on the next page.  You will see as 
we go through the derivation that it doesn’t require use of the IO property even though that is the 
subject of this chapter.  Is it out of context?  I don’t think so.  Some of the intermediate results 



that it uses could not have been achieved without the IO property; further, it is such a beautiful 
little derivation, I couldn’t bear to leave it out. 

Table 5:  Catalan Integrals 
1.  ∫

𝜋𝜋
4� −tan−1(𝑥𝑥)
1−𝑥𝑥2

𝑑𝑑𝑑𝑑 = 𝐺𝐺1
0  13.  ∫ log(𝑥𝑥)

𝑥𝑥�𝑥𝑥2−1
𝑑𝑑𝑑𝑑 = 𝜋𝜋 log(2)

4
− 𝐺𝐺

2
√2
1  

2. ∫ �𝑥𝑥 − 1
2� sec(𝜋𝜋𝜋𝜋)1

0 𝑑𝑑𝑑𝑑 = −4𝐺𝐺
𝜋𝜋2

 
14.  ∫

log� 1
√2

(1−𝑥𝑥)�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 = −𝐺𝐺1

0  

3. ∫ log[cot(𝑥𝑥)]𝑑𝑑𝑑𝑑 = 𝐺𝐺𝜋𝜋/4
0  

15. ∫ (𝑥𝑥+1) log(𝑥𝑥)

4𝑥𝑥�6𝑥𝑥−𝑥𝑥2−1
𝑑𝑑𝑑𝑑 = 𝐺𝐺

√2+1
√2−1
1  

4. ∫ log(𝑥𝑥)
(𝑥𝑥+1)√𝑥𝑥

𝑑𝑑𝑑𝑑 = −4𝐺𝐺1
0                                       16. ∫ � 1

1+cos2(𝑥𝑥)
� log �√2+sin(𝑥𝑥)

√2−sin(𝑥𝑥)
� 𝑑𝑑𝑑𝑑 = √2𝐺𝐺𝜋𝜋/2

0  

5. ∫
log�1+sin(𝑥𝑥)

1−sin(𝑥𝑥)�

cos(𝑥𝑥)�cos(2𝑥𝑥)
𝑑𝑑𝑑𝑑 = 2𝐺𝐺𝜋𝜋/4

0  17. ∫ log(𝑥𝑥)
(1+𝑥𝑥)√𝑥𝑥

𝑑𝑑𝑑𝑑 = 4𝐺𝐺∞
1  

6. ∫ log(1+𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑 = 𝐺𝐺 + 𝜋𝜋 log(2)
4

∞
0  18. ∫ log[tan(𝑥𝑥)]𝑑𝑑𝑑𝑑 = −𝐺𝐺𝜋𝜋/4

0  

7. ∫ log[sin(𝑥𝑥) + cos(𝑥𝑥)]𝑑𝑑𝑑𝑑 = 𝐺𝐺 −𝜋𝜋/2
0

𝜋𝜋 log(2)
4

 19. ∫ log �1+cos(𝑥𝑥)
1−cos(𝑥𝑥)

� 𝑑𝑑𝑑𝑑 = 4𝐺𝐺𝜋𝜋/2
0  

8. ∫ [tan−1(𝑥𝑥)]2𝑑𝑑𝑑𝑑 = 𝜋𝜋 log(2)
4

+ 𝜋𝜋2

16
− 𝐺𝐺1

0  20. ∫ log �1+sin(𝑥𝑥)
1−sin(𝑥𝑥)

� 𝑑𝑑𝑑𝑑 = 4𝐺𝐺𝜋𝜋/2
0  

9. ∫ 𝑥𝑥
sin(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 4
3
�𝐺𝐺 − 𝜋𝜋 log�2+√3�

8
�𝜋𝜋/6

0  21. ∫ log[2 sin(𝑥𝑥)]𝜋𝜋/4
0 𝑑𝑑𝑑𝑑 = −𝐺𝐺

2
 

10. ∫ 𝑥𝑥 csc(𝑥𝑥)
sin(𝑥𝑥)+cos(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 𝐺𝐺 +𝜋𝜋/2
0

𝜋𝜋 log(2)
4

 22. ∫ log[2 cos(𝑥𝑥)]𝜋𝜋/4
0 𝑑𝑑𝑑𝑑 = 𝐺𝐺

2
 

11. ∫ log(𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑 = −2
3
𝐺𝐺2−√3

0  23. ∫ 𝑥𝑥
cosh(𝑥𝑥)

𝑑𝑑𝑑𝑑 = 2𝐺𝐺∞
0  

12. ∫ sinh−1[sin(𝑥𝑥)]𝑑𝑑𝑑𝑑 = 𝐺𝐺𝜋𝜋/2
0  24. ∫ 𝑥𝑥

sin(𝑥𝑥)
𝑑𝑑𝑑𝑑 = 2𝐺𝐺𝜋𝜋/2

0  

 

         The first thing you should notice about this example is that the integrand is exactly the 
same as an example we have done previously; the difference is the integration interval.  Examine 
example 3-5 of Chapter 3 and you will see that except for the interval, this is Serret’s integral.  
That, of course, gives us a hint on how to proceed, i.e., break I9 into two integrals, the first with 
Serret’s interval and the second with the rest, ala 

𝐼𝐼9 = ∫ log(𝑥𝑥+1)
𝑥𝑥2+1

𝑑𝑑𝑑𝑑 + ∫ log(𝑥𝑥+1)
𝑥𝑥2+1

𝑑𝑑𝑑𝑑∞
1

1
0 = 𝜋𝜋

8
log(2) + ∫ log(𝑥𝑥+1)

𝑥𝑥2+1
𝑑𝑑𝑑𝑑∞

1   

Now factor an x from the logarithm argument and by the property of logarithms, we have 

𝐼𝐼9 = 𝜋𝜋
8

log(2) + ∫
log�𝑥𝑥�1+1𝑥𝑥��

𝑥𝑥2+1
∞
1 𝑑𝑑𝑑𝑑 = 𝜋𝜋

8
log(2) + ∫ log(𝑥𝑥)

𝑥𝑥2+1
𝑑𝑑𝑑𝑑 + ∫

log�1+1𝑥𝑥�

𝑥𝑥2+1
𝑑𝑑𝑑𝑑∞

1
∞
1  

By example 6-7, the first integral to the right of the second equal sign is simply G.  In the second 
integral to the right of the second equal sign make a change of variable of x = 1/u ⇒ dx = ‒1/u2 
and (1, ∞) → (1, 0).  We therefore have 

𝐼𝐼9 = 𝜋𝜋
8

log(2) + 𝐺𝐺 + ∫ log(1+𝑢𝑢)
𝑢𝑢2+1

𝑑𝑑𝑑𝑑1
0   

The remaining integral is Serret’s integral again and our final result is 

𝑰𝑰𝟗𝟗 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙 + 𝟏𝟏)
𝒙𝒙𝟐𝟐 + 𝟏𝟏

𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟒𝟒
𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐) + 𝑮𝑮     Q.E.D.

∞

𝟎𝟎
 



Example 6-10.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏−𝒙𝒙)
𝒙𝒙

𝟏𝟏
𝟎𝟎 𝒅𝒅𝒅𝒅 

     As we developed a power series for log(1+x) in example 6-1 above, we can do a similar 
development for log(1‒x) here, that is, log(1 − 𝑥𝑥) = −∫ 𝑑𝑑𝑑𝑑

1−𝑢𝑢
.𝑥𝑥

0   However,  

1
1−𝑢𝑢

= 1 + 𝑢𝑢 + 𝑢𝑢2 + 𝑢𝑢3 + ⋯ = ∑ 𝑢𝑢𝑘𝑘.∞
𝑘𝑘=0    Hence,  

log(1 − 𝑥𝑥) = −� ��𝑢𝑢𝑘𝑘
∞

𝑘𝑘=0

�𝑑𝑑𝑑𝑑 = −�� 𝑢𝑢𝑘𝑘𝑑𝑑𝑑𝑑 = −��
𝑢𝑢𝑘𝑘+1

𝑘𝑘 + 1
�
0

𝑥𝑥

= −�
𝑥𝑥𝑘𝑘+1

𝑘𝑘 + 1
.

∞

𝑘𝑘=0

∞

𝑘𝑘=0

𝑥𝑥

0

∞

𝑘𝑘=0

𝑥𝑥

0
 

Now dividing by x and integrating from 0 to 1, we get, 

𝐼𝐼10 = �
log(1 − 𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑 = −� ��

𝑥𝑥𝑘𝑘

𝑘𝑘 + 1

∞

𝑘𝑘=0

�𝑑𝑑𝑑𝑑 = −�
1

(𝑘𝑘 + 1)2

∞

𝑘𝑘=0

1

0

1

0
 

And we finally obtain (see infinite series #3 from chapter 1), 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝒙𝒙)

𝒙𝒙
𝒅𝒅𝒅𝒅 = −

𝝅𝝅𝟐𝟐

𝟔𝟔
     Q.E.D.

𝟏𝟏

𝟎𝟎
 

Example 6-11.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝟏𝟏
𝒙𝒙
𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏+𝒙𝒙

𝟏𝟏−𝒙𝒙
�
𝒏𝒏
𝒅𝒅𝒅𝒅,  𝒏𝒏 𝝐𝝐 ℕ+𝟏𝟏

𝟎𝟎  

     This is an easy one given the results of previous examples in this chapter, i.e., examples 6-1 
and 6-10.  By the property of logarithms, we have 

𝐼𝐼11 = 𝑛𝑛 ∫ log(1+𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑 − 𝑛𝑛 ∫ log(1−𝑥𝑥)
𝑥𝑥

𝑑𝑑𝑑𝑑 = 𝑛𝑛𝐼𝐼1 − 𝑛𝑛𝐼𝐼10
1
0

1
0   

Therefore, our final value is 

𝑰𝑰𝟏𝟏𝟏𝟏 = �
𝟏𝟏
𝒙𝒙
𝐥𝐥𝐥𝐥𝐥𝐥 �

𝟏𝟏 + 𝒙𝒙
𝟏𝟏 − 𝒙𝒙�

𝒏𝒏

𝒅𝒅𝒅𝒅 =
𝒏𝒏𝒏𝒏𝟐𝟐

𝟒𝟒
     𝐐𝐐.𝐄𝐄.𝐃𝐃.

𝟏𝟏

𝟎𝟎

 

Example 6-12.  𝑰𝑰𝟏𝟏𝟏𝟏 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥 �𝟏𝟏+𝒆𝒆
−𝒙𝒙

𝟏𝟏−𝒆𝒆−𝒙𝒙
� 𝒅𝒅𝒅𝒅∞

𝟎𝟎  

     As a final integral to this chapter, let us attack this formidable looking I12.  However, if we 
make the change of variable u = e‒x so that du = ‒e‒xdx, (0, ∞) → (1, 0) and, of course,              
dx = ‒du/u, it’s not quite so formidable looking anymore, e.g., 

𝐼𝐼12 = � log �
1 + 𝑢𝑢
1 − 𝑢𝑢

��−
𝑑𝑑𝑑𝑑
𝑢𝑢
� = �

1
𝑢𝑢

log �
1 + 𝑢𝑢
1 − 𝑢𝑢

�𝑑𝑑𝑑𝑑
1

0

0

1
 

because it is now apparent that this is merely I11, above, with n = 1.  Therefore, its value is π2/4.  
Nevertheless, it is a useful and interesting exercise to attempt to crack this integral pretending 
that we didn’t recognize the relationship to I11.  Let’s do that as it really illustrates the IO 



technique that we are trying to illustrate in this chapter.  First of all, let us use the property of 
logarithms to write this integral as follows: 

𝐼𝐼12 = �
1
𝑢𝑢

[log(1 + 𝑢𝑢) − log(1 − 𝑢𝑢)]𝑑𝑑𝑑𝑑
1

0
 

Now, we can do a power series for the two log functions in the integrand.  In point-of-fact, we 
have already developed such power series.  For log(1 + u) see example 6-1 and for log(1 ‒ u) see 
example 6-10.  Therefore, our integral becomes 

𝐼𝐼12 = �
1
𝑢𝑢

1

0
��

(−1)𝑘𝑘𝑢𝑢𝑘𝑘+1

𝑘𝑘 + 1

∞

𝑘𝑘=0

− �−�
𝑢𝑢𝑘𝑘+1

𝑘𝑘 + 1

∞

𝑘𝑘=0

�� 𝑑𝑑𝑑𝑑 

Instead of using the compact summation notation (i.e., the upper case sigma’s) let’s do away 
with them and simply write out the first few terms in each series; it will be a bit easier to see 
what is going on.  Our equation becomes 

𝐼𝐼12 = �
1
𝑢𝑢
��𝑢𝑢 −

𝑢𝑢2

2
+
𝑢𝑢3

3
−
𝑢𝑢4

4
+ ⋯�− �−𝑢𝑢 −

𝑢𝑢2

2
−
𝑢𝑢3

3
−
𝑢𝑢4

4
−⋯��

1

0
𝑑𝑑𝑑𝑑 

Collecting like terms, we have 

𝐼𝐼12 = �
1
𝑢𝑢
�2𝑢𝑢 +

2𝑢𝑢3

3
+

2𝑢𝑢5

5
+

2𝑢𝑢7

7
+ ⋯�

1

0
𝑑𝑑𝑑𝑑 

As you can see, all even powers of u vanish (sum to zero) and all odd powers of u double.  And 
then when we multiply through by the 1/u term immediately following the integral sign we have 

𝐼𝐼12 = 2� �1 +
𝑢𝑢2

3
+
𝑢𝑢4

5
+
𝑢𝑢6

7
+ ⋯�

1

0
𝑑𝑑𝑑𝑑 = 2� ��

𝑢𝑢2𝑘𝑘

2𝑘𝑘 + 1

∞

𝑘𝑘=0

�
1

0
𝑑𝑑𝑑𝑑 

At last we get to the point of this entire chapter—using the IO property—interchanging the 
operations of integration and summation we obtain 

𝐼𝐼12 = 2��
𝑢𝑢2𝑘𝑘+1

(2𝑘𝑘 + 1)2�
0

1

= 2�
1

(2𝑘𝑘 + 1)2

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

This last sum is useful infinite series #4 from chapter 1 and as such it sums to π2/8 and our final 
value is as we expected                           

𝑰𝑰𝟏𝟏𝟏𝟏 = � 𝐥𝐥𝐥𝐥𝐥𝐥 �
𝟏𝟏 + 𝒆𝒆−𝒙𝒙

𝟏𝟏 − 𝒆𝒆−𝒙𝒙�
𝒅𝒅𝒅𝒅 =

𝝅𝝅𝟐𝟐

𝟒𝟒
     Q.E.D.

∞

𝟎𝟎
 

 

 

 

 



Descartes commanded the future from his study more than Napoleon from the throne. 

—Oliver Wendell Holmes 

Chapter 7.  Interval Normalization (IN) 
 

     Interval normalization (see Table 4, Chapter 1) is the name that I’ve given to a technique that 
changes the specific integration interval of (0, ∞) to that of (0, 1).  In Quantum Mechanics 
normalizing the wave function means a scaling so that all of the probabilities add up to 1.  
Further, normalization in String Theory means getting rid of the infinities when attempting to 
incorporate gravitation into a unified field theory.  Since we will use this technique to get rid of 
the upper infinity limit, it seems like a fairly good match when we change the integration interval 
to go from zero to one.  Anyway, that’s why I’m calling this technique Interval Normalization.  
Table 4 of Chapter 1 shows the following entry for IN:   

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫
𝑥𝑥2𝑓𝑓(𝑥𝑥)+𝑓𝑓(1𝑥𝑥)

𝑥𝑥2
𝑑𝑑𝑑𝑑1

0
∞
0   

The above equality is obtained by combining three of the other techniques that are also entries in 
Table 4, Chapter 1, namely, Interval Subdivision, Change of Variable, and Dummy Variable.  
We have, by the Interval Subdivision technique 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞
1

1
0

∞
0   

Now, in the second interval make a change of variable.  Let x = 1/u so that dx = –du/u2, and so 
that (1, ∞) → (1, 0).  We then have 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 − ∫ 𝑓𝑓 �1
𝑢𝑢
�0

1
1
0

∞
0

𝑑𝑑𝑑𝑑
𝑢𝑢2

= ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫
𝑓𝑓�1𝑥𝑥�

𝑥𝑥2
𝑑𝑑𝑑𝑑1

0
1
0   

The last step, of course, is making use of the fact that u is just a dummy variable and we can call 
it x (or any other symbol we choose to use).  However, by calling it x and since the integration 
intervals are now the same, we can combine the two integrals into one and we have the Table 4, 
Chapter 1 entry for IN. namely 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫
𝑥𝑥2𝑓𝑓(𝑥𝑥)+𝑓𝑓�1𝑥𝑥�

𝑥𝑥2
𝑑𝑑𝑑𝑑1

0
∞
0   

This is what is meant by normalizing the integral, that is, taking an integral whose integration 
interval is given as (0, ∞), subdivide it into two integrals, the 1st whose interval is (0, 1) and the 
2nd whose interval is (1, ∞)—step 1, and then performing a CV on the 2nd integral such that its 
interval also becomes (0, 1)—step 2, and then combining the two integrals into one—step 3.  So 
where does that get us?  What we’ve derived is possibly more complicated than what we started 
with, depending on the specific form of f(x).  Well, what we have is a general principle that 
allows us to change an integration interval of (0, ∞) to one of (0, 1).  That can be a big benefit for 
a very large class of functions.  For example, suppose that the function, f(x), has the property that 
f(x) = f(1/x), in-other-words, f(x) is a function that is a symmetric function of x and 1/x.  In that 



case, all integrals of the form 𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑥𝑥∞

0  can be set equal to 2∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑1

0 , provided that f(x)/x 
remains finite for all  x ≥ 0.  The proof of this is simple.  Normalize this integral and look what 
one gets: 

𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑∞

1
1
0

∞
0      (the subdivide step − step 1)  

𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥

= ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥

1
0

∞
0 𝑑𝑑𝑑𝑑 + ∫

𝑓𝑓�1𝑢𝑢��−
𝑑𝑑𝑑𝑑
𝑢𝑢2
�

1
𝑢𝑢

     (the change of variable step ‒ step 2)0
1   

𝐼𝐼 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑥𝑥)

𝑥𝑥
1
0

∞
0 𝑑𝑑𝑑𝑑 + ∫ 𝑓𝑓(𝑢𝑢)

𝑢𝑢
𝑑𝑑𝑑𝑑 = 2∫ 𝑓𝑓(𝑥𝑥)

𝑥𝑥
𝑑𝑑𝑑𝑑     (the combining step ‒ step 3)1

0
1
0   

As a simple corollary to this idea, if f(x) = –f(1/x) ⇒ ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑 = 0.∞

0   As another corollary, if 

𝐼𝐼1 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑 and 𝑓𝑓(𝑥𝑥) = 𝑓𝑓�1𝑥𝑥� and 𝑛𝑛 𝜖𝜖 ℕ+then ∞

0 𝐼𝐼2 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥(1+𝑥𝑥𝑛𝑛)

𝑑𝑑𝑑𝑑 = 1
2
𝐼𝐼1

∞
0 .  This proof is also 

simple.  In I2, make the change of variable x = 1/u so that dx = –1/u2 and (0, ∞) → (∞, 0).  I2 then 
becomes 

𝐼𝐼2 = ∫
𝑓𝑓�1𝑢𝑢��−

𝑑𝑑𝑑𝑑
𝑢𝑢2
�

�1+ 1
𝑢𝑢𝑛𝑛��

1
𝑢𝑢�

= ∫
𝑢𝑢𝑛𝑛𝑓𝑓�1𝑢𝑢�

𝑢𝑢𝑛𝑛+1
�𝑑𝑑𝑑𝑑
𝑢𝑢
� = ∫ 𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥)

1+𝑥𝑥𝑛𝑛
�𝑑𝑑𝑑𝑑
𝑥𝑥
�∞

0
∞
0

0
∞   

Therefore, 

2𝐼𝐼2 = ∫ 𝑓𝑓(𝑥𝑥)
1+𝑥𝑥𝑛𝑛

∙ 𝑑𝑑𝑑𝑑
𝑥𝑥

+∞
0 ∫ 𝑥𝑥𝑛𝑛𝑓𝑓(𝑥𝑥)

1+𝑥𝑥𝑛𝑛
�𝑑𝑑𝑑𝑑
𝑥𝑥
�∞

0 = ∫ 𝑓𝑓(𝑥𝑥)
𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝐼𝐼1.∞

0   

Hence 

𝐼𝐼2 = 1
2
𝐼𝐼1  

     What does all this mean?  Well, there are a plethora of properly improper integrals that can be 
evaluated using the ideas outlined above.  Hopefully, the examples that follow will make it clear 
what can be done with this idea of interval normalization. 

Example 7-1  𝑰𝑰𝟏𝟏 = ∫ 𝒅𝒅𝒅𝒅
𝟏𝟏−𝒙𝒙𝟐𝟐

∞
𝟎𝟎  

     We are starting out with what looks like an extremely simple integral that appears quite 
innocent.  But watch out!  At first glance, I would say, “Gee, the denominator is the difference of 
two squares.  Factor it and use the partial fraction technique to split it into two integrals, each of 
which will be the recognizable form of the natural logarithm function”.  Oh yeah? 

𝐼𝐼1 = ∫ 𝑑𝑑𝑑𝑑
(1+𝑥𝑥)(1−𝑥𝑥)

= ∫ �
1
2

1+𝑥𝑥
+

1
2

1−𝑥𝑥
�∞

0
∞
0 𝑑𝑑𝑑𝑑 = 1

2
�log �1+𝑥𝑥

1−𝑥𝑥
��
0

∞
= 1

2
lim
𝑥𝑥→∞

log �
1
𝑥𝑥+1
1
𝑥𝑥−1
� − 1

2
lim
𝑥𝑥→0

log �1+𝑥𝑥
1−𝑥𝑥

�  

The second limit above easily evaluates to zero, but what does the first limit evaluate to?  It 
looks like log(‒1).  Can’t be!  Time to get out L’Hopital’s rule; however, you must use it on the 
1st limit above in the form in which I’ve written it.  So that limit becomes 

1
2

lim
𝑥𝑥→∞

log�
− 1
𝑥𝑥2

− 1
𝑥𝑥2
� = 1

2
log(1) = 0  



And, that is correct, both limits are zero and therefore I1 = 0.  Not so easy though.  It took me a 
long time to figure out how to do that limit.  However, look how easy and free of complications 
the original integral is if we normalize it. 

𝐼𝐼1 = ∫ 𝑑𝑑𝑑𝑑
1−𝑥𝑥2

∞
0 = ∫ 𝑑𝑑𝑑𝑑

1−𝑥𝑥2
+ ∫ 𝑑𝑑𝑑𝑑

1−𝑥𝑥2
∞
1

1
0   

In the 2nd integral, let x = 1/u so that dx = ‒1/u2 and (1, ∞) → (1, 0) giving 

𝐼𝐼1 = ∫ 𝑑𝑑𝑑𝑑
1−𝑥𝑥2

+ ∫
−𝑑𝑑𝑑𝑑
𝑢𝑢2

1− 1
𝑢𝑢2

= ∫ 𝑑𝑑𝑑𝑑
1−𝑥𝑥2

+1
0

0
1

1
0 ∫ 𝑑𝑑𝑑𝑑

𝑢𝑢2−1
= ∫ 𝑑𝑑𝑑𝑑

1−𝑥𝑥2
−1

0 ∫ 𝑑𝑑𝑑𝑑
1−𝑥𝑥2

1
0

1
0 = 0  

Our final result is therefore 

𝑰𝑰𝟏𝟏 = �
𝟏𝟏

𝟏𝟏 − 𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅 = 𝟎𝟎     Q.E.D.

∞

𝟎𝟎
 

Example 7-2   𝑰𝑰𝟐𝟐 = ∫ log𝟐𝟐(𝒙𝒙)
𝟏𝟏+𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅∞
𝟎𝟎  

     In Chapter 6, example 6.3 we evaluated ∫ log2(𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑1
0  and we found its value to be π3/16.  Note 

that the integrands of I2 and that of example 6.3 are exactly the same; the difference in the two 
integrals is solely the interval of integration; in one case (0, 1) and in the other (0, ∞).  Well, we 
should certainly know what to do to attack I2. 

𝐼𝐼2 = ∫ log2(𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑 + ∫ log2(𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑∞
1

1
0   

In the second integral above, let x = 1/u so that dx = –du/u2 and (1, ∞) → (1, 0).  We then have 

𝐼𝐼2 = ∫ log2(𝑥𝑥)
1+𝑥𝑥2

𝑑𝑑𝑑𝑑 + ∫
log2�1𝑢𝑢�

1+�1𝑢𝑢�
2 �−

𝑑𝑑𝑑𝑑
𝑢𝑢2
� =0

1
1
0 ∫ log2(𝑥𝑥)

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 + ∫ log2(𝑥𝑥)

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 = 2∫ log2(𝑥𝑥)

1+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0
1
0

1
0   

So, we have our final value, namely 

𝑰𝑰𝟐𝟐 = �
log𝟐𝟐(𝒙𝒙)
𝟏𝟏 + 𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅 =
∞

𝟎𝟎
𝟐𝟐�

𝝅𝝅𝟑𝟑

𝟏𝟏𝟏𝟏
� =

𝝅𝝅𝟑𝟑

𝟖𝟖
     Q.E.D.  

Example 7-3  𝑰𝑰𝟑𝟑 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐−𝟏𝟏

𝒅𝒅𝒅𝒅∞
𝟎𝟎  

     Again, using the interval normalization technique, we have 

𝐼𝐼3 = ∫ log(𝑥𝑥)
𝑥𝑥2−1

𝑑𝑑𝑑𝑑 + ∫ log(𝑥𝑥)
𝑥𝑥2−1

𝑑𝑑𝑑𝑑∞
1

1
0   

In the second integral make a change of variable.  Let x = 1/z so that dx = –dz/z2 and                  
(1, ∞) → (1, 0).   

𝐼𝐼3 = ∫ log(𝑥𝑥)
𝑥𝑥2−1

𝑑𝑑𝑑𝑑 + ∫
log�1𝑧𝑧�
1
𝑧𝑧2
−1
�− 𝑑𝑑𝑑𝑑

𝑧𝑧2
� = 2∫ log(𝑥𝑥)

𝑥𝑥2−1
𝑑𝑑𝑑𝑑1

0
0
1

1
0   

Now, representing the denominator of the integrand by a power series, we have 



𝐼𝐼3 = 2� �log(𝑥𝑥)�−�𝑥𝑥2𝑘𝑘
∞

𝑘𝑘=0

��
1

0
𝑑𝑑𝑑𝑑 

Interchanging the operations of summation and integration, we obtain 

𝐼𝐼3 = −2�� 𝑥𝑥2𝑘𝑘 log(𝑥𝑥)
1

0

∞

𝑘𝑘=0

𝑑𝑑𝑑𝑑 

The integral can now be done by parts with u = log(x) and dv = x2kdx, giving us 

𝐼𝐼3 = −2���
𝑥𝑥2𝑘𝑘+1 log(𝑥𝑥)

2𝑘𝑘 + 1
�
0

1

− �
𝑥𝑥2𝑘𝑘+1𝑑𝑑𝑑𝑑

(2𝑘𝑘 + 1)𝑥𝑥

1

0
� = 2�

1
2𝑘𝑘 + 1

� 𝑥𝑥2𝑘𝑘𝑑𝑑𝑑𝑑
1

0

∞

𝑘𝑘=0

∞

𝑘𝑘=0

= 2�
1

(2𝑘𝑘 + 1)2

∞

𝑘𝑘=0

 

Entry #4 in the Table of Useful infinite series of Chapter 1 gives us this sum as π2/8.  We 
therefore have our final result 

𝑰𝑰𝟑𝟑 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐 − 𝟏𝟏

𝒅𝒅𝒅𝒅 =
𝝅𝝅𝟐𝟐

𝟒𝟒
     Q.E.D.

∞

𝟎𝟎
 

Example 7-4  𝑰𝑰𝟒𝟒 = ∫
𝐥𝐥𝐥𝐥𝐥𝐥�𝟏𝟏𝒙𝒙�

𝟏𝟏+𝒙𝒙𝟐𝟐
𝒅𝒅𝒅𝒅∞

𝟎𝟎  

𝐼𝐼4 = ∫
log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 + ∫

log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 ∞

1
1
0   

Now make a CV in the 2nd integral above of x = 1/u so that dx = –du/u2, and (1, ∞) → (1, 0).  
Upon doing that, we have 

𝐼𝐼4 = ∫
log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0 + ∫ log(𝑢𝑢)
1+ 1

𝑢𝑢2
�− 𝑑𝑑𝑑𝑑

𝑢𝑢2
�∞

1 = ∫
log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 + ∫ log(𝑢𝑢)

𝑢𝑢2+1
𝑑𝑑𝑑𝑑1

0
1
0   

However, since u is just a dummy variable, we can call it x and also by the property of 
logarithms, log(u) = –log(1/u), the above equation becomes 

𝐼𝐼4 = ∫
log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0 − ∫
log�1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0 = 0  

Lo and behold, we have our final answer, that is, 

𝑰𝑰𝟒𝟒 = �
𝐥𝐥𝐥𝐥𝐥𝐥�𝟏𝟏𝒙𝒙�
𝟏𝟏 + 𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅
∞

𝟎𝟎
= 𝟎𝟎     Q.E.D.  

Example 7-5  𝑰𝑰𝟓𝟓 = ∫ �𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙−𝟏𝟏

�
𝟐𝟐
𝒅𝒅𝒅𝒅∞

𝟎𝟎  
     Here is a relatively simple looking properly improper integral.  It is certainly not an 
elementary integral, but not an overly complex integrand.  Never-the-less, before we arrive at a 
final value, we will have used the following techniques:   IN, CV, IO, and IBP twice, not to 
mention a power series expansion.  Hang onto your hats, because here we go!  Using the IN 
technique, we have 



𝐼𝐼5 = ∫ log2(𝑥𝑥)
(𝑥𝑥−1)2

𝑑𝑑𝑑𝑑 + ∫ log2(𝑥𝑥)
(𝑥𝑥−1)2

𝑑𝑑𝑑𝑑∞
1

1
0 = 2∫ log2(𝑥𝑥)

(𝑥𝑥−1)2
𝑑𝑑𝑑𝑑1

0   

If you are beginning to understand this IN technique, you realize that its purpose is to change the 
integration interval from (0, ∞) to (0, 1).  Well, now we are going to change it right back with a 
CV of x = e–y.  Under this CV we get dx = –e–ydy and (0, 1) → (∞, 0).  Thus, 

𝐼𝐼5 = 2∫ 𝑦𝑦2(−𝑒𝑒−𝑦𝑦𝑑𝑑𝑑𝑑)
(𝑒𝑒−𝑦𝑦−1)2

= 2∫ 𝑦𝑦2𝑒𝑒−𝑦𝑦(1 + 2𝑒𝑒−𝑦𝑦 + 3𝑒𝑒2𝑦𝑦 + 4𝑒𝑒−3𝑦𝑦 + ⋯ )𝑑𝑑𝑑𝑑∞
0

0
∞   

Let’s use the more compact sigma notation for the power series, i.e., we then have 

𝐼𝐼5 = 2� 𝑦𝑦2𝑒𝑒−𝑦𝑦�[(𝑘𝑘 + 1)𝑒𝑒−𝑘𝑘𝑘𝑘]𝑑𝑑𝑑𝑑
∞

𝑘𝑘=0

∞

0
 

Now, interchanging the order of summation and integration we have, 

𝐼𝐼5 = 2�(𝑘𝑘 + 1)� 𝑦𝑦2𝑒𝑒−(𝑘𝑘+1)𝑦𝑦𝑑𝑑𝑑𝑑
∞

0

∞

𝑘𝑘=0

 

The integral can now be evaluated by using integration by parts twice.  The first time let u = y2 
and dv = e–(k+1)ydy.  The second time, let u = y and dv = e–(k+1)ydy.  Doing that, we obtain 

𝐼𝐼5 = 4��−
1

(𝑘𝑘 + 1)2 𝑒𝑒
−(𝑘𝑘+1)𝑦𝑦�

0

∞

= 4�
1

(𝑘𝑘 + 1)2 =
2𝜋𝜋2

3

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

This last step, of course, is from entry 2 of table 3 (Useful Infinite Series) in Chapter 1.  So our 
final result is 

𝑰𝑰𝟓𝟓 = � �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙 − 𝟏𝟏 �

𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝟐𝟐𝝅𝝅𝟐𝟐

𝟑𝟑
     Q.E.D.

∞

𝟎𝟎
 

     Alternately, one can eliminate the IN step at the very beginning and make the x = e–y change 
of variable directly to the original integral.  This gives an integral with the same integrand as we 
got above, however its interval runs from (–∞, ∞) instead of (0, ∞).  Then, due to a symmetry 
argument, we can multiply the integral by 2 and make the interval (0, ∞), and we are right back 
on course with the above derivation. 

Example 7-6  𝑰𝑰𝟔𝟔 = ∫ �𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙−𝟏𝟏

�
𝟑𝟑
𝒅𝒅𝒅𝒅∞

𝟎𝟎  
     This is a bear, so bear with me!  Normalizing the interval we obtain 

𝐼𝐼6 = ∫ �log(𝑥𝑥)
𝑥𝑥−1

�
3
𝑑𝑑𝑑𝑑 + ∫ �log(𝑥𝑥)

𝑥𝑥−1
�
3
𝑑𝑑𝑑𝑑∞

1
1
0   

In the 2nd integral, let x = 1/u so that dx = –du/u2 and (1, ∞) → (1, 0).  We then get 

𝐼𝐼6 = ∫ �log(𝑥𝑥)
𝑥𝑥−1

�
3
𝑑𝑑𝑑𝑑 + ∫ �− log(𝑢𝑢)

1−𝑢𝑢
𝑢𝑢

�
3
�− 𝑑𝑑𝑑𝑑

𝑢𝑢2
� =0

1
1
0 ∫ �log(𝑥𝑥)

𝑥𝑥−1
�
3
𝑑𝑑𝑑𝑑 − ∫ 𝑥𝑥[log(𝑥𝑥)]3

(𝑥𝑥−1)3
𝑑𝑑𝑑𝑑1

0
1
0   



In the last integral, the dummy variable u has been changed to an x.  These last two integrals can 
now be combined under one integral sign and we have 

𝐼𝐼6 = ∫ (1+𝑥𝑥)
(1−𝑥𝑥)3

�log �1
𝑥𝑥
��
3
𝑑𝑑𝑑𝑑1

0   

We will now make a change of variable, namely, let x = e–z so that dx = –e–zdz and                     
(0, 1) → (∞, 0).  As you can see, the integration interval is going right back to 0 to ∞.  Could we 
have done this at the beginning instead of normalizing the interval?  In this case, no, the 
integrand that we would obtain is not symmetric about the vertical axis.  Continuing with this 
change of variable, we have 

𝐼𝐼6 = ∫ 𝑧𝑧3�𝑒𝑒−𝑧𝑧+𝑒𝑒−2𝑧𝑧�
(1−𝑒𝑒−𝑧𝑧)3

𝑑𝑑𝑑𝑑∞
0 = ∫ 𝑧𝑧3(𝑒𝑒−𝑧𝑧 + 𝑒𝑒−2𝑧𝑧)(1 + 3𝑒𝑒−𝑧𝑧 + 6𝑒𝑒−2𝑧𝑧 + 10𝑒𝑒−3𝑧𝑧 + 15𝑒𝑒−4𝑧𝑧 + ⋯ )𝑑𝑑𝑑𝑑∞

0   

Now, multiplying the power series expansion by e–z  + e–2z we obtain 

𝐼𝐼6 = � 𝑧𝑧3(𝑒𝑒−𝑧𝑧 + 4𝑒𝑒−2𝑧𝑧 + 9𝑒𝑒−3𝑧𝑧 + 16𝑒𝑒−4𝑧𝑧 + 25𝑒𝑒−5𝑧𝑧 + ⋯ )𝑑𝑑𝑑𝑑 = � 𝑧𝑧3�(𝑘𝑘 + 1)2𝑒𝑒−(𝑘𝑘+1)𝑧𝑧
∞

𝑘𝑘=0

𝑑𝑑𝑑𝑑
∞

0

∞

0
 

By interchanging the order of summation and integration we can write this last expression as 

𝐼𝐼6 = �(𝑘𝑘 + 1)2 � 𝑧𝑧3𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0

∞

𝑘𝑘=0

 

Now we will integrate by parts a few times—namely three.  Let u = z3, du = 3z2dz while letting 
dv = e–(k+1)zdz, v = –e–(k+1)z/(k+1).  Thus, for the 1st integration by parts we obtain 

𝐼𝐼6 = �(𝑘𝑘 + 1)2 ��
−𝑧𝑧3

𝑘𝑘 + 1
𝑒𝑒−(𝑘𝑘+1)𝑧𝑧�

0

∞

+
3

𝑘𝑘 + 1
� 𝑧𝑧2𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

= 3�(𝑘𝑘 + 1)� 𝑧𝑧2𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0

∞

𝑘𝑘=0

 

Again, by parts with u = z2, du = 2zdz and dv = e–(k+1)zdz, v = –e–(k+1)z/((k+1). 

𝐼𝐼6 = 3�(𝑘𝑘 + 1) ��
−𝑧𝑧2

𝑘𝑘 + 1
𝑒𝑒−(𝑘𝑘+1)𝑧𝑧�

0

∞

+
2

𝑘𝑘 + 1
� 𝑧𝑧𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0
�

∞

𝑘𝑘=0

= 6�� 𝑧𝑧𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0

∞

𝑘𝑘=0

 

This time with u = z, du = dz and dv = e–(k+1)zdz, v = –e–(k+1)z/(k+1).  So, the final integration by 
parts gives us 

𝐼𝐼6 = 6���
−𝑧𝑧
𝑘𝑘 + 1

𝑒𝑒−(𝑘𝑘+1)𝑧𝑧�
0

∞
+

1
𝑘𝑘 + 1

� 𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0
� = 6�

1
𝑘𝑘 + 1

� 𝑒𝑒−(𝑘𝑘+1)𝑧𝑧𝑑𝑑𝑑𝑑
∞

0

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

Of course, the last integral is the recognizable form of the exponential function and so we have 

𝐼𝐼6 = ��
−1

(𝑘𝑘 + 1)2 𝑒𝑒
−(𝑘𝑘+1)𝑧𝑧�

0

∞

= 6�
1

(𝑘𝑘 + 1)2

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

Refer to Chapter 1, Table 3, entry #2 and we see that this sum is equal to π2/6.  As a result, we 
have our final value, namely 



𝑰𝑰𝟔𝟔 = � �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙 − 𝟏𝟏 �

𝟑𝟑

𝒅𝒅𝒅𝒅 = 𝝅𝝅𝟐𝟐
∞

𝟎𝟎
     Q.E.D.  

Example 7-7  𝑰𝑰𝟕𝟕 = ∫ 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐+𝒂𝒂𝟐𝟐

𝒅𝒅𝒅𝒅  𝒂𝒂 𝝐𝝐 ℝ∞
𝟎𝟎  

     This is a very simple looking example and I will use it to close out this chapter on 
normalization.  I am going to show how to evaluate this integral in two different ways, one of 
which embodies the normalization process and one that does not.  I think it’s quite interesting! 

     A good thing to try when you see a log(x) in the numerator of the integrand is to do a CV 
where x = 1/u.  Why is that?  Because by the property of logarithms, the log(1/u) becomes          
–log(u) and that can be convenient depending on the rest of the integrand’s transformation.  
Anyway, let’s try it.  Let x = 1/u so that dx = –du/u2 and (0, ∞) → (∞, 0).  Hence, 

𝐼𝐼7 = −∫
log�1𝑢𝑢�
1
𝑢𝑢2
+𝑎𝑎2

∙ 1
𝑢𝑢2
𝑑𝑑𝑑𝑑 = ∫

log�1𝑢𝑢�

1+𝑎𝑎2𝑢𝑢2
𝑑𝑑𝑑𝑑 = −∫ log(𝑢𝑢)

1+𝑎𝑎2𝑢𝑢2
𝑑𝑑𝑑𝑑.∞

0
∞
0

0
∞   

Now, let’s do another CV, namely, let y = au so that du = dy/a and (0, ∞) → (0, ∞).  We now 
obtain 

𝐼𝐼7 = − 1
𝑎𝑎 ∫

log�𝑦𝑦𝑎𝑎�

1+𝑦𝑦2
𝑑𝑑𝑑𝑑 = − 1

𝑎𝑎 ∫
log(𝑦𝑦)−log(𝑎𝑎)

1+𝑦𝑦2
𝑑𝑑𝑑𝑑 = log(𝑎𝑎)

𝑎𝑎 ∫ 𝑑𝑑𝑑𝑑
1+𝑦𝑦2

− 1
𝑎𝑎 ∫

log(𝑦𝑦)
1+𝑦𝑦2

𝑑𝑑𝑑𝑑.∞
0

∞
0

∞
0

∞
0   

The first integral on the right of the second equal sign is easy—it’s the recognizable form of the 
inverse tangent.  So for that integral we have 

�log(𝑎𝑎)
𝑎𝑎

tan−1(𝑦𝑦)�
0

∞
= 𝜋𝜋 log(𝑎𝑎)

2𝑎𝑎
.  

For the second integral, use the normalization process property so that we get (and to me, this 
was the aha moment which is further explained below) the following 

− 1
𝑎𝑎 ∫

log(𝑦𝑦)
1+𝑦𝑦2

𝑑𝑑𝑑𝑑 = − 1
𝑎𝑎 ∫

log(𝑦𝑦)
1+𝑦𝑦2

𝑑𝑑𝑑𝑑 − 1
𝑎𝑎 ∫

log(𝑦𝑦)
1+𝑦𝑦2

𝑑𝑑𝑑𝑑.∞
1

1
0

∞
0   

Now, complete the normalization process by making the expected CV to the integral above on 
the far right.  Let y = 1/z so that dy = –dz/z2 and (1, ∞) → (1, 0).  You will find that after making 
the CV that these two integrals are equal but opposite in sign, thereby canceling one another.  So, 
we already had our final answer, we just didn’t know it.  That is, 

𝑰𝑰𝟕𝟕 = �
𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)
𝒙𝒙𝟐𝟐 + 𝒂𝒂𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝝅𝝅 𝐥𝐥𝐥𝐥𝐥𝐥(𝒂𝒂)

𝟐𝟐𝟐𝟐
     Q.E.D

∞

𝟎𝟎
 

     Note that if we applied this last CV to the other integral on the right of the equal sign (i.e., the 
integral that goes from 0 to 1), we would see that it is exactly the negative of the integral that 
goes from 1 to ∞ with the exception of the sign; it is opposite in sign.  We get the correct result 
no matter which way we do it. 

     Let us now see how one might go about evaluating this integral without use of the 
normalization property.  It was stated in a previous chapter that whenever an integrand exhibits a 



constant plus the variable of integration squared (as I7 does in the denominator), it is a good idea 
to consider a CV in which the variable of integration is set equal to the square root of the 
constant times the tangent of the new variable.  Let us try that and see what happens.  Let            
x = atan(θ) so that dx = asec2(θ)dθ and (0, ∞) → (0, π/2).  Under this CV, our integral becomes 

𝐼𝐼7 = ∫ log(𝑎𝑎 tan𝜃𝜃)𝑎𝑎sec2(𝜃𝜃)𝑑𝑑𝑑𝑑
𝑎𝑎2tan2(𝜃𝜃)+𝑎𝑎2

𝜋𝜋/2
0 = ∫ log(𝑎𝑎 tan𝜃𝜃)𝑎𝑎sec2(𝜃𝜃)𝑑𝑑𝑑𝑑

𝑎𝑎2sec2(𝜃𝜃)
= 1

𝑎𝑎 ∫ log(𝑎𝑎 tan𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2
0

𝜋𝜋/2
0   

Now, by the property of logarithms, this last integral becomes 

𝐼𝐼7 = 1
𝑎𝑎 ∫ [log(𝑎𝑎) + log(tan𝜃𝜃)]𝜋𝜋/2

0 𝑑𝑑𝑑𝑑 = log(𝑎𝑎)
𝑎𝑎 ∫ 𝑑𝑑𝑑𝑑𝜋𝜋/2

0 + 1
𝑎𝑎 ∫ log(tan𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2

0   

Of course, the 1st integral to the right of the equal sign above is easily integrated while the 2nd 
integral can be written as 

𝐼𝐼7 = �log(𝑎𝑎)
𝑎𝑎

𝜃𝜃�
0

𝜋𝜋/2
+ 1

𝑎𝑎 ∫ log �sin(𝜃𝜃)
cos(𝜃𝜃)

� 𝑑𝑑𝑑𝑑𝜋𝜋/2
0 = 𝜋𝜋 log(𝑎𝑎)

2𝑎𝑎
+ 1

𝑎𝑎 ∫ [log(sin𝜃𝜃) − log(cos𝜃𝜃)]𝑑𝑑𝑑𝑑𝜋𝜋/2
0   

This last integral can be broken into two giving us 

𝐼𝐼7 = 𝜋𝜋 log(𝑎𝑎)
2𝑎𝑎

+ 1
𝑎𝑎 ∫ log(sin𝜃𝜃)𝜋𝜋/2

0 𝑑𝑑𝑑𝑑 − 1
𝑎𝑎 ∫ log(cos𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2

0   

It is easy to show that ∫ log(sin𝜃𝜃)𝑑𝑑𝑑𝑑 = ∫ log(cos 𝜃𝜃)𝜋𝜋/2
0

𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 (as you will see in the next 

chapter) by means of an IP CV thereby giving us the correct value of πlog(a)/2a,  e.g.,  let           
θ = π/2 – ϕ in either integral. 

  



Mathematics knows no races or geographic boundaries; for mathematics, the cultural world is 
one country. 

—David Hilbert 

Chapter 8.  Crème de la Crème 
 

     This chapter, as explained in the preface, is devoted to those integral solutions that I have 
deemed to be the best, most exciting, and cleverest of all those that I have studied, that is, the so-
called crème de la crème of properly improper integrals.  Of course, this is purely my opinion 
and others might very well have included an entirely different set of integrals in such a chapter.  
Never-the-less, as a result, this chapter is a potpourri of all the techniques and methodologies that 
I have tried to delineate and explain in the preceding chapters.  With that short introduction, have 
at it! 

8.1  The Frullani/Cauchy Theorem 
 
     We will start this chapter off by establishing a general result that then can be used to evaluate 
an entire host of properly improper integrals.  It is known as Frullani’s Theorem, named after an 
Italian mathematician Giuliano Frullani (1795-1834).  The theorem can be stated in the following 
manner.  If we have a function, f(x), such that both f(0) and f(∞) exist, then  

∫ 𝑓𝑓(𝑎𝑎𝑎𝑎)−𝑓𝑓(𝑏𝑏𝑏𝑏)
𝑥𝑥

∞
0 𝑑𝑑𝑑𝑑 = [𝑓𝑓(∞) − 𝑓𝑓(0)] log �𝑎𝑎

𝑏𝑏
� ,     where 𝑎𝑎, 𝑏𝑏 𝜖𝜖 ℝ+.  

There is some evidence that the theorem was first published by Cauchy in 1823.  Frullani did not 
publish the result until 1829; however, he claimed to have communicated the result in a letter to 
the Italian astronomer and mathematician Plana (1781-1864).  As to who should get credit for the 
theorem is irrelevant – it’s very clever (a good candidate for the crème de la crème chapter) and 
we will subsequently prove the theorem.  However, let us first discuss a bit about Cauchy as he is 
much more interesting than Frullani.  But, instead of the usual bio that includes Cauchy’s 
academic education and mathematical credentials, let’s sum that up quickly and talk instead 
about Cauchy’s personality—a much more interesting subject. 

 
Figure 8-1.  French Mathematician Augustin Louis Cauchy (1789-1857) 

“Men pass away, but their deeds abide.”—Augustin-Louis Cauchy 

javascript:window.close();


      Augustin-Louis Cauchy was a French mathematician and one of the greatest modern 
mathematicians of the 19th century; he was an extreme mathematical genius.  His forte was 
mathematical rigor which he brought to the subject of Newton’s and Leibniz’s Calculus. He 
almost singlehandedly created Complex Analysis.  Numerous terms in mathematics bear 
Cauchy's name; no less than 45 (at my count) theorems, constants, formulas, and/or 
mathematical structures are named for him.  To name just a few, how about the Cauchy integral 
theorem, in the theory of complex functions, the Cauchy-Kovalevskaya existence theorem for the 
solution of partial differential equations, and the Cauchy-Riemann equations that govern the 
conditions for a function of a complex variable to be analytic.  Cauchy produced almost 800 
mathematics papers, a truly overwhelming achievement.  Cauchy's genius found expression not 
only in his work on the foundations of real and complex analysis, areas to which his name is 
inextricably linked, but also in many other fields such as his major contributions to the 
development of mathematical physics and to theoretical mechanics.   His two theories of 
elasticity and his investigations on the theory of light, research which required that he develop 
whole new mathematical techniques such as Fourier transforms, diagonalization of matrices, and 
the calculus of residues. 

     As I write the phrase “Cauchy-Riemann equations that govern . . .,” above, an image comes to 
mind that makes me laugh out loud and I just have to share it with you.  I see the complex-plane 
in front of me and it is pictured as a flat horizontal plane going off into the distance to infinity; a 
surreal image as often seen in Salvador Dali paintings.  There is mist or wispy fog rising slowly 
from various parts of the plane and there are a few large, dark holes in the plane that seem to be 
bottomless.  And, way off in the distance, are two tiny figures, hand-in-hand, trudging around 
one of the holes.  This is Cauchy leading Riemann around a singularity.  (For further elucidation, 
see the subject of contour integration and the Cauchy integral equations.)  Enough nonsense, 
back to Cauchy’s personality.  

     Obviously, Cauchy was an outstanding student, researcher, and mathematical genius, but had 
a reputation of arrogance and self-infatuation.  Take a look at the portrait of Cauchy above.  
Whoever the artist was that did that portrait certainly captured the arrogance and self-infatuation.  
Cauchy did not have particularly good relations with other scientists. He was a staunch Catholic 
and his religious views often caused trouble; he would bring religion into his scientific work as 
he did on giving a report on the theory of light in 1824 when he attacked the author (the deceased 
Isaac Newton) for his belief that people did not have souls. In short, he was a genius but an 
extreme religious nut!  Cauchy was once described by a journalist who said:- ... it is certainly a 
curious thing to see an academician who seemed to fulfill the respectable functions of a 
missionary preaching to the heathens.  An example of how Cauchy treated colleagues is given 
by Poncelet whose work on projective geometry had, in 1820, been criticized by Cauchy:- ... I 
managed to approach my too rigid judge at his residence ... just as he was leaving ... During this 
very short and very rapid walk, I quickly perceived that I had in no way earned his regards or 
his respect as a scientist ... without allowing me to say anything else, he abruptly walked off, 
referring me to a forthcoming publication where, according to him, 'the question would be very 
properly explored'.  Again his treatment of Norwegian mathematician Niels Henrik Abel during 
this period was unfortunate. Abel, wrote of him:- Cauchy is mad and there is nothing that can be 
done about him, although, right now, he is the only one who knows how mathematics should be 
done.   
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     One last thing about Cauchy.  In a May 2001 article in “The American Mathematical 
Monthly” (pages 432-436) by Erik Talvila entitled “Some Divergent Trigonometric Integrals”, 
the author writes that while examining a table of definite integrals, he came across four divergent 
trigonometric entries with incorrect finite values.  Guess what–-the well-known mathematician 
who made the original error was none other than the famous French genius Augustin-Louis 
Cauchy.  Even geniuses are sometimes wrong; his error had persisted for over 140 years.  
Enough about Cauchy—let’s prove the theorem. 

 Let 𝐼𝐼(𝑎𝑎, 𝑏𝑏) = ∫ 𝑓𝑓(𝑎𝑎𝑎𝑎)−𝑓𝑓(𝑏𝑏𝑏𝑏)
𝑥𝑥

𝑑𝑑𝑑𝑑∞
0 .  Now, make a CV of x = u/b, so that dx = du/b, and (0, ∞) → (0, ∞).  

Hence, 

𝐼𝐼(𝑎𝑎,𝑏𝑏) = ∫ 𝑓𝑓(𝑎𝑎𝑎𝑎)−𝑓𝑓(𝑏𝑏𝑏𝑏)
𝑥𝑥

𝑑𝑑𝑑𝑑 = ∫
𝑓𝑓�𝑎𝑎𝑏𝑏𝑢𝑢�−𝑓𝑓(𝑢𝑢)

𝑢𝑢
𝑏𝑏

∞
0

𝑑𝑑𝑑𝑑
𝑏𝑏

∞
0 = ∫

𝑓𝑓�𝑎𝑎𝑏𝑏𝑢𝑢�−𝑓𝑓(𝑢𝑢)

𝑢𝑢
𝑑𝑑𝑑𝑑∞

0   

The integral now depends upon the single parameter – the ratio of a to b, so let us call this ratio 
q, i.e., q = a/b.  We then have, 

𝐼𝐼(𝑞𝑞) = ∫ 𝑓𝑓(𝑞𝑞𝑞𝑞)−𝑓𝑓(𝑢𝑢)
𝑢𝑢

𝑑𝑑𝑑𝑑∞
0   

Let us now differentiate with respect to q, that is, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(∫ 𝑓𝑓(𝑞𝑞𝑞𝑞)−𝑓𝑓(𝑢𝑢)

𝑢𝑢 𝑑𝑑𝑑𝑑)∞
0

𝑑𝑑𝑑𝑑
= ∫ 𝑑𝑑[𝑓𝑓(𝑞𝑞𝑞𝑞)]

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑢𝑢

∞
0   

Now, using the chain rule, we have 
𝑑𝑑[𝑓𝑓(𝑞𝑞𝑞𝑞)]

𝑑𝑑𝑑𝑑
= 𝑑𝑑[𝑓𝑓(𝑞𝑞𝑞𝑞)]

𝑑𝑑(𝑞𝑞𝑞𝑞)
∙ 𝑑𝑑(𝑞𝑞𝑞𝑞)

𝑑𝑑𝑑𝑑
= 𝑑𝑑[𝑓𝑓(𝑞𝑞𝑞𝑞)]

𝑑𝑑(𝑞𝑞𝑞𝑞)
∙ 𝑢𝑢  

Therefore,  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∫ 𝑑𝑑𝑑𝑑(𝑞𝑞𝑞𝑞)
𝑑𝑑(𝑞𝑞𝑞𝑞)

𝑑𝑑𝑑𝑑 = 1
𝑞𝑞 ∫

𝑑𝑑𝑑𝑑(𝑞𝑞𝑞𝑞)
𝑑𝑑(𝑞𝑞𝑞𝑞)

∞
0

∞
0 𝑑𝑑(𝑞𝑞𝑞𝑞) = 1

𝑞𝑞
[𝑓𝑓(𝑞𝑞𝑞𝑞)]0∞  

And, evaluation of this last expression gives us 
𝑑𝑑𝐼𝐼
𝑑𝑑𝑑𝑑

= 𝑓𝑓(∞)−𝑓𝑓(0)
𝑞𝑞

  

Solving this differential equation yields 𝐼𝐼 = [𝑓𝑓(∞) − 𝑓𝑓(0)] log(𝑞𝑞) + 𝐶𝐶 where C is an arbitrary 
constant of integration.  Now, obviously, when a = b, I will be zero, and this condition allows us 
to evaluate C, namely, C = 0.  Thus, we have proved the proposition, namely 

�
𝒇𝒇(𝒂𝒂𝒂𝒂) − 𝒇𝒇(𝒃𝒃𝒃𝒃)

𝒙𝒙

∞

𝟎𝟎
𝒅𝒅𝒅𝒅 = [𝒇𝒇(∞) − 𝒇𝒇(𝟎𝟎)] 𝐥𝐥𝐥𝐥𝐥𝐥 �

𝒂𝒂
𝒃𝒃
�      Q.E.D.  

     By using the Frullani/(Cauchy) Theorem, some very, very, extremely complex integrals can 
be evaluated without doing much work at all.  The following table gives a representative list of 
Frullani integrals and their values.  The 1st column of the table merely lists the function used in 
the integrand, namely, f(x).  The 2nd column shows the entire integrand, while the 3rd column lists 
any restrictions or limitations on any parameters in the integrand (sans parameters a and b).  



Finally, the 4th and last column specifies the value of the Frullani integral.  It is understood that 
the integration interval is always (0, ∞) and that the parameters a and b belong to ℝ+. 

f(x) Integrand Parameters Integral Value 
𝑒𝑒−𝑥𝑥 𝑒𝑒−𝑎𝑎𝑎𝑎−𝑒𝑒−𝑏𝑏𝑏𝑏

𝑥𝑥  ------ log �𝑏𝑏𝑎𝑎� 

𝑒𝑒−𝑥𝑥𝑝𝑝  𝑒𝑒−𝑎𝑎𝑥𝑥
𝑝𝑝
−𝑒𝑒−𝑏𝑏𝑥𝑥

𝑝𝑝

𝑥𝑥  𝑝𝑝 𝜖𝜖 ℝ+ 1
𝑝𝑝 log �𝑏𝑏𝑎𝑎� 

𝑒𝑒−𝑝𝑝𝑝𝑝−𝑒𝑒−𝑞𝑞𝑞𝑞

𝑥𝑥  𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎−𝑒𝑒−𝑎𝑎𝑎𝑎𝑎𝑎

𝑎𝑎𝑥𝑥2
 − 𝑒𝑒

−𝑏𝑏𝑏𝑏𝑏𝑏−𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏

𝑏𝑏𝑥𝑥2
 𝑝𝑝, 𝑞𝑞 𝜖𝜖 ℝ+ (𝑞𝑞 − 𝑝𝑝) log �𝑏𝑏𝑎𝑎� 

𝑥𝑥𝑒𝑒−𝑐𝑐𝑐𝑐

(1−𝑒𝑒−𝑥𝑥) 
𝑎𝑎𝑒𝑒−𝑐𝑐𝑒𝑒

𝑎𝑎𝑎𝑎

1−𝑒𝑒−𝑎𝑎𝑎𝑎  − 𝑏𝑏𝑒𝑒
−𝑐𝑐𝑒𝑒𝑏𝑏𝑏𝑏

1−𝑒𝑒−𝑏𝑏𝑏𝑏
  𝑐𝑐 𝜖𝜖 ℝ+ 𝑒𝑒−𝑐𝑐 log �𝑏𝑏𝑎𝑎� 

(𝑥𝑥 + 𝑐𝑐)−𝜇𝜇 (𝑎𝑎𝑎𝑎+𝑐𝑐)−𝜇𝜇−(𝑏𝑏𝑏𝑏+𝑐𝑐)−𝜇𝜇

𝑥𝑥  𝑐𝑐, 𝜇𝜇 𝜖𝜖 ℝ+ 𝑐𝑐−𝜇𝜇 log �𝑏𝑏𝑎𝑎� 
tan−1(𝑥𝑥) tan−1(𝑎𝑎𝑎𝑎)−tan−1(𝑏𝑏𝑏𝑏)

𝑥𝑥  ------- 𝜋𝜋
2 log�

𝑎𝑎
𝑏𝑏� 

log(𝑝𝑝 + 𝑞𝑞𝑒𝑒−𝑥𝑥) log(𝑝𝑝+𝑞𝑞𝑒𝑒−𝑎𝑎𝑎𝑎)−log�𝑝𝑝+𝑞𝑞𝑒𝑒−𝑏𝑏𝑏𝑏�
𝑥𝑥   𝑝𝑝, 𝑞𝑞 𝜖𝜖 ℝ+ log � 𝑝𝑝

𝑝𝑝+𝑞𝑞� log �𝑎𝑎𝑏𝑏� 
(𝑎𝑎𝑎𝑎 𝑥𝑥⁄ ) log(1 + 𝑥𝑥) 𝑏𝑏 log(1+𝑎𝑎𝑎𝑎)−𝑎𝑎 log(1+𝑏𝑏𝑏𝑏)

𝑥𝑥2
 ------ 𝑎𝑎𝑎𝑎 log �𝑏𝑏𝑎𝑎� 

�1 + 𝑝𝑝
𝑥𝑥�

𝑥𝑥
 �1+ 𝑝𝑝

𝑎𝑎𝑎𝑎�
𝑎𝑎𝑎𝑎
−�1+ 𝑝𝑝

𝑏𝑏𝑏𝑏�
𝑏𝑏𝑏𝑏

𝑥𝑥  
𝑝𝑝 𝜖𝜖 ℝ+ (𝑒𝑒𝑝𝑝 − 1) log �𝑎𝑎𝑏𝑏� 

𝑝𝑝+𝑞𝑞𝑒𝑒−𝑥𝑥

𝑐𝑐𝑒𝑒𝑥𝑥+𝑔𝑔+𝑞𝑞𝑒𝑒−𝑥𝑥 � 𝑝𝑝+𝑞𝑞𝑒𝑒−𝑎𝑎𝑎𝑎

𝑐𝑐𝑒𝑒𝑎𝑎𝑎𝑎+𝑔𝑔+ℎ𝑒𝑒−𝑎𝑎𝑎𝑎 – 𝑝𝑝+𝑞𝑞𝑒𝑒−𝑏𝑏𝑏𝑏

𝑐𝑐𝑒𝑒𝑏𝑏𝑏𝑏+𝑔𝑔+ℎ𝑒𝑒−𝑏𝑏𝑏𝑏
� 1𝑥𝑥 𝑝𝑝, 𝑞𝑞, 𝑐𝑐,𝑔𝑔,ℎ 𝜖𝜖 ℝ+ 𝑝𝑝+𝑞𝑞

𝑐𝑐+𝑔𝑔+ℎ log�
𝑏𝑏
𝑎𝑎� 

log(𝑝𝑝 + 𝑞𝑞𝑒𝑒−𝑥𝑥) 1
𝑥𝑥log �𝑝𝑝+𝑞𝑞𝑒𝑒

−𝑎𝑎𝑎𝑎

𝑝𝑝+𝑞𝑞𝑒𝑒−𝑏𝑏𝑏𝑏
� 𝑝𝑝, 𝑞𝑞 𝜖𝜖 ℝ+ log �1 + 𝑞𝑞

𝑝𝑝� log �𝑏𝑏𝑎𝑎� 

�𝑥𝑥+𝑝𝑝𝑥𝑥+𝑞𝑞�
𝑛𝑛

 ��𝑎𝑎𝑎𝑎+𝑝𝑝𝑎𝑎𝑎𝑎+𝑞𝑞�
𝑛𝑛
− �𝑏𝑏𝑏𝑏+𝑝𝑝𝑏𝑏𝑏𝑏+𝑞𝑞�

𝑛𝑛
� 1𝑥𝑥 𝑝𝑝, 𝑞𝑞𝑞𝑞ℝ+   𝑛𝑛𝑛𝑛ℕ+ �1 − 𝑝𝑝𝑛𝑛

𝑞𝑞𝑛𝑛� log �𝑎𝑎𝑏𝑏� 

     These last two entries in the table were found in volume 1 of Ramanujan’s Notebook (Hardy 
would have been impressed).  The integrand for the next-to-the-last entry does not look like a 
Frullani type of integral until you remember that the logarithm of a fraction is the same as the 
difference of the logarithms of the numerator and denominator.  There are, of course, many more 
entries (an unending list) that could be put into the table, but I think that the point we are trying 
to emphasize has been made.  That is, some extremely complex integrals can be easily evaluated 
using this theorem.  Enough said! 

8.2  Euler’s Log Sine Integral 
 

 
Figure 8-2.  Swiss mathematician Leonhard Euler (1707 – 1783) 

javascript:window.close();


“Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we 
have reason to believe that it is a mystery into which the human mind will never penetrate.”—Leonhard Euler  

     In 1769, Swiss mathematician Leonhard Euler (1707-1783) solved the following integral and 
that accounts for the fact that we sometimes refer to it as the Euler Log Sine integral: 

∫ log(sin𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2
0   

For many years it was thought that this integral was best tackled using the techniques of contour 
integration.  As you will shortly see, that is incorrect.  A very creative and ingenious 
manipulation of this integral can easily arrive at the value of this properly improper integral. 
Before we do that, however, let’s address a little bit about Euler’s mathematical life.  A “little 
bit” is the operative phrase here because Euler’s work in mathematics is so vast that one can only 
give a very superficial account of it.  He was the most prolific writer of mathematics of all time 
(60 to 80 volumes—80% of which are in Latin).  A 20th century science historian has estimated 
that of all the mathematical and scientific work published during the whole of the 18th century, a 
full 25% was written by Euler.  Incredible!!!!!! 

     As I write these words, I recall an episode that occurred when I was a graduate student 
studying for my Master’s oral exam.  My advisor had called me into his office a few days before 
the exam was to take place to ensure that I was ready, ask me a few questions, and see if I had 
any questions for him.  At one point, we were going over a power series expansion of an 
exponential function (if I remember correctly) and he asked me if I knew who was responsible 
for this particular series.  I didn’t and then I asked him if I would encounter questions like that 
during the exam.  He answered by saying it was unlikely; however, if you do and don’t know, 
simply look the professor who asked the question directly in the eye and say that Euler did it.  He 
then said, chances are that Euler did do it, but even if he didn’t, Euler’s work is so voluminous 
and mostly written in Latin, the professor who asked will have no earthly idea whether you are 
right or wrong. 

     Euler was not only a magnificent mathematician, but he made contributions to mathematics 
that even most mathematicians don’t know about.  We have Euler to thank for the notation f(x) 
for a function, e for the base of the natural logarithms, i for the square root of ‒1, π for the ratio 
of a circle’s circumference to its diameter, Σ for summation, ∆ for finite differences, and many, 
many more.  Euler was the first who defined the trigonometric functions as proportions of lines. 
He was also the one who introduced the notation for these functions.  Incredible!!!! 

     Euler is also responsible for the following equation, now known as Euler’s identity: 

𝑒𝑒𝑖𝑖𝑖𝑖 + 1 = 0 

Euler’s identity has been called the most remarkable formula in mathematics for its single use of 
addition, multiplication, exponentiation, and equality and its single use of the five constants, e, i, 
π, 1, and 0.  In 1988, readers of the Mathematical Intelligencer  voted it the most beautiful 
mathematical formula ever.  In fact, Euler was responsible for 3 of the top 5 formulae in that 
poll.  Incredible!!!!! 



     However, enough about Euler, let’s see how he went about evaluating this integral.  Let  

𝐼𝐼 = ∫ log(sin 𝑥𝑥)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑  

The first thing we need to do is convince ourselves that I also equals ∫ log(cos 𝑥𝑥)𝑑𝑑𝑑𝑑 .𝜋𝜋/2
0   One 

can do this in many different ways.  One way, is to examine the graph of the two integrands that 
are shown in figure 8-3.  You will notice that between 0 and π/2, the integration interval, the two  

 
Figure 8-3.  Graph of log(sinx) and log(cosx)  

functions take on exactly the same values‒just not in the same order; log(cosx) goes from           
0 to – ∞ while  log(sinx) goes from – ∞ to 0.  So obviously, the integrals of these two functions 
over that interval have to be the same.  If you don’t find this argument convincing, then make the 
following change of variable in the original integral, i.e., x = π/2 – u (note that this is the IP CV 
addressed in Chapter 3).   With this change of variable, we have 

𝐼𝐼 = ∫ log(sin 𝑥𝑥)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = −∫ log�sin�𝜋𝜋2−𝑢𝑢��𝑑𝑑𝑑𝑑 = ∫ log(cos 𝑥𝑥)𝜋𝜋/2

0 .0
𝜋𝜋/2   

Since the sine of an angle is the cosine of its compliment and the compliment of π/2 – u is u (or 
x—since u is a dummy variable).  The point is, we can now write  

2𝐼𝐼 = ∫ log(sin 𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ log(cos 𝑥𝑥)𝑑𝑑𝑑𝑑 = ∫ [log(sin 𝑥𝑥) + log(cos𝑥𝑥)]𝑑𝑑𝑑𝑑𝜋𝜋/2
0

𝜋𝜋/2
0

𝜋𝜋/2
0 . 

However, by the property of logarithms (the sum of two logarithms is the same as the logarithm 
of the product of their arguments), this can be rewritten as 

2𝐼𝐼 = ∫ log(sin 𝑥𝑥 cos 𝑥𝑥)𝜋𝜋 2⁄
0 𝑑𝑑𝑑𝑑.  

Now using the trigonometric identity sin(2x) = 2sin(x)cos(x), this last equality becomes 

2𝐼𝐼 = ∫ log �1
2

sin(2𝑥𝑥)� 𝑑𝑑𝑑𝑑.𝜋𝜋/2
0   

Again, we use the property of logarithms, and we have 



2𝐼𝐼 = ∫ log �1
2
�𝜋𝜋 2⁄

0 𝑑𝑑𝑑𝑑 + ∫ log[sin(2𝑥𝑥)]𝜋𝜋/2
0 𝑑𝑑𝑑𝑑.  

Note that the first integral can now be evaluated.  In the second integral, again a change of 
variable is required.  Let 2x = u so that dx = ½du and (0, π/2) → (0, π).  We then have 

2𝐼𝐼 = log �1
2
� ∫ 𝑑𝑑𝑑𝑑𝜋𝜋/2

0 + 1
2 ∫ log(sin𝑢𝑢)𝜋𝜋

0 𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log �1
2
� + 1

2 ∫ log(sin 𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋
0 .  

In this last expression on the right of the second equal sign, we have evaluated the first integral 
and rewritten the second integral in terms of x instead of the dummy variable u.  Now, re-
examine the graph of y = log(sinx) in the previous figure.  You will note that it is symmetric 
about the vertical line x = π/2 which halves the integration interval (0, π).  Therefore, we can 
double the integral and halve the integration interval, i.e.,  

2𝐼𝐼 = 𝜋𝜋
2

log �1
2
� + ∫ log(sin 𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log �1

2
� + 𝐼𝐼 .𝜋𝜋/2

0   

Eureka!  This last integral is I, our original integral.  Solving for I, we get Euler’s final result.  
Namely 

𝑰𝑰 = � 𝐥𝐥𝐥𝐥𝐥𝐥(𝐬𝐬𝐬𝐬𝐬𝐬 𝒙𝒙)𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟐𝟐

𝟎𝟎

𝝅𝝅
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥 �

𝟏𝟏
𝟐𝟐�

     Q.E.D.  

 

What a brilliant piece of work!  Also, note the simplicity of the mathematics involved in Euler’s 
derivation—it’s the total idea that required Euler’s genius.  In my opinion, the “aha moment” is 
when Euler realized that 2I was the sum of the two integrals of log(sinx) and log(cosx). 

     By “piggy-backing” off of Euler’s dazzling derivation, many related integrals can also be 
evaluated.  The following table contains a few of the more obvious examples. 

Integral and Value 
∫ log(tan 𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2
0 = ∫ log(cot𝑥𝑥)𝑑𝑑𝑑𝑑 = 0𝜋𝜋/2

0   

∫ log(sec 𝑥𝑥)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = ∫ log(csc 𝑥𝑥)𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log(2)𝜋𝜋/2

0   

∫ log[𝑎𝑎sin𝑛𝑛(𝑥𝑥)]𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log � 𝑎𝑎

2𝑛𝑛
�      𝑎𝑎 𝜖𝜖 ℝ+     𝑛𝑛 𝜖𝜖 ℕ+  

∫ log[𝑎𝑎 sin(𝑥𝑥)]𝑛𝑛 𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log �𝑎𝑎
2
�
𝑛𝑛

     𝑎𝑎 𝜖𝜖 ℝ+     𝑛𝑛 𝜖𝜖 ℕ+𝜋𝜋/2
0   

∫ log[𝑎𝑎 tan(𝑥𝑥)]𝑛𝑛𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log(𝑎𝑎)𝑛𝑛     𝑎𝑎 𝜖𝜖 ℝ+     𝑛𝑛 𝜖𝜖 ℕ+𝜋𝜋/2
0   

∫ log[𝑎𝑎 sec(𝑥𝑥)]𝑛𝑛𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log(2𝑎𝑎)𝑛𝑛      𝑎𝑎 𝜖𝜖 ℝ+     𝑛𝑛 𝜖𝜖 ℕ+𝜋𝜋/2
0   

∫ log �𝑎𝑎 sin(𝑥𝑥)
𝑥𝑥

�
𝑛𝑛
𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑛𝑛

2
�log �𝑎𝑎

𝜋𝜋
� + 1�      𝑎𝑎 𝜖𝜖 ℝ+     𝑛𝑛 𝜖𝜖 ℕ+𝜋𝜋/2

0   

∫ log�1+𝑥𝑥2�
𝑛𝑛

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 = 𝜋𝜋 log 2𝑛𝑛      𝑛𝑛 𝜖𝜖 ℕ+∞

0   

∫
log�𝑥𝑥+1𝑥𝑥�

1+𝑥𝑥2
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log(2)1

0   

∫ log(𝑥𝑥)
�1−𝑥𝑥2

𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log �1
2
�1

0   

∫ 𝑥𝑥𝑒𝑒−𝑥𝑥

�1−𝑒𝑒−2𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log(2)∞

0   

  



The last four integrals in the above table do not, at first glance, appear to be related to Euler’s log 
sine integral.  However, using the appropriate integral properties (such as changes of variable, 
breaking the integral up into different integration intervals, etc.) these integrals can be 
manipulated so that Euler’s log sine integral can be used to obtain their value.  For example, in 
the next-to-the-last integral in the table, make the change of variable x = sin(u). 

     I would now like to present an alternate approach to Euler’s log sine integral that, I think, 
deserves to be in the crème de la crème chapter.  It’s extremely clever.  Back in Chapter 5 (the 
DUI Chapter), the following result was shown in example #6. 

∫
tan−1�𝑥𝑥𝑎𝑎�

𝑥𝑥(𝑥𝑥2+𝑏𝑏2)
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2𝑏𝑏2
log �𝑎𝑎+𝑏𝑏

𝑎𝑎
�∞

0 . 

 Now make a change of variable.  Let x = btan(θ) so that dx = bsec2(θ)dθ and (0, ∞) → (0, π/2).  
Under this change of variable, we get 

∫
tan−1�𝑏𝑏𝑎𝑎 tan(𝜃𝜃)�𝑏𝑏sec2(𝜃𝜃)

𝑏𝑏 tan(𝜃𝜃)[𝑏𝑏2tan2(𝜃𝜃)+𝑏𝑏2]
𝑑𝑑𝑑𝑑𝜋𝜋/2

0 = 1
𝑏𝑏2 ∫

tan−1�𝑏𝑏𝑎𝑎 tan(𝜃𝜃)�

tan(𝜃𝜃)
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2𝑏𝑏2
log �𝑎𝑎+𝑏𝑏

𝑎𝑎
�𝜋𝜋/2

0   

Clearing the b2 term on both sides leaves us with the following equality 

∫
tan−1�𝑏𝑏𝑎𝑎 tan(𝜃𝜃)�

tan(𝜃𝜃)
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2
log �𝑎𝑎+𝑏𝑏

𝑎𝑎
�𝜋𝜋/2

0   

Now let’s consider the particular case of b/a = 1.  The above equality simplifies to 

∫ tan−1[tan(𝜃𝜃)]
tan(𝜃𝜃)

𝑑𝑑𝑑𝑑 = ∫ 𝜃𝜃 cot(𝜃𝜃)𝜋𝜋/2
0 = 𝜋𝜋

2
log(2)𝜋𝜋/2

0   

Integrate the last integral by parts with u = θ so that du = dθ and dv = cot(θ)dθ  so that                 
v = log[sin(θ)].  We therefore have 

[𝜃𝜃 log[sin(𝜃𝜃)]]0
𝜋𝜋/2 − ∫ log[sin(𝜃𝜃)]𝜋𝜋/2

0 𝑑𝑑𝑑𝑑 = 𝜋𝜋
2

log(2)  

The first term above vanishes and we are left with the desired result—WOW! 

� 𝐥𝐥𝐥𝐥𝐥𝐥[𝐬𝐬𝐬𝐬𝐬𝐬(𝜽𝜽)]
𝝅𝝅/𝟐𝟐

𝟎𝟎
𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥 �

𝟏𝟏
𝟐𝟐�

 



8.3  Wolstenholme’s Integrals 

 
Figure 8-4.  English Mathematician Joseph Wolstenholme (1829-1891) 

     As our next crème de la crème integral we are going to take up two integrals that look very 
much like Euler’s log sine integral.  Joseph Wolstenholme is the mathematician responsible for 
the solution of these integrals which we will designate as I1 and I2, where 

𝐼𝐼1 = ∫ log2(𝑎𝑎 sin 𝑥𝑥)𝑑𝑑𝑑𝑑  and  𝐼𝐼2 = ∫ [log(𝑎𝑎 sin 𝑥𝑥)]𝜋𝜋/2
0

𝜋𝜋/2
0 [log(𝑎𝑎 cos𝑥𝑥)]𝑑𝑑𝑑𝑑.  

These two integrals look like they are related to Euler’s log sine integral and, indeed, they are in 
the sense that Wolstenholme’s solution cannot be completed without Euler’s result.  However, 
Wolstenholme’s solution is extremely clever—so clever, that I consider it to be a very good 
entrant for this crème de la crème chapter.  Before we get into the mathematics of the solution, 
however, let’s address a bit about this lesser known English mathematician.   

     Joseph Wolstenholme was born near Manchester, England to the wife of a Methodist 
minister. He studied mathematics at Wesley College in Sheffield, and then entered St John's 
College at Cambridge on 1 July 1846 and, four years later, he graduated third in his class.  While 
at Cambridge, he became good friends with Leslie Stephen who also studied mathematics and 
would eventually become the father of the author Virginia Woolf.  Virginia (Stephen) Woolf  
was a young girl when Wolstenholme shared the family holidays in St. Ives so she got to know 
Wolstenholme pretty well.  She later incorporated Wolstenholme into one of her most famous 
books, “To the Lighthouse” as the character Mr. Augustus Carmichael although the character 
Carmichael is not portrayed as a mathematician in the novel. 

     Wolstenholme was the author of a number of mathematical papers.  They were usually 
concerned with questions of analytical geometry, and they were earmarked by an unusual 
analytical skill and ingenuity.  This ingenuity becomes apparent in the derivation of the 
aforementioned integrals, I1 and I2.  His greatest contribution towards mathematics was his 
volume of mathematical problems.  Wolstenholme's problems have proved a help and a stimulus 
to many students. A collection of some three thousand problems naturally varies widely in value, 

javascript:window.close();


but many of them contain important results, which in other places or at other times would not 
infrequently have been embodied in original papers. As they stand, they form a curious and 
almost unique monument of ability and industry. 

     Now let’s see how Wolstenholme went about obtaining the values of I1 and I2.  To do so 
however, we need, as did Wolstenholme, some preliminary results, namely the values of three 
other integrals which we will call I3, I4, and I5.  They are, 

𝐼𝐼3 = ∫ [log(𝑥𝑥)]2

1+𝑥𝑥2
𝑑𝑑𝑑𝑑   𝐼𝐼4 = ∫ [log(𝑥𝑥)]2

1+𝑥𝑥2
𝑑𝑑𝑑𝑑   and   𝐼𝐼5 = ∫ log2(tan 𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2

0
∞
0

1
0   

To be more accurate, only the value of I5 is needed to solve Wolstenholme’s integrals, however, 
in order to obtain the value of I5, one must first obtain the value of I4 and similarly, to obtain the 
value of I4, one needs the value of I3.  Fortunately, both I3 and I4 have already been evaluated.  I3 
was done in Chapter 6 as an example of the technique of swapping the order of integration and 
summation; its value was found to be π3/16 (see example #2 of Chapter 6).  Similarly, I4 was 
done in Chapter 7 as an example of the technique of interval normalization; its value was found 
to be π3/8 (see example #2 of Chapter 7).  The third integral we need, I5, is “duck soup”.  Make a 
change of variable in I4.  Let x = tan(u) and you will see that I4 and I5 are equal.  Therefore, we 
are all set to begin Wolstenholme’s brilliant derivation. 

     First, note that by the simple IP transformation of y = π/2 – x, 𝐼𝐼1 = ∫ log2(𝑎𝑎 cos 𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2
0  (just as 

Euler noted in his log sine integral).  We will start this derivation with, what I’m guessing was 
Wolstenholme’s “aha” moment, namely, the following expression. 

∫ [log(𝑎𝑎 sin 𝑥𝑥) − log(𝑎𝑎 cos 𝑥𝑥)]2𝑑𝑑𝑑𝑑𝜋𝜋/2
0   

To me, this expression is key to the following thoughts.  The integrand of this expression is 
merely the square of a simple binomial; granted, each of the two terms of the binomial are 
somewhat complex, but that’s not relevant.  What is relevant is that when we complete the 
squaring process, we are going to have an expression that involves both I1 and I2.  Then, by using 
the property of logarithms (ala Euler’s log sine integral), we may be able to eventually arrive at 
an expression that is a function of both I1 and I2 but that involves no integral, in other words, a 
linear equation in which the variables are I1 and I2.  Then, if we can follow that same idea with a 
different starting binomial expression, we may be able to arrive at another (but different) linear 
equation, also involving I1 and I2.  If so, we could then solve the two linear equations (like young 
Jr. High School students are taught to do) as a pair of simultaneous equations.  Aha!!!!!  And oh, 
the different binomial expression might simply be a change of sign (from – to +) in the above 
starting expression. 

     Back to the starting expression—when the starting expression is squared, we obtain 

∫ log2(𝑎𝑎 sin 𝑥𝑥)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 − 2∫ log(𝑎𝑎 sin 𝑥𝑥) log(𝑎𝑎 cos𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ log2(𝑎𝑎 cos𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2

0
𝜋𝜋/2
0 = 2𝐼𝐼1 − 2𝐼𝐼2 . 

However, the starting expression, using the property of logarithms, can also be written as 

∫ log2 �𝑎𝑎 sin𝑥𝑥
𝑎𝑎 cos𝑥𝑥

� 𝑑𝑑𝑑𝑑 = ∫ log2(tan 𝑥𝑥)𝜋𝜋/2
0

𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = 𝐼𝐼5 = 𝜋𝜋3

8
= 2𝐼𝐼1 − 2𝐼𝐼2 . 



Yes, indeed!  Sure enough, we have a linear equation in two variables (the two variables being I1 
and I2).  Now, as mentioned above, we follow the same methodology as before with the different 
binomial expression, that is, squaring and we have 

∫ [log(𝑎𝑎 sin 𝑥𝑥) + log(𝑎𝑎 cos 𝑥𝑥)]2𝑑𝑑𝑑𝑑 = 2𝐼𝐼1 + 2𝐼𝐼2
𝜋𝜋/2
0  . 

As before, using the property of logarithms, we can also write 

2𝐼𝐼1 + 2𝐼𝐼2 = ∫ log2(𝑎𝑎2 sin 𝑥𝑥 cos 𝑥𝑥)𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = ∫ log2 �𝑎𝑎

2

2
sin 2𝑥𝑥�𝜋𝜋/2

0 𝑑𝑑𝑑𝑑 = ∫ �log �𝑎𝑎
2
� + log(𝑎𝑎 sin 2𝑥𝑥)�

2
𝑑𝑑𝑑𝑑𝜋𝜋/2

0   

Now, squaring this last integrand, we obtain 

2𝐼𝐼1 + 2𝐼𝐼2 = log2 �𝑎𝑎
2
� ∫ 𝑑𝑑𝑑𝑑 + 2 log �𝑎𝑎

2
� ∫ log(𝑎𝑎 sin 2𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ log2(𝑎𝑎 sin 2𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2

0
𝜋𝜋/2
0

𝜋𝜋/2
0  . 

In the 2nd and 3rd integrals, make a change of variable so that x = u/2 so that dx = du/2 and  
(0,π/2) → (0,π).  Hence 

2𝐼𝐼1 + 2𝐼𝐼2 = log2 �𝑎𝑎
2
� ∫ 𝑑𝑑𝑑𝑑 + 2 log �𝑎𝑎

2
� ∫ log(𝑎𝑎 sin𝑢𝑢) �1

2
�𝜋𝜋

0
𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 + 1

2 ∫ log2(𝑎𝑎 sin𝑢𝑢)𝑑𝑑𝑑𝑑𝜋𝜋
0 . 

Note that now the integration intervals for the 2nd and 3rd integrals in the above expression now 
go from 0 to π.  However, both functions in the integrands of those two integrals are symmetric 
about the vertical line x = π/2 (see figure 8-3).  Therefore, we can double the integral’s value and 
integrate merely from 0 to π/2.  Thus, 

2𝐼𝐼1 + 2𝐼𝐼2 = log2 �𝑎𝑎
2
� ∫ 𝑑𝑑𝑑𝑑 + 2 log �𝑎𝑎

2
� ∫ log(𝑎𝑎 sin 𝑥𝑥)𝑑𝑑𝑑𝑑 + ∫ log2(𝑎𝑎 sin 𝑥𝑥)𝑑𝑑𝑑𝑑𝜋𝜋/2

0
𝜋𝜋/2
0

𝜋𝜋/2
0 . 

Now note that the 1st integral above can be evaluated, the 2nd integral is Euler’s log sine integral, 
and the 3rd integral is I1.  So we now have the second linear equation that we needed, namely, 

2𝐼𝐼1 + 2𝐼𝐼2 = log2 �𝑎𝑎
2
� [𝑥𝑥]0

𝜋𝜋/2 + 2 log �𝑎𝑎
2
� �𝜋𝜋

2
log �𝑎𝑎

2
�� + 𝐼𝐼1     or    𝐼𝐼1 + 2𝐼𝐼2 = 3𝜋𝜋

2
log2 �𝑎𝑎

2
� . 

Lest you’ve forgotten, the first linear equation was 2𝐼𝐼1 − 2𝐼𝐼2 = 𝜋𝜋3

8
.  Solving these two equations 

simultaneously, we have the final value of the two Wolstenholme integrals, namely, 

𝑰𝑰𝟏𝟏 = � log𝟐𝟐(𝒂𝒂𝐬𝐬𝐬𝐬𝐬𝐬 𝒙𝒙)𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟐𝟐

𝝅𝝅
𝟐𝟐

𝟎𝟎
log𝟐𝟐 �

𝒂𝒂
𝟐𝟐
� +

𝝅𝝅𝟑𝟑

𝟐𝟐𝟐𝟐
     

    𝑰𝑰𝟐𝟐 = � 𝐥𝐥𝐥𝐥𝐥𝐥(𝒂𝒂 𝐬𝐬𝐬𝐬𝐬𝐬𝒙𝒙)
𝝅𝝅/𝟐𝟐

𝟎𝟎
𝐥𝐥𝐥𝐥𝐥𝐥(𝒂𝒂 𝐜𝐜𝐜𝐜𝐜𝐜𝒙𝒙)𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐

log𝟐𝟐 �
𝒂𝒂
𝟐𝟐
� −

𝝅𝝅𝟑𝟑

𝟒𝟒𝟒𝟒
.     Q.E.D.  

Thank you Wolstenholme, that was truly very, very ingenious. 



8.4  The Methodology of Leibniz 

 

 

Figure 8-5.  German Mathematician Gottfried Wilhelm Leibniz (1646-1716) 

“Music is the pleasure the human mind experiences from counting without being aware it is counting.”—Gottfried 
Leibniz 

     The technique of evaluating an integral by finding a differential equation for which the 
integral is the solution can be used to evaluate the following integral: 

𝐼𝐼(𝑎𝑎) = ∫ cos(𝑎𝑎𝑎𝑎)
𝑥𝑥2+𝑏𝑏2

𝑑𝑑𝑑𝑑     𝑎𝑎, 𝑏𝑏,   𝜖𝜖  ℝ+∞
0 , 

where a is the parameter and b is a constant.  The cleverness of this specific evaluation makes it 
a good candidate for the crème de la crème chapter.  Leibniz is not the person responsible for 
coming up with this evaluation, however; it is not known who did.  We shall therefore bio 
Leibniz himself in place of the unknown genius since it is Leibniz’s technique that allows for the 
evaluation of this integral.   

     Today, Leibniz is credited, along with Sir Isaac Newton, with the discovery of the differential 
and integral calculus.  However, back in their day, the so-called calculus controversy (calculus 
was not the name used back in the 17th century) was an argument between Newton and Leibniz 
over who had first invented the mathematical study of changing variables (i.e., “calculus”).  The 
controversy was often referred to with the German term Prioritatsstreit—meaning priority 
dispute.  Instead of a brief description of Leibniz’s early life and credentials (as has been done 
with the other mathematicians I’ve included in this book), I would like to address this 
controversy, since it’s quite interesting. 

     As a student, I had always heard that there was great contention between Leibniz and Newton.  
And, indeed, there surely was.  From what I’ve read about them, I would say that Leibniz was 
not only a very brilliant man but also a very ambitious man.  Meanwhile, Newton is also this 

https://en.wikipedia.org/wiki/Isaac_Newton
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very talented genius who is so absorbed in his work that he doesn’t bother to publish anything he 
discovers.  This difference in the two personalities is at the core of the problem between them.  
Leibniz is busy publishing and Newton has already discovered everything that Leibniz thinks he 
should get credit for; but “publish or perish” has evidently always been the protocol so Leibniz 
has every right to feel put upon. 

     From about 1710 until his death 6 years later, Leibniz was engaged in a long, bitter dispute 
with Newton and others, over whether he (Leibniz) had invented calculus independently of 
Newton, or whether he had merely invented another notation for ideas that were fundamentally 
Newton's. Leibniz began working on his variant of calculus in 1674, and in 1684 published his 
first paper employing it, "Nova Methodus pro Maximis et Minimis".  Newton claimed to have 
begun working on a form of calculus (which he called "the method of fluxions and fluents") in 
1666, at the age of 23, but did not publish it except as a minor annotation in the back of one of 
his publications decades later.  Yet there was seemingly no proof beyond Newton's word.  He 
had published a calculation of a tangent with the note: "This is only a special case of a general 
method whereby I can calculate curves and determine maxima, minima, and centers of gravity."  
However, the most remarkable aspect of this dispute was that no participant involved (and there 
were many) doubted for a moment that Newton had already developed his method 
of fluxions when Leibniz began working on the differential calculus.   

     Today, we make use of the calculus and consider it to have been “invented” by both Leibniz 
and Newton, but it is Leibniz’s notation that we use (and what great notation it is!).  For 
example, Leibniz introduced the integral sign ∫, representing an elongated S, from the Latin 
word summa, and the d used for differentials, from the Latin word differentia.  This cleverly 
suggestive notation for calculus is probably his most enduring mathematical legacy.  As Bertrand 
Russell once said, “A good notation has a subtlety and suggestiveness which at times make it 
seem almost like a live teacher.”   However, don’t demean Leibniz’s mathematical expertise; he 
was brilliant and after all, the product rule of differential calculus is called the "Leibniz's law". In 
addition, the theorem that tells how and when to differentiate under the integral sign is called 
the Leibniz integral rule and we will use it to calculate I(a) above. 

     Alright, now back to this wonderful evaluation of  

𝐼𝐼(𝑎𝑎) = ∫ cos𝑎𝑎𝑎𝑎
𝑥𝑥2+𝑏𝑏2

𝑑𝑑𝑑𝑑∞
0 . 

If we integrate by parts with u = 1/(x2 +b2) and dv = cos(ax)dx, we will get du = ‒2x/(x2+b2)2 and 
v = (1/a)sin(ax).  We therefore obtain 

𝐼𝐼(𝑎𝑎) = � sin(𝑎𝑎𝑎𝑎)
𝑎𝑎(𝑥𝑥2+𝑏𝑏2)2

�
0

∞
+ 2

𝑎𝑎 ∫
𝑥𝑥 sin(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0   

Since the 1st term on the right vanishes when evaluated at both the lower and upper limits, this 
last equation can be written as 

𝑎𝑎𝑎𝑎(𝑎𝑎) = 2∫ 𝑥𝑥 sin(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0 . 
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At first glance, it appears as though we are going nowhere with this integration by parts because 
it certainly looks like we now have an integral that is more complex than that with which we 
started.  However, I believe this last equation is key to the following thoughts.  Differentiating 
with respect to the parameter a will create an integral in which the numerator of the integrand 
will contain a cosine function and, of course, the original integral contains a cosine function in 
the numerator.  So, after differentiating, if we split the integrand into partial fractions, one of the 
fractions should be able to be written as a function of I(a) itself (because of the cosine function) 
and so, the differential equation needed to use this differentiation technique will emerge.  So, 
with that in mind, we continue with the differentiation and obtain 

𝑎𝑎 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

+ 𝐼𝐼(𝑎𝑎) = 2∫ 𝑥𝑥2 cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0 . 

Now, expanding this integrand into partial fractions, we have 
𝑥𝑥2 cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

= cos(𝑎𝑎𝑎𝑎)
𝑥𝑥2+𝑏𝑏2

− 𝑏𝑏2 cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

. 

Hence, 

𝑎𝑎 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

+ 𝐼𝐼(𝑎𝑎) = 2∫ 𝑥𝑥2 cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑 = 2∫ cos(𝑎𝑎𝑎𝑎)
𝑥𝑥2+𝑏𝑏2

𝑑𝑑𝑑𝑑 − 2𝑏𝑏2 ∫ cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0

∞
0

∞
0   

Now note that the first term on the right of the second equals sign is exactly 2I(a).  So we can 
rewrite this last equation to be 

𝑎𝑎 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

+ 𝐼𝐼(𝑎𝑎) = 2𝐼𝐼(𝑎𝑎) − 2𝑏𝑏2 ∫ cos(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑.∞
0   

Of course, this simplifies to the following expression 

𝑎𝑎 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

− 𝐼𝐼(𝑎𝑎) = −2𝑏𝑏2 ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑.∞
0   

Certainly, the differential equation that we are seeking is starting to appear. But aren’t we still 
stuck with a more complex integral?  Yes, but I believe that now comes the aha moment and it’s 
a dilly!  Envision what happens if we differentiate again; the left side of the above will contain a 
second derivative which means that our equation is becoming a second-order differential 
equation.  Is that bad?  Not if we can solve the equation because the value of our original integral 
will be the solution to that 2nd order DE.  What’s the point in doing this though?  Well, look what 
happens to the right side of the above equation upon differentiation.  An x times sin(ax) will 
appear in the numerator of the integrand.  That is the same integral we already saw when we 
integrated by parts back in the beginning and it equals aI(a).  So we come to the realization that 
our differential equation will indeed emerge after differentiating a second time, albeit, a second-
order one.  So, upon differentiating again, we get 

𝑎𝑎 𝑑𝑑2𝐼𝐼(𝑎𝑎)
𝑑𝑑𝑎𝑎2

+ 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

− 𝑑𝑑𝑑𝑑(𝑎𝑎)
𝑑𝑑𝑑𝑑

= 2𝑏𝑏2 ∫ 𝑥𝑥 sin(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0   

Upon substituting aI(a) for the integral and then re-arranging, we have 
𝑑𝑑2𝐼𝐼(𝑎𝑎)
𝑑𝑑𝑑𝑑2

− 𝑏𝑏2𝐼𝐼(𝑎𝑎) = 0  



Such second-order differential equations of the above format are well-known to have exponential 
solutions.  If we let I(a) = Ceka where C and k are constants and then substitute that into our 
differential equation we get 

𝐶𝐶𝑘𝑘2𝑒𝑒𝑎𝑎𝑎𝑎 − 𝑏𝑏2(𝐶𝐶𝑒𝑒𝑎𝑎𝑎𝑎) = 0 

from which we see that k = ±b.  Therefore, we have two particular solutions to the differential 
equation; the general solution will simply be their sum.  Thus 

𝐼𝐼(𝑎𝑎) = 𝐶𝐶1𝑒𝑒𝑎𝑎𝑎𝑎 + 𝐶𝐶2𝑒𝑒−𝑎𝑎𝑎𝑎 

where C1 and C2 are different constants of integration that can be determined by looking for two 
different conditions on I(a).  In this case, the two conditions can be gotten from our two different 
expressions for I(a), e.g.,  

𝐼𝐼(𝑎𝑎) = ∫ cos(𝑎𝑎𝑎𝑎)
𝑥𝑥2+𝑏𝑏2

𝑑𝑑𝑑𝑑∞
0      and     𝐼𝐼(𝑎𝑎) = 2

𝑎𝑎 ∫
𝑥𝑥 sin(𝑎𝑎𝑎𝑎)
(𝑥𝑥2+𝑏𝑏2)2

𝑑𝑑𝑑𝑑∞
0 . 

From the 2nd of these two integrals, we see that  

lim
𝑎𝑎→∞

𝐼𝐼(𝑎𝑎) = lim
𝑎𝑎→∞

2
𝑎𝑎
�

𝑥𝑥 sin(𝑎𝑎𝑎𝑎)
(𝑥𝑥2 + 𝑏𝑏2)2

𝑑𝑑𝑑𝑑
∞

0
= lim

𝑎𝑎→∞
(𝐶𝐶1𝑒𝑒𝑎𝑎𝑎𝑎 + 𝐶𝐶2𝑒𝑒−𝑎𝑎𝑎𝑎) = 0 

. 

The only way in which this last term can be zero is if C1 is zero.  Hence, our general solution 
reduces to  

𝐼𝐼(𝑎𝑎) =  𝐶𝐶2𝑒𝑒−𝑎𝑎𝑎𝑎. 

Now examine the first of the two integrals and note that  

𝐼𝐼(0) = ∫ 1
𝑥𝑥2+𝑏𝑏2

𝑑𝑑𝑑𝑑 = �1
𝑏𝑏

tan−1 𝑥𝑥
𝑏𝑏
�
0

∞
= 𝜋𝜋

2𝑏𝑏
= 𝐶𝐶2.∞

0   

So finally, we are able to write down the value of this integral due to this remarkable evaluation, 
that is, 

�
𝐜𝐜𝐜𝐜𝐜𝐜(𝒂𝒂𝒂𝒂)
𝒙𝒙𝟐𝟐 + 𝒃𝒃𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝝅𝝅
𝟐𝟐𝟐𝟐

𝒆𝒆−𝒂𝒂𝒂𝒂     Q.E.D.
∞

𝟎𝟎
 

8.5  A Power Series Approach 
     The next integral that I feel belongs in the crème de la crème chapter is the following: 

𝐼𝐼 = ∫ log(1 + 𝑥𝑥) log(1 − 𝑥𝑥)𝑑𝑑𝑑𝑑.1
0   

If you make the change of variable x = –u, dx = –du, and (0, 1) → (0, –1), you will see that the 
integrand doesn’t change—the only difference is that the integration interval is now –1 to 0, e.g., 

𝐼𝐼 = −∫ log(1 − 𝑢𝑢) log(1 + 𝑢𝑢)𝑑𝑑𝑑𝑑 = ∫ log(1 + 𝑥𝑥) log(1 − 𝑥𝑥)𝑑𝑑𝑑𝑑.0
−1

−1
0   

Hence, we can integrate from –1 to 1 and take ½ the result and the integral will still have the 
same value.  Thus, 



𝐼𝐼 = 1
2 ∫ log(1 + 𝑥𝑥) log(1 − 𝑥𝑥)𝑑𝑑𝑑𝑑.1

−1   

Now we are going to make another change of variable.  This time we will let x = 2u – 1,            
dx = 2du, and (–1, 1) → (0, 1).  We thus obtain 

𝐼𝐼 = 1
2 ∫ log(2𝑢𝑢) log[2(1 − 𝑢𝑢)](2𝑑𝑑𝑑𝑑).1

0   

 By the property of logarithms this can be written as 

𝐼𝐼 = ∫ [log(2) + log(𝑢𝑢)][log(2) + log(1 − 𝑢𝑢)]𝑑𝑑𝑑𝑑.1
0   

The next step is to multiply out the two square bracketed terms in the above integral.  Doing that 
we have 

𝐼𝐼 = ∫ [log2(2) + log(2) log(𝑢𝑢) + log(2) log(1 − 𝑢𝑢) + log(𝑢𝑢) log(1 − 𝑢𝑢)]𝑑𝑑𝑑𝑑1
0 . 

Combining the middle two terms into one gives us 

𝐼𝐼 = log2(2)∫ 𝑑𝑑𝑑𝑑 + log(2)∫ [log(𝑢𝑢) + log(1 − 𝑢𝑢)]𝑑𝑑𝑑𝑑 + ∫ log(𝑢𝑢) log(1 − 𝑢𝑢)𝑑𝑑𝑑𝑑.1
0

1
0

1
0   

In the middle integral above, log(u) and log(1–u) take on the same set of values over the 
integration interval (see accompanying diagram which is their graph) and therefore the integrand 
may be replaced by 2log(u). 

 
Figure 8-6.  Graph of log(x) and log(1 ̶ x) 

Hence, 

𝐼𝐼 = log2(2)∫ 𝑑𝑑𝑑𝑑 + 2 log(2)∫ log(𝑢𝑢)𝑑𝑑𝑑𝑑 + ∫ log(𝑢𝑢) log(1 − 𝑢𝑢)𝑑𝑑𝑑𝑑.1
0

1
0

1
0   

The first two integrals now readily integrate—the second one by parts and it evaluates to –1, so 
we have 

𝐼𝐼 = log2(2) − 2 log(2) + ∫ log(𝑥𝑥) log(1 − 𝑥𝑥)𝑑𝑑𝑑𝑑1
0   

Finally, this last integral can be cracked using a power series approach.  We need a power series 
for log(1 – x).  Here is a very good way to obtain such a power series.  We have 



log(1 − 𝑥𝑥) = −∫ 1
1−𝑡𝑡

𝑑𝑑𝑑𝑑.𝑥𝑥
0   

However, if we actually perform the indicated division we see that 

1
1 − 𝑡𝑡

= 1 + 𝑡𝑡 + 𝑡𝑡2 + 𝑡𝑡3 + ⋯ = �𝑡𝑡𝑘𝑘
∞

𝑘𝑘=0

. 

Therefore, 

log(1 − 𝑥𝑥) = −� ��𝑡𝑡𝑘𝑘
∞

𝑘𝑘=0

� 𝑑𝑑𝑑𝑑.
𝑥𝑥

0
 

Reversing the order of integration and summation, this last expression becomes the desired 
power series. 

log(1 − 𝑥𝑥) = −�� 𝑡𝑡𝑘𝑘𝑑𝑑𝑑𝑑 = −�
𝑥𝑥𝑘𝑘+1

𝑘𝑘 + 1
.

∞

𝑘𝑘=0

𝑥𝑥

0

∞

𝑘𝑘=0

 

So, the integral becomes 

𝐼𝐼 = log2(2) − 2 log(2) −� �log(𝑥𝑥)��
𝑥𝑥𝑘𝑘+1

𝑘𝑘 + 1

∞

𝑘𝑘=0

�� 𝑑𝑑𝑑𝑑
1

0
. 

Once again, we interchange the order of integration and summation and we obtain 

𝐼𝐼 = log2(2) − 2 log(2) −��
1

𝑘𝑘 + 1
�� 𝑥𝑥𝑘𝑘+1 log(𝑥𝑥)𝑑𝑑𝑑𝑑.

1

0

∞

𝑘𝑘=0

 

The remaining integral can now be evaluated using the integration by parts technique; it 
evaluates to –1/(k+2)2.  We are therefore left with 

𝐼𝐼 = log2(2) − 2 log(2) + �
1

(𝑘𝑘 + 1)(𝑘𝑘 + 2)2 .
∞

𝑘𝑘=0

 

We now have to evaluate this sum in order to arrive at a final result, and you will notice that this 
sum is not included in our table of useful infinite series from Chapter 1.  However (and here is 
what I believe must have been the aha moment), using the technique of partial fractions, this 
summation can be written as 

�
1

(𝑘𝑘 + 1)(𝑘𝑘 + 2)2 = ��
1

𝑘𝑘 + 1
−

1
𝑘𝑘 + 2

−
1

(𝑘𝑘 + 2)2� .
∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

We now write this last expression as two separate sums, e.g., 

��
1

𝑘𝑘 + 1
−

1
𝑘𝑘 + 2

� −�
1

(𝑘𝑘 + 2)2

∞

𝑘𝑘=0

∞

𝑘𝑘=0

. 

Interestingly, here is a case of when the compact upper case sigma notation for a summation 
actually hinders us (at least it hinders me) from seeing our way forward.  Look at the individual 



terms of the first sum in the above expression; they are 1 − 1
2+

1
2−

1
3+

1
3−

1
4+

1
4−

1
5+⋯; everything cancels 

except the leading term which is 1.  Also notice that the second sum is merely useful infinite 
series #2 (Chapter 1) minus the first term of that series, in-other-words, it sums to π2/6 – 1.  So 
we have  

��
1

𝑘𝑘 + 1
−

1
𝑘𝑘 + 2

� −�
1

(𝑘𝑘 + 2)2 = 1 − �
𝜋𝜋2

6
− 1� = 2 −

𝜋𝜋2

6
.

∞

𝑘𝑘=0

∞

𝑘𝑘=0

 

We can now write down the final result 

� 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 + 𝒙𝒙) 𝐥𝐥𝐥𝐥𝐥𝐥(𝟏𝟏 − 𝒙𝒙)𝒅𝒅𝒅𝒅 = log𝟐𝟐(𝟐𝟐) − 𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐) + 𝟐𝟐 −
𝝅𝝅𝟐𝟐

𝟔𝟔
.   Q.E.D.

𝟏𝟏

𝟎𝟎
 

8.6  A Recursion Relationship 
     In Chapter 2, example 7, we evaluated the following integral 

𝐼𝐼 = ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎sin2(𝜃𝜃)+𝑏𝑏cos2(𝜃𝜃)

= 𝜋𝜋
2√𝑎𝑎𝑎𝑎

𝜋𝜋/2
0   

It would be quite interesting to generalize this integral by raising the entire denominator to the nth 
power (where 𝑛𝑛 𝜖𝜖 ℕ+) and see if the integral’s value can be calculated.  If so, an entire family of 
integrals can be solved in one derivation.  So, the integral we are now interested in is 

𝐼𝐼𝑛𝑛(𝑎𝑎, 𝑏𝑏) = ∫ 𝑑𝑑𝑑𝑑
[𝑎𝑎sin2(𝜃𝜃)+𝑏𝑏cos2(𝜃𝜃)]𝑛𝑛

  𝑛𝑛 𝜖𝜖 ℕ+𝜋𝜋/2
0   

Look what happens if we differentiate In(a,b) with respect to the parameter a. 
𝑑𝑑𝐼𝐼𝑛𝑛(𝑎𝑎,𝑏𝑏)

𝑑𝑑𝑑𝑑
= ∫ −𝑛𝑛[𝑎𝑎sin2(𝜃𝜃) + 𝑏𝑏cos2(𝜃𝜃)]−𝑛𝑛−1sin2(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/2

0 = −𝑛𝑛∫ sin2𝜃𝜃𝜃𝜃𝜃𝜃
[𝑎𝑎sin2(𝜃𝜃)+𝑏𝑏cos2(𝜃𝜃)]𝑛𝑛+1

𝜋𝜋/2
0   

Similarly, we can now easily write down the result of differentiating with respect to b, i.e., 
𝑑𝑑𝐼𝐼𝑛𝑛(𝑎𝑎,𝑏𝑏)

𝑑𝑑𝑑𝑑
= −𝑛𝑛∫ cos2(𝜃𝜃)𝑑𝑑𝑑𝑑

[𝑎𝑎sin2(𝜃𝜃)+𝑏𝑏cos2(𝜃𝜃)]𝑛𝑛+1
𝜋𝜋/2
0   

Now notice that the sum of these two derivatives gives us a numerator of sin2(θ) + cos2(θ) = 1.  
That is, 

𝑑𝑑𝐼𝐼𝑛𝑛(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼𝑛𝑛(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= −𝑛𝑛∫ sin2(𝜃𝜃)+cos2(𝜃𝜃)
[𝑎𝑎sin2(𝜃𝜃)+𝑏𝑏cos2(𝜃𝜃)]𝑛𝑛+1

𝑑𝑑𝑑𝑑 = −𝑛𝑛𝐼𝐼𝑛𝑛+1(𝑎𝑎, 𝑏𝑏)𝜋𝜋/2
0   

If we now replace n with n – 1, we get the wonderful recursion relationship of 

𝐼𝐼𝑛𝑛(𝑎𝑎, 𝑏𝑏) = − 1
𝑛𝑛−1

�𝑑𝑑𝐼𝐼𝑛𝑛−1(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

+ 𝑑𝑑𝐼𝐼𝑛𝑛−1(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

�. 

As alluded to earlier, 𝐼𝐼1(𝑎𝑎, 𝑏𝑏) = 𝜋𝜋
2√𝑎𝑎𝑎𝑎

 (see Chapter 2, example 7).  To calculate I2, all we have to do 
is plug n = 2 into the recursion and carry out the indicated operations.  That is, 

𝑑𝑑𝐼𝐼1(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

=
𝑑𝑑� 𝜋𝜋

2√𝑎𝑎𝑎𝑎
�

𝑑𝑑𝑑𝑑
= 𝜋𝜋

2√𝑏𝑏

𝑑𝑑�𝑎𝑎−
1
2�

𝑑𝑑𝑑𝑑
= − 𝜋𝜋

4𝑎𝑎3 2⁄ 𝑏𝑏1 2⁄   



𝑑𝑑𝐼𝐼1(𝑎𝑎,𝑏𝑏)
𝑑𝑑𝑑𝑑

= 𝜋𝜋
2√𝑎𝑎

𝑑𝑑�𝑏𝑏−
1
2�

𝑑𝑑𝑑𝑑
= − 𝜋𝜋

4𝑎𝑎1 2⁄ 𝑏𝑏3 2⁄   

So, we finally have the value of I2, namely, 

𝑰𝑰𝟐𝟐(𝒂𝒂,𝒃𝒃) = �
𝒅𝒅𝒅𝒅

[𝒂𝒂sin𝟐𝟐(𝜽𝜽) + 𝒃𝒃cos𝟐𝟐(𝜽𝜽)]𝟐𝟐 =
𝝅𝝅

𝟒𝟒√𝒂𝒂𝒂𝒂
�
𝟏𝟏
𝒂𝒂

+
𝟏𝟏
𝒃𝒃�

𝝅𝝅/𝟐𝟐

𝟎𝟎
     Q.E.D.  

Oh, but we aren’t done yet.  Now that we have the value of I2, we can use it to obtain I3, then I3 
begets I4, I4 begets I5, . . . ad nausea. 

𝑰𝑰𝟑𝟑(𝒂𝒂,𝒃𝒃) = �
𝒅𝒅𝒅𝒅

[𝒂𝒂sin𝟐𝟐(𝜽𝜽) + 𝒃𝒃cos𝟐𝟐(𝜽𝜽)]𝟑𝟑 =
𝝅𝝅

𝟏𝟏𝟏𝟏√𝒂𝒂𝒂𝒂
�
𝟑𝟑
𝒂𝒂𝟐𝟐

+
𝟐𝟐
𝒂𝒂𝒂𝒂

+
𝟑𝟑
𝒃𝒃𝟐𝟐�

𝝅𝝅/𝟐𝟐

𝟎𝟎
     Q.E.D.  

However, one finds that when computing I4 from I3, I5 from I4, etc., the algebra gets very messy, 
boring, and tiresome.  Nevertheless, in “A Treatise of the Integral Calculus” by Joseph Edwards, 
Volume 2, Chapter 26, page 192, a general expression is derived for In+1.  Here is what Edwards 
has to say about it:  Since 

� 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑝𝑝
� 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑞𝑞
𝑎𝑎−1 2⁄ 𝑏𝑏−1 2⁄ = (−1)𝑝𝑝+𝑞𝑞

2𝑝𝑝+𝑞𝑞
�1 ∙ 3⋯ 2𝑝𝑝 − 1��1 ∙ 3⋯ 2𝑞𝑞 − 1� 1

√𝑎𝑎𝑎𝑎
∙ 1
𝑎𝑎𝑝𝑝𝑏𝑏𝑞𝑞

  

Which, in turn equates to   
(−1)𝑝𝑝+𝑞𝑞

22(𝑝𝑝+𝑞𝑞)
(2𝑝𝑝)!(2𝑞𝑞)!

𝑝𝑝!𝑞𝑞!
1

√𝑎𝑎𝑎𝑎
1

𝑎𝑎𝑝𝑝𝑏𝑏𝑞𝑞
.  

Edwards then says, “The general result is” 

𝐼𝐼𝑛𝑛+1 = 𝜋𝜋
2

(−1)𝑛𝑛

𝑛𝑛!
� 𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝑑𝑑
𝑑𝑑𝑑𝑑
�
𝑛𝑛 1
√𝑎𝑎𝑎𝑎

  

𝐼𝐼𝑛𝑛+1 =
𝜋𝜋

22𝑛𝑛+1
1
√𝑎𝑎𝑎𝑎

�
(2𝑝𝑝)! (2𝑞𝑞)!
(𝑝𝑝!)2(𝑞𝑞!)2

∙
1

𝑎𝑎𝑝𝑝𝑏𝑏𝑞𝑞
,     where 𝑝𝑝 + 𝑞𝑞 = 𝑛𝑛

𝑛𝑛

0

 

(I’m glad I didn’t have to figure it out!) 

8.7  Ahmed’s Integral 
     The definite integral 

𝐼𝐼 = ∫
tan−1��2+𝑥𝑥2�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0   

has become known as Ahmed’s Integral since it was proposed in 2001 to the American 
Mathematical Monthly by Zafar Ahmed.  Zafar Ahmed is a nuclear physicist who works at the 
Nuclear Physics Division, Bhabha Atomic Research Centre in Mumbai, India.  Since its 
proposal, this integral has been mentioned in mathematical encyclopedias and dictionaries and 
further, been cited and discussed in several books and journals.  I’m not sure why it has received 
so much attention; however, its solution is clever enough in my mind for it to be in this crème de 
la crème chapter.  Meanwhile, I have a thought about this integral.  Back in Chapter 5, the DUI 



chapter, I discussed nuclear physicist Richard Feynman’s use of DUI and told the little story 
about how, during the development of the atomic bomb in Los Alamos, Feynman talked a 
colleague into using the DUI technique to solve an integral needed to continue their work.  Since 
Ahmed’s integral presumably came out of Ahmed’s work on the Indian atomic bomb project, my 
flight-of-imagination is that the two integrals are one and the same.  (Probably not, but it’s my 
fantasy!)  Oh, and by-the-way, Ahmed’s integral can be solved using DUI—as was Feynman’s.  

     As you can see, Ahmed’s integral contains no parameters—therefore we need to insert one 
and we will do so as an argument to the inverse tangent function in the integrand’s numerator, 
i.e.,  

𝐼𝐼(𝑞𝑞) = ∫
tan−1�𝑞𝑞�2+𝑥𝑥2�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑1

0 .  

Note that I(1) is Ahmed’s integral and also note the following: 

𝐼𝐼(∞) = lim
𝑞𝑞→∞

𝐼𝐼(𝑞𝑞) = lim
𝑞𝑞→∞

∫
tan−1�𝑞𝑞�2+𝑥𝑥2�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2 ∫
𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑.1

0
1
0   

 If this last integral can be evaluated (and it can), it will provide the initial condition needed to 
determine the constant of integration that results from solving the differential equation that will 
occur after we differentiate the Ahmed integral with respect to the inserted parameter.  As a- 
matter-of-fact, let’s go ahead and attack I(∞) right now before we apply DUI to I(q). 

𝐼𝐼(∞) = 𝜋𝜋
2 ∫

𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)�2+𝑥𝑥2
.1

0   

A change of variable is what is called for here.  Let 𝑢𝑢 = 𝑥𝑥 √2 + 𝑥𝑥2⁄ .  That’s a weird CV isn’t it?  
How is that arrived at?  Good question!  And I can’t answer that satisfactorily.  I’d like to say 
that in an aha moment, I realized that the CV would do such-and-such and therefore permit a 
solution, but that never happened.  The answer to the question about the CV is the following.  
The CV was arrived at through experimentation.  I worked on this initial condition integral for 
the better part of a week, trying all sorts of different CVs before I tried 𝑢𝑢 = 𝑥𝑥 √2 + 𝑥𝑥2⁄  which 
finally yielded the solution (lucky).  Anyway, under this CV  (0, 1) → �0, 1 √3⁄ � and, in order to 
calculate dx we need to solve for x as a function of u.  Doing that yields 𝑥𝑥 = √2𝑢𝑢(1 − 𝑢𝑢2)−1/2.  As a 
result,  

𝑑𝑑𝑑𝑑 = √2𝑑𝑑𝑑𝑑

(1−𝑢𝑢2)�1−𝑢𝑢2
  and  1 + 𝑥𝑥2 = 1+𝑢𝑢2

1−𝑢𝑢2
  and  √2 + 𝑥𝑥2 = √2

�1−𝑢𝑢2
  

Now, making all of these substitutions into I(∞) produces the following integral 

𝐼𝐼(∞) = 𝜋𝜋
2 ∫

√2𝑑𝑑𝑑𝑑
�1−𝑢𝑢2��1−𝑢𝑢2

�1+𝑢𝑢
2

1−𝑢𝑢2
� √2
�1−𝑢𝑢2

1/√3
0   

Look at the integrand of this last integral.  Everything cancels except the 1 + u2 in the 
denominator leaving us with the recognizable form of the inverse tangent.  What an amazing 
CV—it may have been arrived at by sheer luck, but it certainly does the job.  So, we have 



𝐼𝐼(∞) = 𝜋𝜋
2 ∫

𝑑𝑑𝑑𝑑
1+𝑢𝑢2

= �𝜋𝜋
2

tan−1(𝑢𝑢)�
0

1/√3
=1/√3

0
𝜋𝜋
2
∙ 𝜋𝜋
6

= 𝜋𝜋2

12
  

Now we can turn our attention to Ahmed’s integral itself.  Don’t forget, what we just 
accomplished is only an initial condition that we will undoubtedly need to put the finishing 
touches on Ahmed’s integral.  Using DUI, we first need to differentiate with respect to the 
inserted parameter, q. 

𝑑𝑑𝑑𝑑(𝑞𝑞)
𝑑𝑑𝑑𝑑

= ∫
�2+𝑥𝑥2

[1+𝑞𝑞2(2+𝑥𝑥2)](1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑 = ∫ 𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)(1+2𝑞𝑞2+𝑞𝑞2𝑥𝑥2)
1
0

1
0   

Now, breaking this last integral up into partial fractions, we obtain 

𝑑𝑑𝑑𝑑(𝑞𝑞)
𝑑𝑑𝑑𝑑

= ∫ �
1

1+𝑞𝑞2

1+𝑥𝑥2
−

𝑞𝑞2

1+𝑞𝑞2

1+2𝑞𝑞2+𝑞𝑞2𝑥𝑥2
� 𝑑𝑑𝑑𝑑 = 1

1+𝑞𝑞2
�∫ 𝑑𝑑𝑑𝑑

1+𝑥𝑥2
1
0 − ∫ 𝑞𝑞2𝑑𝑑𝑥𝑥

1+2𝑞𝑞2+𝑞𝑞2𝑥𝑥2
1
0 �1

0   

We can now perform the integration, recognizing that the two integrals are inverse tangent 
functions.  If you don’t see this in the last integral, divide both numerator and denominator by q2, 

𝑑𝑑𝑑𝑑(𝑞𝑞)
𝑑𝑑𝑑𝑑

= 1
1+𝑞𝑞2 ∫

𝑑𝑑𝑑𝑑
1+𝑥𝑥2

− 1
1+𝑞𝑞2 ∫

𝑑𝑑𝑑𝑑
1+2𝑞𝑞2
𝑞𝑞2

+𝑥𝑥2

1
0

1
0 = � 1

1+𝑞𝑞2
tan−1(𝑥𝑥)�

0

1
− � 1

1+𝑞𝑞2
𝑞𝑞

�1+2𝑞𝑞2
tan−1 � 𝑞𝑞𝑞𝑞

�1+2𝑞𝑞2
��

0

1
  

Evaluating, we finally have the differential equation that when solved, will produce the value of 
Ahmed’s integral.  That is, 

𝑑𝑑𝑑𝑑(𝑞𝑞)
𝑑𝑑𝑑𝑑

= 1
1+𝑞𝑞2

�𝜋𝜋
4
� − 𝑞𝑞

(1+𝑞𝑞2)�1+2𝑞𝑞2
tan−1 � 𝑞𝑞

�1+2𝑞𝑞2
�  

That’s quite a horrendous looking differential equation.  Then comes the aha moment and it’s 
what makes this derivation so damn clever.  Instead of solving the differential equation using 
indefinite integration, use definite integration—specifically, integrate over (1, ∞).  Why this 
particular interval?  Look what happens to the left side of the differential equation 

∫ 𝑑𝑑𝑑𝑑(𝑞𝑞)
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑 = [𝐼𝐼(𝑞𝑞)]1∞ = 𝐼𝐼(∞) − 𝐼𝐼(1)∞
1   

I(∞) is the integral that we solved at the beginning of this derivation and I(1) is Ahmed’s 
integral, the integral we are trying to solve.  We therefore have, 

𝐼𝐼(∞) − 𝐼𝐼(1) = 𝜋𝜋
4 ∫

𝑑𝑑𝑑𝑑
1+𝑞𝑞2

− ∫
𝑞𝑞 tan−1�𝑞𝑞 �1+2𝑞𝑞2⁄ �

(1+𝑞𝑞2)�1+2𝑞𝑞2
𝑑𝑑𝑑𝑑∞

1
∞
1 .  

The 1st integral above is easy, however, the 2nd integral requires a change of variable.  Let q = 1/z 
so that dq = ‒dz/z2 and (1, ∞) → (1, 0). 

𝐼𝐼(∞) − 𝐼𝐼(1) = �𝜋𝜋
4

tan−1(𝑞𝑞)�
1

∞
− ∫

1
𝑧𝑧 tan

−1� 1 𝑧𝑧⁄
�1+2 𝑧𝑧2⁄

��−𝑑𝑑𝑑𝑑
𝑧𝑧2
�

(1+1 𝑧𝑧2⁄ )�1+2 𝑧𝑧2⁄
0
1   

This simplifies to the following 

𝐼𝐼(∞) − 𝐼𝐼(1) = 𝜋𝜋
4
�𝜋𝜋
2
− 𝜋𝜋

4
� − ∫

tan−1� 1
�𝑧𝑧2+2

�

(𝑧𝑧2+1)�𝑧𝑧2+2
𝑑𝑑𝑑𝑑1

0 = 𝜋𝜋2

16
− ∫

tan−1� 1
�𝑧𝑧2+2

�

(𝑧𝑧2+1)�𝑧𝑧2+2
𝑑𝑑𝑑𝑑1

0   



Now, from the table of useful trigonometric identities in Chapter 1, entry #11, we have 

tan−1 � 1
�𝑧𝑧2+2

� = 𝜋𝜋
2
− tan−1�√𝑧𝑧2 + 2�  

Hence, we can write 

𝐼𝐼(∞) − 𝐼𝐼(1) = 𝜋𝜋2

16
− ∫

𝜋𝜋 2⁄ −tan−1��𝑧𝑧2+2�

(𝑧𝑧2+1)�𝑧𝑧2+2
𝑑𝑑𝑑𝑑1

0 = 𝜋𝜋2

16
− 𝜋𝜋

2 ∫
𝑑𝑑𝑑𝑑

(𝑧𝑧2+1)�𝑧𝑧2+2
+ ∫

tan−1��𝑧𝑧2+2�

(𝑧𝑧2+1)�𝑧𝑧2+2
𝑑𝑑𝑑𝑑1

0
1
0   

Notice anything remarkable?  The 1st integral above is again I(∞) and the 2nd integral above is 
again Ahmed’s integral, I(1).  So we finally have a solution by simply solving for I(1) since we 
already know I(∞).  Thus, 

𝐼𝐼(∞) − 𝐼𝐼(1) = 𝜋𝜋2

16
− 𝐼𝐼(∞) + 𝐼𝐼(1)  

�
𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏�√𝟐𝟐 + 𝒙𝒙𝟐𝟐�
(𝟏𝟏 + 𝒙𝒙𝟐𝟐)√𝟐𝟐 + 𝒙𝒙𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝟓𝟓𝝅𝝅𝟐𝟐

𝟗𝟗𝟗𝟗
     Q.E.D.

𝟏𝟏

𝟎𝟎
 

     I’d like to show an alternate derivation of Ahmed’s integral.  The following is Ahmed’s own 
derivation of his integral.  Interestingly, one of the last steps in the previous derivation was to 
make use of the trigonometric identity 

tan−1 � 1
�𝑧𝑧2+2

� = 𝜋𝜋
2
− tan−1�√𝑧𝑧2 + 2�  

Ahmed makes use of this same identity as his first step.  That is, 

𝐼𝐼 = ∫
tan−1��2+𝑥𝑥2�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑 = ∫

𝜋𝜋
2−tan

−1� 1
�2+𝑥𝑥2

�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2 ∫
𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)�2+𝑥𝑥2
− ∫

tan−1� 1
�2+𝑥𝑥2

�

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑.1

0
1
0

1
0

1
0   

Ahmed calls the 1st integral on the right I1 and the 2nd integral I2.  He then solves I1 by making 
the following change of variable.  Let x = tan(θ) so that dx = sec2(θ)dθ and (0, 1) → (0, π/4).  
Under that CV, we have 

𝐼𝐼1 = 𝜋𝜋
2 ∫

sec2(𝜃𝜃)𝑑𝑑𝑑𝑑

(1+tan2𝜃𝜃)�2+tan2𝜃𝜃
= 𝜋𝜋

2 ∫
sec2(𝜃𝜃)𝑑𝑑𝑑𝑑

sec2(𝜃𝜃)�2+tan2𝜃𝜃
= 𝜋𝜋

2 ∫
𝑑𝑑𝑑𝑑

�2+tan2(𝜃𝜃)
𝜋𝜋/4
0

𝜋𝜋/4
0

𝜋𝜋/4
0  . 

This last integral can now be further manipulated to give 

𝐼𝐼1 = 𝜋𝜋
2 ∫

𝑑𝑑𝑑𝑑

�2+sin2(𝜃𝜃)
cos2(𝜃𝜃)

= 𝜋𝜋
2 ∫

cos(𝜃𝜃)𝑑𝑑𝑑𝑑
�2cos2(𝜃𝜃)+sin2(𝜃𝜃)

= 𝜋𝜋
2 ∫

cos(𝜃𝜃)𝑑𝑑𝑑𝑑
�2−sin2(𝜃𝜃)

𝜋𝜋/4
0

𝜋𝜋/4
0

𝜋𝜋/4
0   

Now make another change of variable, i.e., let sin(𝜃𝜃) = √2 sin(𝜙𝜙).  Of course, under that CV the                  
cos(𝜃𝜃)𝑑𝑑𝑑𝑑 = √2 cos(𝜙𝜙)𝑑𝑑𝑑𝑑 and (0, π/4) → (0, π/6).  And we have 

𝐼𝐼1 = 𝜋𝜋
2 ∫

√2cos(𝜙𝜙)𝑑𝑑𝑑𝑑
�2(1−sin2𝜙𝜙)

= 𝜋𝜋
2 ∫

√2cos(𝜙𝜙)𝑑𝑑𝑑𝑑
√2cos(𝜙𝜙)

𝜋𝜋/6
0 = 𝜋𝜋2

12
𝜋𝜋/6
0  . 

Next, Ahmed goes about solving I2 in the following manner.  Remember, I2 is the following 
integral 



𝐼𝐼2 = ∫
tan−1� 1

�2+𝑥𝑥2
�𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)�2+𝑥𝑥2
1
0  . 

Ahmed says we can replace the inverse tangent function in the numerator of I2 with another 
integral, turning I2 into a double integral.  An inverse tangent function can be represented in the 
following manner: 

1
𝑎𝑎

tan−1 �1
𝑎𝑎
� = ∫ 𝑑𝑑𝑑𝑑

𝑎𝑎2+𝑦𝑦2
.1

0   

Note that this is simply the recognizable form of the inverse tangent but over (0, 1).  Ahmed says 
let 𝑎𝑎 = √2 + 𝑥𝑥2 and substitute that value of a into the above.  If we do that we get 

1
�2+𝑥𝑥2

tan−1 � 1
�2+𝑥𝑥2

� = ∫ 𝑑𝑑𝑑𝑑
(2+𝑥𝑥2)+𝑦𝑦2

  ⇒   tan−1 � 1
�2+𝑥𝑥2

� = √2 + 𝑥𝑥2 ∫ 𝑑𝑑𝑑𝑑
2+𝑥𝑥2+𝑦𝑦2

1
0

1
0   

Now take this form of the inverse tangent function and substitute it for the inverse tangent 
function in I2, obtaining 

𝐼𝐼2 = ∫
�2+𝑥𝑥2�∫ 𝑑𝑑𝑑𝑑

2+𝑥𝑥2+𝑦𝑦2
1
0 �

(1+𝑥𝑥2)�2+𝑥𝑥2
𝑑𝑑𝑑𝑑 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

(1+𝑥𝑥2)(2+𝑥𝑥2+𝑦𝑦2)
1
0

1
0

1
0  . 

How clever, the radicals cancel!!!!  That substitution must have been Ahmed’s aha moment.  We 
now have the promised double integral.  Ahmed’s next step is to use partial fractions on the 
integrand of the double integral. 

𝐼𝐼2 = ∫ ∫ 1
(1+𝑦𝑦2)

� 1
(1+𝑥𝑥2)

− 1
(2+𝑥𝑥2+𝑦𝑦2)

� 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
0

1
0   

This, of course, can be split into two double integrals 

𝐼𝐼2 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(1+𝑦𝑦2)(1+𝑥𝑥2)

− ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(1+𝑦𝑦2)(2+𝑥𝑥2+𝑦𝑦2)

1
0

1
0

1
0

1
0   

The 1st integral is easy, it evaluates to (π/4)(π/4) = π2/16.  The 2nd integral is even easier, it’s I2, 
given that y is a dummy variable.  Hence, 

2𝐼𝐼2 = 𝜋𝜋2

16
     or     𝐼𝐼2 = 𝜋𝜋2

32
  

Therefore, we get the expected result of 

𝑰𝑰 = 𝑰𝑰𝟏𝟏 − 𝑰𝑰𝟐𝟐 =
𝝅𝝅𝟐𝟐

𝟏𝟏𝟏𝟏
−
𝝅𝝅𝟐𝟐

𝟑𝟑𝟑𝟑
=
𝟓𝟓𝝅𝝅𝟐𝟐

𝟗𝟗𝟗𝟗
     Q.E.D.  



8.8  Coxeter’s Integrals 

 
 

Figure 8-7.  British/Canadian Mathematician Harold Scott MacDonald Coxeter (1907-2003) 

“In our times, geometers are still exploring those new Wonderlands, partly for the sake of their applications to 
cosmology and other branches of science, but much more for the sheer joy of passing through the looking glass into 
a land where the familiar lines, planes, triangles, circles, and spheres are seen to behave in strange but precisely 
determined ways.”—Harold Scott MacDonald Coxeter 

     Donald Coxeter was always known as Donald which came from his third name MacDonald. 
This needs a little explanation. He was first given the name MacDonald Scott Coxeter, but a 
godparent suggested that his father's name should be added, so Harold was added at the front. 
Another relative noted that H M S Coxeter made him sound like a British warship. A 
permutation of the names resulted in Harold Scott MacDonald Coxeter.  Although Coxeter was 
born and educated in Great Britain, in 1936 he took up an appointment at the University of 
Toronto and remained on the faculty at Toronto until his death.  This explains the dual 
British/Canadian tag in the caption of his picture. 

     Although not as well-known a name as most of the other mathematicians profiled in this 
book, Coxeter was very well-known within the mathematical community.  He became one of the 
world’s eminent geometers and is considered as the world’s greatest geometer of the 20th 
century.  In particular he made major contributions in the theory of polytopes, non-euclidean 
geometry, group theory and combinatorics.  His interest in geometry stems from a very early age.  
As a 19 year old teen-ager and an undergraduate at Trinity College, Cambridge, Coxeter 
undertook a study of various four dimensional shapes.   By geometrical considerations and 
evidently verified graphically, the study suggested to him several quite “interesting” definite 
integrals, two of which we will evaluate shortly.  However, before doing so, there is a little story 
associated with Coxeter and his integrals that I find quite interesting. 

     In 1926, Coxeter is 19 years old and is very busy with his study of four dimensional shapes.  
And he also has these definite integrals and would like very much to solve them (evaluate them).  
Evidently, he needs help.  Well, here is how an enterprising young man (and a brilliant one also) 
gets the help he needs.  He writes a letter to the Mathematical Gazette (i.e., the British analog of 
the American Mathematical Monthly) and asks if any reader can suggest how to solve these 
integrals.  And of course, he provides a list of the integrals.  He was inundated with responses.  
Every math buff who subscribed to the Gazette probably sent him their solutions.  Decades later, 
in the Preface to his book Twelve Geometric Essays, Coxeter writes “I can still recall the thrill of 
receiving a solution from G.H. Hardy (see the preface to this book) during my second month as a 
freshman at Cambridge.”  Accompanying Hardy’s solutions (which if your Coxeter, you know 
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they are correct) was a note scribbled in a margin stating that “I tried very hard not to spend time 
on your integrals, but to me the challenge of a definite integral is irresistible.”  What an 
interesting young man Coxeter was.  It was probably as thrilling hearing from Hardy as if one 
were to have gotten a letter from Albert Einstein discussing some common piece of work.  
WOW!   

     Coxeter maintained that kind of attitude throughout his career; here is what a colleague wrote 
about him.  Modern science is often driven by fads and fashions, and mathematics is no 
exception. Coxeter's style, I would say, is singularly unfashionable. He is guided, I think, almost 
completely by a profound sense of what is beautiful.   

     His 12 books and 167 published articles cover more than mathematical research. Coxeter met 
Escher in 1954 and the two became lifelong friends. Coxeter’s work helped inspire some of 
Escher’s works, specifically, the “Circle Limit” series based on hyperbolic tessellations.  
Another friend, R Buckminister Fuller, used Coxeter's ideas in his architecture. Coxeter edited 
the Canadian Journal of Mathematics from 1949 till 1958.  He also served as Vice President of 
the American Mathematical Association.  Coxeter had many artistic gifts, particularly in music. 
In fact before he became a mathematician he wanted to become a composer. However his 
interest in symmetry took him towards mathematics and into a career which he loved throughout 
his life. Coxeter wrote: I am extremely fortunate for being paid for what I would have done 
anyway.  Enough about this fascinating human being; let’s get to the pleasurable job at hand and 
look at one of his integrals.  The first one we will evaluate we will call I1. 

𝐼𝐼1 = ∫ tan−1 ��cos(2𝜃𝜃)
2cos2(𝜃𝜃)

� 𝑑𝑑𝑑𝑑𝜋𝜋/4
0   

I don’t know who was responsible for the following solution; I would love to know, particularly, 
if the solution was communicated to Coxeter as a result of his request for help in the 
Mathematical Gazette.  That information does not appear to be available.  It would really be 
something if the solution was what G.H. Hardy sent Coxeter (my fantasy).  Anyway, we will 
push on. 

     To do I1, we need three preliminary results.  I will number them , , and  and refer back 
to them by those numbers.   They are: 

    ∫ 𝑎𝑎𝑎𝑎𝑎𝑎
1+𝑎𝑎2𝑥𝑥2

= tan−1(𝑎𝑎)1
0   

   ∫ 𝑑𝑑𝑑𝑑
(𝑥𝑥2+𝑎𝑎2)(𝑥𝑥2+𝑏𝑏2)

= 𝜋𝜋
2𝑎𝑎𝑎𝑎(𝑎𝑎+𝑏𝑏)

∞
0   

  ∫ 𝑑𝑑𝑑𝑑

(𝑥𝑥2+1)�𝑥𝑥2+2
= 𝜋𝜋

6
1
0   

All three of the above integrals are easy.  Number  is merely the recognizable form of the 
inverse tangent.  If you don’t see that, make the change of variable of u = ax, so that dx = du/a, 
and (0, 1) → (0, a), i.e., 

∫ 𝑎𝑎𝑎𝑎𝑎𝑎
1+𝑎𝑎2𝑥𝑥2

= ∫
𝑎𝑎�𝑑𝑑𝑑𝑑𝑎𝑎 �

1+𝑢𝑢2
= [tan−1(𝑢𝑢)]0𝑎𝑎 = tan−1(𝑎𝑎)𝑎𝑎

0
1
0 . 

http://www-history.mcs.st-and.ac.uk/Mathematicians/Escher.html
http://www-history.mcs.st-and.ac.uk/Mathematicians/Fuller.html


Number  is done by simply breaking the integrand up into partial fractions and integrating each 
fraction, i.e.,  

∫ 𝑑𝑑𝑑𝑑
(𝑥𝑥2+𝑎𝑎2)(𝑥𝑥2+𝑏𝑏2)

= 1
𝑎𝑎2−𝑏𝑏2

�∫ 𝑑𝑑𝑑𝑑
𝑥𝑥2+𝑏𝑏2

− ∫ 𝑑𝑑𝑑𝑑
𝑥𝑥2+𝑎𝑎2

∞
0

∞
0 � =∞

0
1

𝑎𝑎2−𝑏𝑏2
�
tan−1�𝑥𝑥𝑏𝑏�

𝑏𝑏
−

tan−1�𝑥𝑥𝑎𝑎�

𝑎𝑎
�
0

∞

= 𝜋𝜋
2𝑎𝑎𝑎𝑎(𝑎𝑎+𝑏𝑏)

.  

Number  is easy because we’ve already done it, although at the time we did, it was difficult.  In 
the previous section (Ahmed’s integral—the 1st derivation) we evaluated this integral to obtain 
an initial condition, i.e., I(∞).  You will recall, we made the very non-intuitive change of variable 
of u = x(x2+2)–1/2 so that dx = √2du/(1 – u2)3/2 and (0, 1) → (0, 1/√3).  We have 

∫ 𝑑𝑑𝑑𝑑

(𝑥𝑥2+1)�𝑥𝑥2+2
= ∫

√2

�1−𝑢𝑢2�
3/2

√2�1+𝑢𝑢2�

�1−𝑢𝑢2�
3/2

𝑑𝑑𝑑𝑑 = ∫ 𝑑𝑑𝑑𝑑
1+𝑢𝑢2

= [tan−1(𝑢𝑢)]0
1/√3 = 𝜋𝜋

6
1/√3
0

1/√3
0

1
0 . 

Now we are all set to attack I1.  Using  above, we have 

𝐼𝐼1 = ∫ tan−1 ��cos(2𝜃𝜃)
2cos2(𝜃𝜃)

� 𝑑𝑑𝑑𝑑 =𝜋𝜋/4
0 ∫ ∫

�cos(2𝜃𝜃)
2cos2(𝜃𝜃)

1+�cos(2𝜃𝜃)
2cos2(𝜃𝜃)�𝑥𝑥

2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1

0
𝜋𝜋/4
0 .  

Reversing the order of integration, we can write 

𝐼𝐼1 = ∫ ∫
�cos(2𝜃𝜃)
2cos2(𝜃𝜃)

1+�cos(2𝜃𝜃)
2cos2(𝜃𝜃)�𝑥𝑥

2
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜋𝜋/4

0
1
0   

By pure trigonometric manipulation, the integrand can now be written as 

𝐼𝐼1 = ∫ ∫ �1−2sin2(𝜃𝜃) ∙ √2cos(𝜃𝜃)
2−2sin2(𝜃𝜃)+[1−2sin2(𝜃𝜃)]𝑥𝑥2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜋𝜋/4
0

1
0   

Now, a change of variable will help, that is, let √2sin(θ) = sin(φ) so that √2cos(θ)dθ = cos(φ)dφ 
and  2sin2(θ) = sin2(φ) while (0, π/4) → (0, π/2).  Thus, this change of variable gives us 

𝐼𝐼1 = ∫ ∫ �1−sin2(𝜙𝜙)  ∙ cos(𝜙𝜙)
2−sin2(𝜙𝜙)+[1−sin2(𝜙𝜙)]𝑥𝑥2

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜋𝜋/2
0

1
0   

In this last integral, the integrand can be again manipulated using purely trigonometric identities 
to arrive at the following 

𝐼𝐼1 = ∫ ∫ cos2(𝜙𝜙)
sin2(𝜙𝜙)+(𝑥𝑥2+2)cos2(𝜙𝜙)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜋𝜋/2
0

1
0   

It took me a long time to make this last step.  I said above, it’s trig manipulation only.  It took a 
long time for me to write the integer 2 in the denominator in the previous integrand as     
2[sin2(φ) + cos2(φ)].  However, once that aha comes to you, the previous integral does easily 
become the last integral.  Now look what happens when you further manipulate the integrand by 
dividing both numerator and denominator by cos2(φ).  You obtain 

𝐼𝐼1 = ∫ ∫ 𝑑𝑑𝜙𝜙𝜙𝜙𝜙𝜙
tan2(𝜙𝜙)+𝑥𝑥2+2

𝜋𝜋/2
0

1
0   



Another change of variable where y = tan(φ) so that dy = sec2(φ)dφ and therefore dφ = dy/(y2 + 1) 
and (0, π/2) → (0, ∞).  Therefore 

𝐼𝐼1 = ∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(𝑦𝑦2+𝑥𝑥2+2)(𝑦𝑦2+1)

∞
0

1
0   

Now use  on the inner integral (i.e., the one with respect to the y variable).  Remember the 
result of  it was π/[2ab(a + b)].  In our case, 𝑎𝑎2 = 𝑥𝑥2 + 2 and 𝑏𝑏2 = 1 and so the result of using 
 to evaluate the inner integral, we have 

𝐼𝐼1 = 𝜋𝜋
2 ∫

𝑑𝑑𝑑𝑑
�𝑥𝑥2+2��𝑥𝑥2+2+1�

1
0   

Stick with me, we’re getting there.  Next, multiply both numerator and denominator by 
√𝑥𝑥2 + 2 − 1.  Doing that gives 

𝐼𝐼1 = 𝜋𝜋
2 ∫

�𝑥𝑥2+2−1
�𝑥𝑥2+2��𝑥𝑥2+2+1���𝑥𝑥2+2−1�

𝑑𝑑𝑑𝑑1
0 = 𝜋𝜋

2 ∫
�𝑥𝑥2+2−1

�𝑥𝑥2+2(𝑥𝑥2+1)
𝑑𝑑𝑑𝑑 = 𝜋𝜋

2 ∫ � 1
𝑥𝑥2+1

− 1
�𝑥𝑥2+2(𝑥𝑥2+1)

�1
0

1
0 𝑑𝑑𝑑𝑑  

The first fraction in the integrand of I1 is π/4 (recognizable form of the inverse tangent) and the 
second fraction in that integrand is π/6 by the use of  above.  Hence we have our final result, 
namely 

𝑰𝑰𝟏𝟏 = � 𝐭𝐭𝐭𝐭𝐭𝐭−𝟏𝟏 ��
𝐜𝐜𝐜𝐜𝐜𝐜(𝟐𝟐𝟐𝟐)
𝟐𝟐cos𝟐𝟐(𝜽𝜽)� 𝒅𝒅𝒅𝒅 =

𝝅𝝅
𝟐𝟐
�
𝝅𝝅
𝟒𝟒
−
𝝅𝝅
𝟔𝟔
� =

𝝅𝝅𝟐𝟐

𝟐𝟐𝟐𝟐
     Q.E.D.

𝝅𝝅/𝟒𝟒

𝟎𝟎
 

Whew!  Quite a derivation and worthy of the crème de la crème chapter! 

     Now, consider the second Coxeter integral that we are going to derive.  We will call it I2. 

𝐼𝐼2 = ∫ cos−1 � cos(𝑥𝑥)
1+2cos(𝑥𝑥)

� 𝑑𝑑𝑑𝑑𝜋𝜋/2
0   

This derivation is so long and so complex, we are going to outline it as a series of steps 
(contained in the accompanying table) to perform before we actually do the mathematics.  In that 
way, the outline (or steps) provides a roadmap that allows one to follow without bogging down 
in the details of the actual algebraic and/or trigonometric manipulations required to arrive at the 
ultimate value. 

Step # Action 
1 Show that I2 = 4∫ tan−1 � cos(𝑢𝑢)

�2−3sin2(𝑢𝑢)
� 𝑑𝑑𝑑𝑑𝜋𝜋/4

0  

2 From step 1, show that I2 = 4∫ ∫ cos(𝑢𝑢)�2−3sin2(𝑢𝑢)
(𝑥𝑥2+2)−(3+𝑥𝑥2)sin2(𝑢𝑢)

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
0

𝜋𝜋/4
0  

3 From step 2, show that I2 = 8√3∫ ∫ cos2(𝜃𝜃)
𝑥𝑥2+2cos2(𝜃𝜃)(𝑥𝑥2+3)

1
0

𝜋𝜋/3
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

4 From step 3, show that I2 = 4√3∫ 1
𝑥𝑥2+3

�∫ 𝑑𝑑𝑑𝑑
1+𝑧𝑧2

− ∫ 𝑑𝑑𝑑𝑑
𝑧𝑧2+3+ 6

𝑥𝑥2

√3
0

√3
0 �1

0 𝑑𝑑𝑑𝑑 

5 From step 4, show that I2 = 2𝜋𝜋
2

9
− 4∫ 𝑥𝑥

(𝑥𝑥2+3)√𝑥𝑥2+2
tan−1 � 𝑥𝑥

√𝑥𝑥2+2
�1

0 𝑑𝑑𝑑𝑑 

6 From step 5, show that I2 = 5𝜋𝜋
2

24
 

 



     Alright, we are now ready to proceed with the details of step 1.  As shown in the statement of 
step 1 above, we are going to attempt to show that 

𝐼𝐼2 = 4∫ tan−1 � cos(𝜃𝜃)
�2−3sin2(𝜃𝜃)

� 𝑑𝑑𝑑𝑑.𝜋𝜋/4
0   

We will start with the simple trigonometric identity of the cosine of a double angle, that is, 

cos(2𝜃𝜃) = cos2(𝜃𝜃) − sin2(𝜃𝜃) = cos2(𝜃𝜃) − [1 − cos2(𝜃𝜃)] = 2cos2(𝜃𝜃) − 1  

What we need to do first is to establish a new trigonometric identity that says  

cos−1(2𝜃𝜃2 − 1) = 2 cos−1(𝜃𝜃) 

Actually, that’s pretty easy.  In our double angle identity above, temporarily let cos(θ) = k.  
Doing this implies that 

cos(2𝜃𝜃) = 2𝑘𝑘2 − 1     and     𝜃𝜃 = cos−1(𝑘𝑘)     as well as     2𝜃𝜃 = cos−1(2𝑘𝑘2 − 1) 

Now, substituting for θ in the last expression, we get 2 cos−1(𝑘𝑘) = cos−1(2𝑘𝑘2 − 1). 

 Since k is just an arbitrary symbol (or dummy variable), we can call it whatever we want.  The 
point is, we have now established the identity cos−1(2𝜃𝜃2 − 1) = 2 cos−1(𝜃𝜃).  Why did we need this 
new trigonometric identity?  Well, notice that the integrand of I2 (the integral we want to solve) 
has an inverse cosine function with an argument of cos(x)/[1 + 2cos(x)].  We are going to 
eventually use the new trigonometric identity to manipulate that integrand.  Let’s get to it.  To do 
so, we also need a new dummy variable.  This time let’s call it p.  Thus, 

𝑝𝑝 = 2𝜃𝜃2 − 1 ⟹ 𝜃𝜃 = �1+𝑝𝑝
2

  

And from our trigonometric identity we get 

cos−1(𝑝𝑝) = 2 cos−1 ��1+𝑝𝑝
2
�  

And our integral becomes 

𝐼𝐼2 = ∫ cos−1 � cos(𝑥𝑥)
1+2cos(𝑥𝑥)

� 𝑑𝑑𝑑𝑑 = 2∫ cos−1 ��
1+ cos(𝑥𝑥)

1+2cos(𝑥𝑥)

2
�𝜋𝜋/2

0
𝜋𝜋/2
0 𝑑𝑑𝑑𝑑 = 2∫ cos−1 ��1+3cos(𝑥𝑥)

2+4cos(𝑥𝑥)
� 𝑑𝑑𝑑𝑑 = 2∫ 𝜙𝜙𝜙𝜙𝜙𝜙𝜋𝜋/2

0
𝜋𝜋/2
0   

Now the value of an inverse trigonometric function, such as our inverse cosine in the integrand 
of I2 above, merely represents some angle which I have called φ.  Here is the aha moment for 
step 1. 

 



A right triangle with an acute angle of φ by the good old Pythagorean theorem would have sides 
as shown above.  As can be seen, φ could also be represented as 

𝜙𝜙 = tan−1 ��1+cos(𝑥𝑥)
1+3cos(𝑥𝑥)

�  

Therefore, we are justified in writing 

𝐼𝐼2 = 2∫ tan−1 ��1+cos(𝑥𝑥)
1+3cos(𝑥𝑥)

� 𝑑𝑑𝑑𝑑𝜋𝜋/2
0   

Now make the simple change of variable x = 2u, so that dx = 2du, and (0, π/2) → (0, π/4) and we 
have 

𝐼𝐼2 = 4∫ tan−1 �� 1+cos(2𝑢𝑢)
1+3cos(2𝑢𝑢)

� 𝑑𝑑𝑑𝑑𝜋𝜋/4
0 = 4∫ tan−1 � cos(𝑢𝑢)

�2−3sin2(𝑢𝑢)
� 𝑑𝑑𝑑𝑑𝜋𝜋/4

0   

This completes step 1.  The last integral is arrived at by using the trigonometric identity that we 
started with, i.e., the cosine of a double angle. 

     We are now ready to begin step 2, and we do so by recognizing the following 

∫ 𝑑𝑑𝑑𝑑
1+𝛼𝛼2𝑥𝑥2

= 1
𝛼𝛼2 ∫

𝑑𝑑𝑑𝑑
1
𝛼𝛼2

+𝑥𝑥2
= 1

𝛼𝛼2
[𝛼𝛼 tan−1(𝛼𝛼𝛼𝛼)]01 = 1

𝛼𝛼
tan−1(𝛼𝛼)1

0
1
0   

Now, if we let 𝛼𝛼 = cos(𝑢𝑢)
�2−3sin2(𝑢𝑢)

 which is the argument of the inverse tangent function in the latest 
incarnation of I2, we therefore have 

∫ 𝑑𝑑𝑑𝑑

1+� cos2(𝑢𝑢)
2−3sin2(𝑢𝑢)�𝑥𝑥

2
= �2−3sin2(𝑢𝑢)

cos(𝑢𝑢)
tan−1 � cos(𝑢𝑢)

�2−3sin2(𝑢𝑢)
�1

0   

Or, in-other-words, the integrand of I2 can be replaced with this formulation and I2, itself, 
becomes the following double integral 

𝐼𝐼2 = 4∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢)
�2−3sin2(𝑢𝑢)

�∫ 1

1+� cos2(𝑢𝑢)
2−3sin2(𝑢𝑢)�𝑥𝑥

2
𝑑𝑑𝑑𝑑1

0 � 𝑑𝑑𝑑𝑑 = 4∫ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐(𝑢𝑢)�2−3sin2(𝑢𝑢)�
�2−3sin2(𝑢𝑢)[2−3sin2(𝑢𝑢)+𝑥𝑥2cos2(𝑢𝑢)]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1
0

𝜋𝜋/4
0

𝜋𝜋/4
0   

This last integral can be written as the following which brings us to the end of step 2. 

𝐼𝐼2 = ∫ ∫ cos(𝑢𝑢)�2−3sin2(𝑢𝑢)
2−3sin2(𝑢𝑢)+𝑥𝑥2[1−sin2(𝑢𝑢)]

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =1
0

𝜋𝜋/4
0 4∫ ∫ cos(𝑢𝑢)�2−3sin2(𝑢𝑢)

(𝑥𝑥2+2)−(3+𝑥𝑥2)sin2(𝑢𝑢)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1

0
𝜋𝜋/4
0   

     To begin step 3, make a change of variable to the outer integral in the double integral of the 
previous step.  Let sin(u) = (⅔)½sin(θ).  Under this CV, we have cos(u)du = (⅔)½cos(θ)dθ and  
(0, π/4) → (0, π/3).  As a result, we obtain 

𝐼𝐼2 = 4∫ ∫
�23�

½
cos(𝜃𝜃)�2−3(⅔)sin2(𝜃𝜃)

(𝑥𝑥2+2)−⅔(3+𝑥𝑥2)sin2(𝜃𝜃)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 8

√3
∫ ∫ cos2(𝜃𝜃)

(𝑥𝑥2+2)−⅔(3+𝑥𝑥2)sin2(𝜃𝜃)
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑1

0
𝜋𝜋/3
0

1
0

𝜋𝜋/3
0   

This can be further simplified to arrive at the result we want for the conclusion of step 3. 

𝐼𝐼2 = 8√3∫ ∫ cos2(𝜃𝜃)
3𝑥𝑥2+6−2[𝑥𝑥2+3−𝑥𝑥2cos2(𝜃𝜃)−3cos2(𝜃𝜃)]

1
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜋𝜋/3

0 = 8√3∫ ∫ cos2(𝜃𝜃)
𝑥𝑥2+2cos2(𝜃𝜃)(𝑥𝑥2+3)

1
0

𝜋𝜋/3
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  



     As the initial action of step 4, make the following change of variable to the outer integral of 
I2.  Let z = tan(θ) so that dz = sec2(θ)dθ = dθ/cos2(θ) and (0, π/3) → (0, √3).  Further,                   
1 + z2 = tan2(θ) = sec2(θ) = 1/cos2(θ) ⇒ cos2(θ) = 1/(1 + z2) ⇒ dθ = dz/(1 + z2).  So, under this 
change of variable, I2 becomes 

𝐼𝐼2 = 8√3∫ ∫
1

1+𝑧𝑧2

𝑥𝑥2+2(𝑥𝑥2+3) 1
1+𝑧𝑧2

�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
1+𝑧𝑧2

�1
0

√3
0 = 8√3∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑥𝑥2(1+𝑧𝑧2)2+2(𝑥𝑥2+3)(1+𝑧𝑧2)
1
0

√3
0   

Factoring the common 1 + z2 term from the denominator, we obtain 

𝐼𝐼2 = 8√3∫ ∫ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
(1+𝑧𝑧2)(𝑥𝑥2𝑧𝑧2+3𝑥𝑥2+6)

1
0

√3
0   

Separating the integrand into partial fractions gives us the following expression for I2, 

𝐼𝐼2 = 8√3∫ ∫ �
1

2�𝑥𝑥2+3�

1+𝑧𝑧2
−

𝑥𝑥2

2�𝑥𝑥2+3�

𝑥𝑥2𝑧𝑧2+3𝑥𝑥2+6
�1

0
√3
0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

A bit of straight-forward algebraic manipulation along with a reversal of the order of integration 
gives us the following and the end of step 4. 

𝐼𝐼2 = 4√3∫ 1
𝑥𝑥2+3

�∫ 𝑑𝑑𝑑𝑑
1+𝑧𝑧2

− ∫ 𝑑𝑑𝑑𝑑
𝑧𝑧2+3+ 6

𝑥𝑥2

√3
0

√3
0 �1

0 𝑑𝑑𝑑𝑑  

The 1st inner integral is actually something that can finally be integrated.  It is the recognizable 
form of the inverse tangent function and therefore, we have 

𝐼𝐼2 = 4√3∫ 1
𝑥𝑥2+3

�[tan−1(𝑧𝑧)]0√
3 − ∫ 𝑑𝑑𝑑𝑑

𝑧𝑧2+3+ 6
𝑥𝑥2

√3
0 � 𝑑𝑑𝑑𝑑1

0 = 4√3∫ 1
𝑥𝑥2+3

�𝜋𝜋
3
− ∫ 𝑑𝑑𝑑𝑑

𝑧𝑧2+3+ 6
𝑥𝑥2

√3
0 � 𝑑𝑑𝑑𝑑1

0   

The 2nd inner integral is also an inverse tangent form, it’s just not as recognizable as the 1st was.  
However, if we write it as 

𝐼𝐼2 = 4√3∫ 1
𝑥𝑥2+3

�𝜋𝜋
3
− ∫ 𝑑𝑑𝑑𝑑

��3+ 6
𝑥𝑥2
�
2
+𝑧𝑧2

√3
0 �𝑑𝑑𝑑𝑑1

0   

We can now see that it is, indeed, an inverse tangent form.  We then have 

𝐼𝐼2 = 4√3∫ 1
𝑥𝑥2+3

�𝜋𝜋
3
− 1

�3+ 6
𝑥𝑥2

�tan−1 � 𝑧𝑧

�3+ 6
𝑥𝑥2

��

0

√3

�𝑑𝑑𝑑𝑑1
0 = 4√3∫ 1

𝑥𝑥2+3
�𝜋𝜋
3
− 𝑥𝑥

√3�𝑥𝑥2+2
tan−1 � 𝑥𝑥

�𝑥𝑥2+2
�� 𝑑𝑑𝑑𝑑1

0   

Well, we now have eliminated the double integral and reduced it back to a single integral which 
can now be written as two single integrals, ala 

𝐼𝐼2 = 4𝜋𝜋√3
3 ∫ 𝑑𝑑𝑑𝑑

𝑥𝑥2+3
− 4∫ 𝑥𝑥

(𝑥𝑥2+3)�𝑥𝑥2+2
tan−1 � 𝑥𝑥

�𝑥𝑥2+2
� 𝑑𝑑𝑑𝑑1

0
1
0   

And, the first of these two integrals is again the recognizable form of an inverse tangent.  Thus, 

𝐼𝐼2 = 4𝜋𝜋√3
3
� 1
√3

tan−1 � 𝑥𝑥
√3
��
0

1
− 4∫ 𝑥𝑥

(𝑥𝑥2+3)�𝑥𝑥2+2
tan−1 � 𝑥𝑥

�𝑥𝑥2+2
� 𝑑𝑑𝑑𝑑1

0   



And this, of course, simplifies to the following, which brings us to the end of step 5. 

𝐼𝐼2 = 2𝜋𝜋2

9
− 4∫ 𝑥𝑥

(𝑥𝑥2+3)�𝑥𝑥2+2
tan−1 � 𝑥𝑥

�𝑥𝑥2+2
� 𝑑𝑑𝑑𝑑1

0   

So all that is left, is to now evaluate this last messy-looking integral, which, if possible will bring 
this stupendous derivation to a conclusion.  Fortunately, it can be done and to do so we simply 
have to invoke our old stand-by methodology of integration by parts.  Let 

𝑢𝑢 = tan−1 � 𝑥𝑥
�𝑥𝑥2+2

� ⟹ 𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑

(𝑥𝑥2+1)�𝑥𝑥2+2
  and  𝑑𝑑𝑑𝑑 = 𝑥𝑥𝑥𝑥𝑥𝑥

(𝑥𝑥2+3)�𝑥𝑥2+2
⟹ 𝑣𝑣 = tan−1�√𝑥𝑥2 + 2�  

If you, dear reader, have trouble calculating du from u and/or v from dv, I suggest that you work 
backwards—that is, differentiate the expression for du and/or v to see that it/they is/are  
algebraically equivalent to u and/or dv. (I certainly had trouble writing this last sentence but I 
can’t work that backwards.)  My point is that you, dear reader, will at least be satisfied that du 
and dv are indeed correct.  Given that they are, the integration by parts gives us 

𝐼𝐼2 = 2𝜋𝜋2

9
− 4 �tan−1 � 1

�𝑥𝑥2+2
� tan−1�√𝑥𝑥2 + 2��

0

1
+ 4∫

tan−1��𝑥𝑥2+2�

(𝑥𝑥2+1)��𝑥𝑥2+2�
𝑑𝑑𝑑𝑑1

0   

Now, the value of the square-bracketed expression above is π2/18 and when multiplied by the 4 
we get 2π2/9 which exactly cancels with the like term in the expression for I2, and so we obtain 

𝐼𝐼2 = 4∫
tan−1��𝑥𝑥2+2�

(𝑥𝑥2+1)��𝑥𝑥2+2�
𝑑𝑑𝑑𝑑1

0   

Oh-my-gosh you might say, this remaining integral is much too difficult.  Not so!  We already 
did it!  Its Ahmed’s integral.  In the previous section of this chapter we evaluated that precise 
integral and found its value to be 5π2/96 and so we have 

𝐼𝐼2 = 4 �5𝜋𝜋
2

96
� = 5𝜋𝜋2

24
  

Or, ta-da 

𝑰𝑰𝟐𝟐 = � 𝐜𝐜𝐜𝐜𝐜𝐜−𝟏𝟏 �
𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)

𝟏𝟏 + 𝟐𝟐 𝐜𝐜𝐜𝐜𝐜𝐜(𝒙𝒙)� 𝒅𝒅𝒅𝒅 =
𝟓𝟓𝝅𝝅𝟐𝟐

𝟐𝟐𝟐𝟐
     Q.E.D.

𝝅𝝅/𝟐𝟐

𝟎𝟎
 

8.9  Rene Descartes 
     We are going to start out this section with a very simple integral, one that can be evaluated so 
easily that it can be done in one’s head.  Here it is 

𝐼𝐼 = ∫ 𝑥𝑥2

(1+𝑥𝑥3)2
𝑑𝑑𝑑𝑑∞

0   

A CV of u = 1 + x3 is enough to bring this integral to its knees:  That CV implies du = 3x2dx and 

(0, ∞) → (1, ∞).  Under the stated CV, = 1
3 ∫

𝑑𝑑𝑑𝑑
𝑢𝑢2

= 1
3 ∫ 𝑢𝑢−2𝑑𝑑𝑑𝑑 = 1

3
�− 1

𝑢𝑢
�
1

∞
= 1

3
∞
1

∞
1  .  Why does this 

simple integral merit inclusion in the Crème de la Crème chapter?  It’s the origin of this integral 
and what this integral leads us to that deserves this chapter; its origin and what follows is, I think, 



quite interesting.  You may be familiar with a classic curve of antiquity called The Folium of 
Descartes.  The figure below (figure 8-8) depicts a graph of this famous curve and gives its 
Cartesian equation.   

 
Figure 8-8.  The Folium of Descartes 

This curve was first discussed by Descartes in 1638; Descartes devised this curve to challenge 
Fermat’s tangent-finding techniques.  The challenge itself is another interesting bit of 
mathematical history which I will discuss subsequently.  But before we go any further with the 
origin of this simple integral and Descartes’ challenge, let’s talk a little bit about Descartes 
himself, certainly one of the titans of the mathematical past. 

 
Figure 8-9.  French Philosopher/Mathematician Rene Descartes (1596–1650) 

“It is not enough to have a good mind; the main thing is to use it well.”—Rene Descartes 

     Modern mathematics began with two great advances, analytic geometry and the calculus.  The 
man who finally crystallized the method of wedding algebra to geometrical proof was René 
Descartes.  Moreover, his persistent rational skepticism, his questioning of how one could ever 
know truth, has led to what we generally today call "the scientific method,"  i.e., controlled 
experiments based on the application of rigid mathematical reasoning. 

     His life spanned one of the greatest intellectual periods in the history of all civilization. To 
mention only a few of the giants, Fermat and Pascal were his contemporaries in mathematics.  
Shakespeare died when Descartes was twenty; Descartes outlived Galileo by eight years; and 
Newton was eight when Descartes died.  Descartes was twelve when Milton was born and 

javascript:window.close();


Harvey outlived Descartes by seven years.  Father Mersenne, the famous amateur of science and 
mathematics (famous for the Mersenne primes), was Descartes' older chum, schoolmate, and 
life-long friend.  Cardinal Richelieu was his supporter.  Descartes was a very well-rounded 
individual for this period of history. 

     The concept of analytic geometry came to Descartes in a dream on November 10, 1619; thus, 
this day marks the official birthday of modern mathematics.  Its formal debut to his 
contemporaries came on June 8, 1637, with the publication of La Géométrie as an appendix to 
his now famous Discours de la Méthode.  Descartes was then forty-one years old.  Descartes’ 
ground-breaking work of the invention of analytic geometry or coordinate geometry as it is 
sometimes called had the effect of allowing the conversion of geometry into algebra (and vice 
versa).  It allowed the development of Newton’s and Leibniz’s subsequent discoveries of 
calculus. It also unlocked the possibility of navigating geometries of higher dimensions, 
impossible to physically visualize -- a concept which was to become central to modern 
technology and physics -- thus transforming mathematics forever.   

     As Alfred North Whitehead said, “It is impossible not to feel stirred at the thought of the 
emotions of men at certain historic moments of adventure and discovery—Columbus when he 
first saw the Western shore, Pizarro when he stared at the Pacific Ocean, Franklin when the 
electric spark came from the string of the kite, Galileo when he first turned his telescope to the 
heavens.  Such moments are also granted to students in the abstract regions of thought, and high 
among them must be placed the morning when Descartes lay in bed and invented the method of 
coordinate geometry.” 

     As a soldier, Descartes joined armies and survived fierce battles.  As a gentleman and 
traveler, he visited most of the major sites of late Renaissance Europe.  As a teacher, he enjoyed 
the companionship of royalty.  He died in Stockholm of complications acquired while delivering 
5 AM instruction to Queen Christina of Sweden, the daughter of Gustavus Adolphus. 

     Now, let’s get back to the origin of the simple integral, designated I.  In a nut-shell, I arises as 
we attempt to compute the plane loop area of the Folium of Descartes.  In order to compute that 
area, we need a further understanding of the Folium of Descartes.  Recollect that the plane area 
bounded by a given curve may be obtained by 𝐴𝐴 = 1

2 ∫ 𝑟𝑟2𝑑𝑑𝑑𝑑𝛽𝛽
𝛼𝛼 , where r is the radial coordinate of a 

point on the curve, θ is the corresponding angular coordinate, and (α, β) is the angular interval of 
the plane where the curve area resides.  Well, we don’t have the polar form of the Folium of 
Descartes, but I know a quick way to get what we need.  Incongruously, a parametric form of the 
curve will get us there and we can easily get that by letting y = xt in the Cartesian form of the 
Folium (see figure 8-8). 

𝑦𝑦3 + 𝑥𝑥3 − 3𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑥𝑥3𝑡𝑡3 + 𝑥𝑥3 − 3𝑎𝑎𝑥𝑥2𝑡𝑡 = 𝑥𝑥3(𝑡𝑡3 + 1) − 3𝑎𝑎𝑥𝑥2𝑡𝑡 = 0  

This can now be solved for x as a function of t, giving us 𝑥𝑥 = 3𝑎𝑎𝑎𝑎
1+𝑡𝑡3

 and since y = xt, 𝑦𝑦 = 3𝑎𝑎𝑡𝑡2

1+𝑡𝑡3
.  Viola, 

we have derived a parametric relationship for the Folium of Descartes and it is 

(𝑥𝑥,𝑦𝑦) = 3𝑎𝑎𝑎𝑎
1+𝑡𝑡3

(1, 𝑡𝑡)     where     −∞ < 𝑡𝑡 < ∞  

http://www.storyofmathematics.com/17th_newton.html
http://www.storyofmathematics.com/17th_leibniz.html


Now recall that the square of the polar radial coordinate, i.e., r2, is basically defined as x2 + y2.  
That is, 

𝑥𝑥2 + 𝑦𝑦2 = � 3𝑎𝑎𝑎𝑎
1+𝑡𝑡3

�
2

+ �3𝑎𝑎𝑡𝑡
2

1+𝑡𝑡3
�
2

= 9𝑎𝑎2𝑡𝑡2+9𝑎𝑎2𝑡𝑡4

(1+𝑡𝑡3)2
= 9𝑎𝑎2𝑡𝑡2�1+𝑡𝑡2�

(1+𝑡𝑡3)2
  

Further, θ is defined as tan−1�𝑦𝑦𝑥𝑥�.  That is, 

𝜃𝜃 = tan−1 �
3𝑎𝑎𝑡𝑡2

1+𝑡𝑡3
3𝑎𝑎𝑎𝑎
1+𝑡𝑡3

� = tan−1(𝑡𝑡) ⟹𝑑𝑑𝑑𝑑 = 𝑑𝑑𝑑𝑑
1+𝑡𝑡2

  

Hence, we have as the area of the loop of the Folium of Descartes 

𝐴𝐴 = 1
2 ∫

9𝑎𝑎2𝑡𝑡2�1+𝑡𝑡2�
(1+𝑡𝑡3)2

∞
0 ∙ 𝑑𝑑𝑑𝑑

1+𝑡𝑡2
= 9𝑎𝑎2

2 ∫ 𝑡𝑡2𝑑𝑑𝑑𝑑
(1+𝑡𝑡3)2

∞
0   

Does this final integral look familiar?  It should because this integral is exactly I (with the 
exception of the 9a2/2 that pre-multiplies the integral).  Since we have already determined that 
this integral has a value of 1/3, we can conclude that the area of the loop portion of the Folium of 
Descartes is A = 3a2/2.  Wait-a-minute, you might ask, where the hell did the (0, ∞) interval of 
integration come from?  Re-examine the graph of the curve and note the following: 
 
The portion of the curve in the 4th quadrant is when x > 0 and y < 0 ⇒  ̶  ∞ <  t <   ̶ 1. 
The portion of the curve in the 2nd quadrant is when x < 0 and y > 0 ⇒  ̶ 1 < t < 0. 
The portion of the curve in the 1st quadrant (i.e., the loop) is when x > 0 and y > 0 ⇒ 0 < t < ∞. 
 
     Having computed the area of the loop of the Folium of Descartes allows one to immediately 
conclude that 

∫ sin2(𝜃𝜃)cos2(𝜃𝜃)
[sin3(𝜃𝜃)+cos3(𝜃𝜃)]2

𝑑𝑑𝑑𝑑 = 1
3

𝜋𝜋/2
0   

 
Where in the world does this come from?  Transform the Cartesian equation of the folium to 
polar coordinates by substituting x = rcos(θ) and y = rsin(θ), solving for r.  Doing so, one obtains 
 

𝑟𝑟 = 3𝑎𝑎 sin(𝜃𝜃) cos(𝜃𝜃)
sin3(𝜃𝜃)+cos3(𝜃𝜃)

  

 
Squaring that result and plugging it into the plane area formula and integrating over the 1st 
quadrant, we obtain 

𝐴𝐴 = 9𝑎𝑎2

2 ∫ sin2(𝜃𝜃)cos2(𝜃𝜃)
[sin3(𝜃𝜃)+cos3(𝜃𝜃)]2

𝜋𝜋/2
0 𝑑𝑑𝑑𝑑  

 
However, we already know that the area of the loop is 3a2/2.  Therefore, the integral is 1/3. 
 
     Alright, that’s pretty interesting math and unconventional integration which, if you remember, 
is the subject of this book; however it’s going to get even more interesting math-wise.  But you 
will have to wait for that, because I feel that a slight digression is necessary here to talk about the 
Descartes/Fermat challenge. 
 



     The 17th Century was a century rich in mathematical discoveries, but it was also rich in 
mathematical discussion and controversies.  Today, mathematical discussion and controversies 
take the form of mathematical seminars and publications, but back in the 17th century, 
mathematical controversies took the form of challenges.  That is, one mathematician in 
possession of a problem and a solution to the problem, challenges a colleague or even the whole 
scientific community to solve the problem (the challenger may even pretend to not have the 
solution).  One of the more famous confrontations to take place was between Descartes and 
Fermat over the problem of finding and/or constructing tangents to a curve.  Remember, this is 
years before Newton and Leibniz solved this very problem analytically by inventing Differential 
Calculus. There evidently was a correspondence between Descartes and Fermat and in those 
letters, Fermat claimed to have a method that always worked.  Descartes did not fully understand 
Fermat’s method and thought his own method to be superior.  So, following the protocol of the 
times, Descartes challenged Fermat to find tangents to an especially complicated curve that he 
(Descartes) had invented.  Today, we know that curve as The Folium of Descartes.  (Folium, of 
course, means leaf and that comes from the 1st quadrant loop that is part of the curve.  By-the-
way, the rest of the curve is known as the wings, the left-upper wing in the 2nd quadrant and the 
lower right wing in the 4th quadrant.)  Descartes was very proud of his own method of tangent 
construction and evidently felt confident that Fermat could not possibly answer the challenge 
correctly.  After all, Fermat was not even a professional mathematician; he was an amateur 
whose avocation was mathematics; he was a judge by vocation.  Well, Fermat accepted the 
challenge and when Fermat subsequently provided the required tangents not only at the folium’s 
vertex, but at any other point on the curve, Descartes was obliged to acknowledge the superiority 
of Fermat’s method.  Descartes’ method worked on the folium but only at the vertex.  Well, as 
they say, “You win some and you lose some.”  Descartes was, of course very embarrassed, but 
his reputation was already so great that it certainly didn’t damage him in any respect. 
 
     Now, let’s get back to this fascinating mathematics.  It’s really good stuff!  We know the area 
of the Folium’s loop; remember, it is 3a2/2.  In the Folium’s original incarnation by Descartes, 
the loop is symmetric about the line y = x; this line bisects the 1st quadrant with a slope of 45⁰.  If 
we were to rotate (within the x-y plane) the Folium by 45⁰ clockwise, the loop would then be 
bisected by the positive x-axis, however, its area would still be the same.  In-other-words, the 
curve’s orientation would change, as well as its equations, but not its shape or size; the loop area 
would remain as is—invariant with respect to the rotation.  If we can figure out what the new 
equations will be, we may be able to set up an area integral for the loop based on this new 
equation for which we already know the value, namely 3a2/2.  If that’s not unconventional 
integration, I don’t know what you call it. 
 
    If the coordinates of the rotated curve are denoted by xʹ and yʹ, then rotation of the Folium of 
Descartes by 45⁰ is equivalent to 𝑥𝑥 = 𝑥𝑥′+𝑦𝑦′

√2
 and 𝑦𝑦 = 𝑥𝑥′−𝑦𝑦′

√2
 where sin(45⁰) = cos(45⁰) = 1

√2
.  So, 

substituting these values of x and y into the equation for the Folium, we obtain, after 
simplification  

𝑦𝑦′ = ±𝑥𝑥′�3𝑎𝑎√2−2𝑥𝑥′

6𝑥𝑥′+3𝑎𝑎√2
  

as the equation of the rotated Folium (see figure 8-10 where we have done away with the prime 
notation, i.e., 𝑥𝑥′,𝑦𝑦′, and use just x, y). 
 



 
Figure 8-10.  The Folium of Descartes rotated 45⁰ Clockwise 

 
If we think of the portion of the loop above the x-axis as composed of a multitude of very thin 
rectangles of height y, width dx and therefore of area dA = ydx, the integral we are trying to 
obtain is then 
 

∫ 𝑥𝑥�3𝑎𝑎√2−2𝑥𝑥
6𝑥𝑥+3𝑎𝑎√2

𝑑𝑑𝑑𝑑.
3𝑎𝑎√2
2

0   
 

However, this is only the area of the loop above the x-axis; the total area is simply twice the 
integral due to symmetry.  As a result, we have this very exotic integral for which we know the 
value, namely: 
 

𝑰𝑰 = � 𝒙𝒙�
𝟑𝟑𝟑𝟑√𝟐𝟐 − 𝟐𝟐𝟐𝟐
𝟔𝟔𝟔𝟔 + 𝟑𝟑𝟑𝟑√𝟐𝟐

𝒅𝒅𝒅𝒅 =
𝟑𝟑𝒂𝒂𝟐𝟐

𝟒𝟒
     Q.E.D.

𝟑𝟑𝟑𝟑√𝟐𝟐
𝟐𝟐

𝟎𝟎
 

 
    It is interesting to attempt to derive the value of this exotic integral above by direct means; and 
it can be done but requires a great deal of perseverance.  Let’s do it!  Dividing both numerator 
and denominator by 2, we obtain 

𝐼𝐼 = ∫ 𝑥𝑥�
3𝑎𝑎√2
2 −𝑥𝑥

3𝑥𝑥+3𝑎𝑎√22

𝑑𝑑𝑑𝑑.
3𝑎𝑎√2
2

0   

Now, let b temporarily denote the constant 3𝑎𝑎√2 2⁄  which will save us a lot of writing as we 
proceed.  When we are finished, we will replace b by its value.  So, we have 

𝐼𝐼 = ∫ 𝑥𝑥� 𝑏𝑏−𝑥𝑥
3𝑥𝑥+𝑏𝑏

𝑑𝑑𝑑𝑑𝑏𝑏
0   



Making the radical portion of this integrand disappear would seem to be a prudent step and that 
can be done with a change of variable, i.e., let 𝑢𝑢 = � 𝑏𝑏−𝑥𝑥

3𝑥𝑥+𝑏𝑏
.  Thus, 𝑥𝑥 = 𝑏𝑏�1−𝑢𝑢2�

1+3𝑢𝑢2
 and after a long and 

tedious differentiation, 𝑑𝑑𝑑𝑑 = −8𝑏𝑏𝑏𝑏
(1+3𝑢𝑢2)2

𝑑𝑑𝑑𝑑 and don’t forget, (0, b) → (1, 0).  Our integral I then 
becomes  

𝐼𝐼 = 23𝑏𝑏2 ∫ 𝑢𝑢2�1−𝑢𝑢2�
(1+3𝑢𝑢2)3

𝑑𝑑𝑑𝑑1
0   

Breaking this integrand up into partial fractions results in the following 
 

𝐼𝐼 = 23𝑏𝑏2

32 ∫ � 5
(1+3𝑢𝑢2)2

− 1
1+3𝑢𝑢2

− 4
(1+3𝑢𝑢2)3

� 𝑑𝑑𝑑𝑑1
0 = 23∙5𝑏𝑏2

32 ∫ 𝑑𝑑𝑑𝑑
(1+3𝑢𝑢2)2

− 23𝑏𝑏2

32
1
0 ∫ 𝑑𝑑𝑑𝑑

1+3𝑢𝑢2
− 25𝑏𝑏2

32 ∫ 𝑑𝑑𝑑𝑑
(1+3𝑢𝑢2)3

1
0

1
0   

 
As we have learned in a previous chapter, denominators of this form generally call for a change 
of variable involving the tangent of the new variable, that is, in this case, √3𝑢𝑢 = tan(𝜃𝜃).  Under 
that CV, 1 + 3u2 = 1 + tan2(θ) = sec2(θ), while 𝑑𝑑𝑑𝑑 =  1

√3
sec2(θ)𝑑𝑑𝑑𝑑 and (0, 1) → (0, π/3).  We 

thus obtain, 
𝐼𝐼 = 23∙5𝑏𝑏2

32√3
∫ cos2(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋 3⁄
0 − 23𝑏𝑏2

32√3
∫ 𝑑𝑑𝑑𝑑 − 25𝑏𝑏2

32√3
∫ cos4(𝜃𝜃)𝑑𝑑𝑑𝑑𝜋𝜋/3
0

𝜋𝜋/3
0   

 
I am going to call these last three integrals I1, I2, and I3 respectively.  We will evaluate each 
separately and then put the whole thing back together when done.  Thus 
 

𝐼𝐼1 = ∫ cos2(𝜃𝜃)𝜋𝜋/3
0 𝑑𝑑𝑑𝑑 = ∫ �1

2
+ 1

2
cos(2𝜃𝜃)� 𝑑𝑑𝑑𝑑𝜋𝜋/3

0 = 𝜋𝜋
2∙3

+ √3
23

       and       𝐼𝐼2 = ∫ 𝑑𝑑𝑑𝑑𝜋𝜋/3
0 = 𝜋𝜋

3
     while       

 

𝐼𝐼3 = ∫ cos4(𝜃𝜃)𝑑𝑑𝑑𝑑 = ∫ �1
2

+ 1
2

cos(2𝜃𝜃)�
2
𝑑𝑑𝑑𝑑𝜋𝜋/3

0
𝜋𝜋/3
0 = ∫ �1

4
+ 1

2
cos(2𝜃𝜃) + 1

4
cos2(2𝜃𝜃)� 𝑑𝑑𝑑𝑑𝜋𝜋/3

0   
 

If you’ve been paying attention, you can see where I3 is going; the first two terms above can be 
integrated by elementary means and the third term can be integrated the same way we did I1 
above.  Having done that, one obtains 

𝜋𝜋
23

+ 7√3
26

  
Now, of course, we must multiply each of these results by the leading coefficients of I1, I2, and 
I3, respectively.  As a result, we have 
 

𝐼𝐼 = 23∙5𝑏𝑏2

32√3
� 𝜋𝜋
2∙3

+ √3
23
� − 23𝑏𝑏2

32√3
�𝜋𝜋
3
� − 25𝑏𝑏2

32√3
� 𝜋𝜋
23

+ 7√3
26
�  

 
The best way to proceed at this point is to factor as much as possible out of the three terms 
above, that is, 

𝐼𝐼 = 23𝑏𝑏2

32√3
�5 � 𝜋𝜋

2∙3
+ √3

23
� − 𝜋𝜋

3
− 22 � 𝜋𝜋

23
+ 7√3

26
�� = 23𝑏𝑏2

32√3
�5√3
23

− 7√3
24
� = 23𝑏𝑏2

32√3
�3√3
24
� = 𝑏𝑏2

2∙3
  

 
But remember, we temporarily set 𝑏𝑏 = 3𝑎𝑎√2/2.  Thus, we get the final value and it agrees with 
what we know it should be: 

𝑰𝑰 =
𝟑𝟑𝒂𝒂𝟐𝟐

𝟒𝟒
     Q.𝐄𝐄.𝐃𝐃.  

     Finally, before leaving the subject of this amazing curve known as the Folium of Descartes, 
there is at least one more calculation that I would like to address.  It also deals with the loop of 
the Folium.  It occurs to me, that since we have managed to rotate the folium so that its loop lies 



bisected by the x-axis and further, derived equations that represent the rotated curve, there is no 
reason why an integral can’t be formulated that represents the volume of the SOR formed when 
that loop is revolved about the x-axis and, of course, if that integral can be evaluated, we will 
then have the actual volume of the solid when rotated about the line y = x, since just as the 
rotated loop’s area is the same as the non-rotated loop, the same can be said for the volume—
invariant with respect to the 45⁰ clockwise rotation of the Folium of Descartes.  In all the 
literature sources that I have perused in my studies of the folium, I have never come across 
mention of the volume of this solid.  This may be new territory!  See figure 8-11 for the set-up 
for the volume of this solid of revolution. 

     From figure 8-11, we see that the volume integral is 

𝑉𝑉 = 𝜋𝜋 ∫ 𝑥𝑥2 �3𝑎𝑎√2−2𝑥𝑥
6𝑥𝑥+3𝑎𝑎√2

� 𝑑𝑑𝑑𝑑
3𝑎𝑎√2
2

0   

It turns out, this integral can indeed be evaluated thereby yielding up the volume, however, it is a 
rather messy calculation.  Let’s do it anyway.  We can make our job a bit easier if we first divide 
both the numerator and denominator of the fraction in the integrand by 2, which gives 

𝑉𝑉 = 𝜋𝜋 ∫ 𝑥𝑥2 �
3𝑎𝑎√2
2 −𝑥𝑥

3𝑥𝑥+3𝑎𝑎√22

� 𝑑𝑑𝑑𝑑
3𝑎𝑎√2
2

0   

 

Figure 8-11.  The Solid of Revolution from the loop of the Folium of Descartes 

     If we now let the constant 3𝑎𝑎√22 =𝑛𝑛, it will save a lot of unnecessary calculating and writing.  
When we are done, we will substitute back what we have set n equal to.  So our volume integral 
is now 

𝑉𝑉 = 𝜋𝜋 ∫ 𝑥𝑥2 � 𝑛𝑛−𝑥𝑥
3𝑥𝑥+𝑛𝑛

� 𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑛𝑛 ∫ 𝑥𝑥2𝑑𝑑𝑑𝑑
3𝑥𝑥+𝑛𝑛

− 𝜋𝜋 ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑
3𝑥𝑥+𝑛𝑛

𝑛𝑛
0

𝑛𝑛
0

𝑛𝑛
0 = 𝐼𝐼1 − 𝐼𝐼2  



We are simply calling these last two integrals I1 and I2 and we will evaluate each separately.  For 
I1, make the change of variable u = 3x + n so that du = 3dx and (0, n) → (n, 4n).  Further,            
x = ⅓(u – n).  As a result, we have 

𝐼𝐼1 = 𝑛𝑛𝑛𝑛
32 ∫

(𝑢𝑢−𝑛𝑛)2

𝑢𝑢
𝑑𝑑𝑑𝑑
3

= 𝑛𝑛𝑛𝑛
33 ∫

𝑢𝑢2−2𝑛𝑛𝑛𝑛+𝑛𝑛2

𝑢𝑢
𝑑𝑑𝑑𝑑 = 𝑛𝑛𝑛𝑛

33 ∫ �𝑢𝑢 − 2𝑛𝑛 + 𝑛𝑛2

𝑢𝑢
�4𝑛𝑛

𝑛𝑛
4𝑛𝑛
𝑛𝑛

4𝑛𝑛
𝑛𝑛 𝑑𝑑𝑑𝑑  

The last term can be broken into three integrals each of which can easily be evaluated.  We get 

𝐼𝐼1 = 𝑛𝑛𝑛𝑛
33
�1
2
𝑢𝑢2�

𝑛𝑛

4𝑛𝑛
− �2𝑛𝑛

2𝜋𝜋𝜋𝜋
33

�
𝑛𝑛

4𝑛𝑛
+ �𝑛𝑛

3𝜋𝜋 log(𝑢𝑢)
33

�
𝑛𝑛

4𝑛𝑛
  

Doing all the arithmetic and simplifying, we obtain the following expression for I1 

𝐼𝐼1 = 𝑛𝑛3𝜋𝜋
2∙33

(3 + 4 log 2).  

Before going any further, let’s now turn our attention to I2. 

𝐼𝐼2 = 𝜋𝜋 ∫ 𝑥𝑥3𝑑𝑑𝑑𝑑
3𝑥𝑥+𝑛𝑛

𝑛𝑛
0   

The same change of variable as used on I1 will suffice for I2, giving us 

𝐼𝐼2 = 𝜋𝜋
34 ∫

𝑢𝑢3−3𝑛𝑛𝑢𝑢2+3𝑛𝑛2𝑢𝑢−𝑛𝑛3

𝑢𝑢
𝑑𝑑𝑑𝑑 = 𝜋𝜋

34 ∫ �𝑢𝑢2 − 3𝑛𝑛𝑛𝑛 + 3𝑛𝑛2 − 𝑛𝑛3

𝑢𝑢
� 𝑑𝑑𝑑𝑑4𝑛𝑛

𝑛𝑛
4𝑛𝑛
𝑛𝑛   

And, just like I1, each term of I2’s integrand can be written as separate integrals that are easily 
evaluated, giving us 

𝐼𝐼2 = � 𝜋𝜋
35
𝑢𝑢3�

𝑛𝑛

4𝑛𝑛
− � 𝑛𝑛𝑛𝑛

2∙33
𝑢𝑢2�

𝑛𝑛

4𝑛𝑛
+ �𝑛𝑛

2𝜋𝜋
33
𝑢𝑢�

𝑛𝑛

4𝑛𝑛
− �𝑛𝑛

3𝜋𝜋
34

log(𝑢𝑢)�
𝑛𝑛

4𝑛𝑛
= 𝑛𝑛3𝜋𝜋

2∙34
(15 − 4 log 2)  

Now, 

𝑉𝑉 = 𝐼𝐼1 − 𝐼𝐼2 = 𝑛𝑛3𝜋𝜋
3 4 (8 log 2 − 3)  

We are not done.  Don’t forget, we have to substitute back for n.  We initially set 𝑛𝑛 = 3𝑎𝑎√2
2 .  

Therefore, 

𝑛𝑛3 = 33𝑎𝑎3∙2√2
23

= 33√2𝑎𝑎3

22
  

Finally, the volume of the solid formed by the loop of the Folium of Descartes when rotated 
about its line of symmetry is 

𝑽𝑽 = 𝝅𝝅� 𝒙𝒙𝟐𝟐 �
𝟑𝟑𝟑𝟑√𝟐𝟐 − 𝟐𝟐𝟐𝟐
𝟔𝟔𝟔𝟔 + 𝟑𝟑𝟑𝟑√𝟐𝟐

�𝒅𝒅𝒅𝒅
𝟑𝟑𝟑𝟑√𝟐𝟐
𝟐𝟐

𝟎𝟎
=
𝒂𝒂𝟑𝟑𝝅𝝅√𝟐𝟐
𝟐𝟐𝟐𝟐 ∙ 𝟑𝟑

[𝟖𝟖 𝐥𝐥𝐥𝐥𝐥𝐥(𝟐𝟐) − 𝟑𝟑]     Q.E.D.  

 

 

 

 



Appendix A 
     This appendix contains material related to the solution of I4 of Chapter 6—the chapter where 
the solution to the integral on the title page resides.  This integral was first solved by Laplace 
however I wrote about Gauss instead of Laplace when introducing the solution to this integral.  
Let’s look at what Laplace did to evaluate I4 of Chapter 6.  He was absolutely brilliant and here 
is how he solved this integral.  I will re-label this integral as I1 in keeping with the book’s format. 

Example A-1.  𝑰𝑰𝟏𝟏 = ∫ 𝒆𝒆−𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅  (the Laplace solution)∞
𝟎𝟎  

     Laplace solved I1 (above) in the following manner.  He started, just as we did in Chapter 6 
with 

(𝐼𝐼1)2 = � � 𝑒𝑒−�𝑥𝑥2+𝑦𝑦2�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
∞

0

∞

0
 

Now, however, Laplace deviates from what our thinking was in Chapter 6—Laplace thought 
change of variable of the outer integral (i.e., the integral with respect to the variable y).  Let y = 
xu, so that dy = xdu.  WHAT?  Why isn’t it dy = xdu + udx after all, x is a variable?  Yes, x is a 
variable, but for the integration with respect to y, x is kept constant.  You can liken it to taking a 
partial derivative, but in reverse!  (This has to be Laplace’s aha moment.) Hence, 

(𝐼𝐼1)2 = � �� 𝑥𝑥𝑒𝑒−𝑥𝑥2�1+𝑢𝑢2�𝑑𝑑𝑑𝑑
∞

0
�𝑑𝑑𝑑𝑑

∞

0
 

Now the inner integral is tractable and we get 

(𝐼𝐼1)2 = � �
𝑒𝑒−𝑥𝑥2�1+𝑢𝑢2�

−2(1 + 𝑢𝑢2)�
0

∞

𝑑𝑑𝑑𝑑 =
1
2
�

𝑑𝑑𝑑𝑑
1 + 𝑢𝑢2

∞

0

∞

0
 

Aha, this last integral is, of course, the recognizable form for the inverse tangent function, so we 
ultimately have,   

(𝐼𝐼1)2 = �
tan−1(𝑢𝑢)

2
�
0

∞

=
𝜋𝜋
4

 and therefore, 𝐼𝐼1 =
√𝜋𝜋
2

  as expected. 

Not very complex, but it took a mind like Laplace to show us the way.  By-the-way, note that the 
function 𝑒𝑒−𝑥𝑥2 is symmetric about the y-axis and, as a result, ∫ 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑑𝑑∞

−∞ = 2𝐼𝐼1 = √𝜋𝜋   

Let’s address a bit about Laplace; a very interesting and brilliant scientist.   

 
Figure A-1.  French mathematician Pierre-Simon, marquis de Laplace (1749-1827) 

javascript:window.close();


     Laplace was one of the greatest scientists of all time, sometimes referred to as the French 
Newton or Newton of France; he possessed a phenomenal natural mathematical faculty superior 
to that of any of his contemporaries. His work was important to the development of mathematics, 
statistics, physics, and astronomy. He summarized and extended the work of his predecessors in 
his five-volume Mécanique Céleste (Celestial Mechanics). This work translated the geometric 
study of classical mechanics to one based on calculus, opening up a broader range of problems. 
In statistics, the Bayesian interpretation of probability was developed mainly by Laplace. 
Laplace formulated Laplace's Equation, and pioneered what is today termed the Laplace 
transform.  If he had done nothing else but this Laplace transform he would be remembered and 
famous.  The Laplace transform is, among many other uses, a method of solving differential 
equations by transforming them to algebraic equations which are then easier to solve and then 
performing the inverse transform on the algebraic solution to arrive at the solution to the original 
differential equation.  An absolutely amazing, magical idea!  Oh, and by-the-way, the Laplace 
transform takes the form of a properly improper integral.     

Example A-2.  𝑰𝑰𝟐𝟐 = ∫ 𝒅𝒅𝒅𝒅
�− 𝐥𝐥𝐥𝐥𝐥𝐥(𝒙𝒙)

𝟏𝟏
𝟎𝟎  

     I know, I know, in the denominator of the integrand it looks like we are taking the square root 
of a negative number—look again.  The interval of integration is (0, 1) and the natural logarithm 
of any number in that range is itself negative and since we are negating a negative number, all is 
copasetic. 

     Sometimes, one can also derive some spectacular looking results by simply making a 
substitution of the integration variable on an already known result.  Take I1 above and make the 
substitution 𝑢𝑢 = 𝑒𝑒−𝑥𝑥2 .  Under that substitution, log(𝑢𝑢) = −𝑥𝑥2 ⇒ 𝑥𝑥 = (− log𝑢𝑢)1 2⁄  and 

𝑑𝑑𝑑𝑑 = − 𝑑𝑑𝑑𝑑
2𝑢𝑢�− log(𝑢𝑢)

.  Also, (0, ∞) → (1, 0).  Putting this all back under the integral sign, we have the 
stunning result 

𝑰𝑰𝟐𝟐 = �
𝒅𝒅𝒅𝒅

�− 𝐥𝐥𝐥𝐥𝐥𝐥𝒙𝒙
=  √𝝅𝝅 

𝟏𝟏

𝟎𝟎

 

   

Example A-3.  𝑰𝑰𝟑𝟑 = ∫ 𝒆𝒆−𝒂𝒂(𝒙𝒙+𝒃𝒃)𝟐𝟐𝒅𝒅𝒅𝒅  𝒂𝒂,𝒃𝒃 𝝐𝝐 ℝ∞
−∞  

     This integral looks a bit more complex than I1; however, it literally falls apart under a CV of 
√𝑎𝑎(𝑥𝑥 + 𝑏𝑏) = 𝑢𝑢 ⇒ 𝑢𝑢 = √𝑎𝑎 ∙ 𝑥𝑥 + √𝑎𝑎 ∙ 𝑏𝑏 ⇒ 𝑑𝑑𝑑𝑑 = √𝑎𝑎 ∙ 𝑑𝑑𝑑𝑑.  Further, 𝑢𝑢2 = 𝑎𝑎(𝑥𝑥 + 𝑏𝑏)2 and the 
integration interval remains unchanged, i.e., (‒∞, +∞) → (‒∞, +∞).  Therefore, we have a very 
interesting result.  The value of I3 is completely independent of the value of the parameter b. 

𝐼𝐼3 = �
𝑒𝑒−𝑢𝑢2

√𝑎𝑎
𝑑𝑑𝑑𝑑 =

1
√𝑎𝑎

� 𝑒𝑒−𝑢𝑢2𝑑𝑑𝑑𝑑 =
2
√𝑎𝑎

𝐼𝐼1 = �
𝜋𝜋
𝑎𝑎

     
∞

−∞

∞

−∞
 

Hence, we know that  



𝑰𝑰𝟑𝟑 = � 𝒆𝒆−𝒂𝒂𝒙𝒙𝟐𝟐𝒅𝒅𝒅𝒅 = �
𝝅𝝅
𝒂𝒂

      𝐐𝐐.𝐄𝐄.𝐃𝐃.
∞

−∞
 

Now, differentiate both sides of the result immediately above with respect to the parameter a and 
we have 

𝑑𝑑(𝐼𝐼3)
𝑑𝑑𝑑𝑑

= � 𝑥𝑥2𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑 =
√𝜋𝜋

2𝑎𝑎3 2⁄

∞

−∞
 

Differentiate again, and 

𝑑𝑑2(𝐼𝐼3)
𝑑𝑑𝑎𝑎2

= � 𝑥𝑥4𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑 =
3√𝜋𝜋

22𝑎𝑎5 2⁄

∞

−∞
 

And again, 

𝑑𝑑3(𝐼𝐼3)
𝑑𝑑𝑎𝑎3

= � 𝑥𝑥6𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑 =
3 ∙ 5√𝜋𝜋
23𝑎𝑎7 2⁄

∞

−∞
 

Of course, we can keep doing this ad infinitum, but, at this point, I think we can write down a 
general result.  That is 

𝑑𝑑𝑛𝑛(𝐼𝐼3)
𝑑𝑑𝑎𝑎𝑛𝑛

= � 𝑥𝑥2𝑛𝑛𝑒𝑒−𝑎𝑎𝑥𝑥2𝑑𝑑𝑑𝑑 =
(2𝑛𝑛 − 1)‼√𝜋𝜋
2𝑛𝑛𝑎𝑎(2𝑛𝑛+1) 2⁄

∞

−∞
  where 𝑛𝑛 𝜖𝜖 ℕ+ 

What is the point of all of this?  Well, take a good look at this last integral; it’s quite complex 
and all as a result of having initially solved I1, the integral responsible for this book.  That’s quite 
remarkable.  The lesson to be learned is that one simple result can lead to many extraordinary 
findings.  Let’s continue with this delectable material. 

Example A-4.  𝑰𝑰𝟒𝟒 = ∫ 𝒆𝒆−𝒂𝒂𝒙𝒙𝟐𝟐−𝒃𝒃 𝒙𝒙𝟐𝟐⁄∞
𝟎𝟎 𝒅𝒅𝒅𝒅 

     Consider I4 in the form 𝐼𝐼4 = ∫ 𝑒𝑒−�𝑎𝑎𝑥𝑥2+𝑏𝑏 𝑥𝑥2⁄ �𝑑𝑑𝑑𝑑.∞
0   Note that when a = 1 and b = 0, I4 reduces 

to I1.  To start with, make a CV of x = u/a½ so that dx = du/a½ and (0, ∞) → (0, ∞).  Thus, under 
this CV, we have 

𝐼𝐼4 =
1
√𝑎𝑎

� 𝑒𝑒−�𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ �𝑑𝑑𝑑𝑑  or  √𝑎𝑎𝐼𝐼4 = � 𝑒𝑒−�𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ �𝑑𝑑𝑑𝑑
∞

0

∞

0
 

Now we are going to make another CV, and you may ask, why not combine it with the previous 
CV and do it all in one-fell-swoop?  The reason is that we want to preserve the last incarnation of 
√𝑎𝑎I4 immediately above so that we can add it to the result of this upcoming CV.  Bear with me, 
and you will soon see how this develops (it’s damn clever).  Let 𝑢𝑢 = √𝑎𝑎𝑎𝑎

𝑦𝑦  so that 𝑑𝑑𝑑𝑑=−√𝑎𝑎𝑎𝑎
𝑦𝑦2

𝑑𝑑𝑑𝑑 and 𝑢𝑢2=𝑎𝑎𝑎𝑎
𝑦𝑦2

.  
Further, (0, ∞) → (∞, 0).  This gives us 

√𝑎𝑎𝐼𝐼4 = � 𝑒𝑒−�𝑎𝑎𝑎𝑎 𝑦𝑦2+𝑦𝑦2⁄ � �−
√𝑎𝑎𝑎𝑎
𝑦𝑦2

𝑑𝑑𝑑𝑑� = √𝑎𝑎𝑎𝑎�
𝑒𝑒−�𝑦𝑦2+𝑎𝑎𝑎𝑎 𝑦𝑦2⁄ �

𝑦𝑦2
𝑑𝑑𝑑𝑑

∞

0

0

∞
 

Now comes the aforementioned addition 



2√𝑎𝑎𝐼𝐼4 = � 𝑒𝑒−(𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ )𝑑𝑑𝑑𝑑
∞

0
+ √𝑎𝑎𝑎𝑎�

𝑒𝑒−(𝑦𝑦2+𝑎𝑎𝑎𝑎 𝑦𝑦2⁄ )

𝑦𝑦2 𝑑𝑑𝑑𝑑
∞

0
 

Now do you see what’s happening?  Look at the exponent in each integrand.  Except for the fact 
that the first is in terms of the variable named u and the second is in terms of the variable named 
y, they are both the same.  Can you now guess what’s coming next?  It’s dummy variable time 
once again.  Let’s call the variable in the 2nd integral above u instead of y, and when we do we 
have,  

2√𝑎𝑎𝐼𝐼4 = � 𝑒𝑒−�𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ �𝑑𝑑𝑑𝑑 + √𝑎𝑎𝑎𝑎�
𝑒𝑒−�𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ �

𝑢𝑢2
𝑑𝑑𝑑𝑑 = � 𝑒𝑒−�𝑢𝑢2+𝑎𝑎𝑎𝑎 𝑢𝑢2⁄ � �1 +

√𝑎𝑎𝑎𝑎
𝑢𝑢2

�𝑑𝑑𝑑𝑑
∞

0

∞

0

∞

0
 

Aha, one last CV and we’re home.  Let 𝑥𝑥 = 𝑢𝑢 − √𝑎𝑎𝑎𝑎
𝑢𝑢  so that 𝑑𝑑𝑑𝑑 = �1 + √𝑎𝑎𝑎𝑎

𝑢𝑢2
�𝑑𝑑𝑑𝑑.  And further,      

(0, ∞) → (‒∞, ∞).  Note also that  

𝑥𝑥2 = �𝑢𝑢 −
√𝑎𝑎𝑎𝑎
𝑢𝑢
�
2

= 𝑢𝑢2 − 2√𝑎𝑎𝑎𝑎 +
𝑎𝑎𝑎𝑎
𝑢𝑢2

 ⇒  𝑢𝑢2 +
𝑎𝑎𝑎𝑎
𝑢𝑢2

= 𝑥𝑥2 + 2√𝑎𝑎𝑎𝑎 

Which gives us the following 

2√𝑎𝑎𝐼𝐼4 = � 𝑒𝑒−�𝑥𝑥2+2√𝑎𝑎𝑎𝑎�𝑑𝑑𝑑𝑑 = 𝑒𝑒−2√𝑎𝑎𝑎𝑎 � 𝑒𝑒−𝑥𝑥2𝑑𝑑𝑑𝑑
∞

−∞

∞

−∞
 

The last integral, as we know, is simply √𝜋𝜋.  Lo and behold, as if by magic, we have our final 
value, namely 

𝑰𝑰𝟒𝟒 = � 𝒆𝒆−𝒂𝒂𝒙𝒙𝟐𝟐−𝒃𝒃 𝒙𝒙𝟐𝟐⁄ 𝒅𝒅𝒅𝒅 =
𝟏𝟏
𝟐𝟐
�
𝝅𝝅
𝒂𝒂
𝒆𝒆−𝟐𝟐√𝒂𝒂𝒂𝒂     Q.E.D.

∞

𝟎𝟎
 

Afterword 

     If you have gone on the journey of using this book from front cover to I4 above, I hope you 
enjoyed it as much as I did in creating it!  I’m sure some might say that the development of 
integral calculators, many of which can be found on the Web, make this kind of book/knowledge 
completely useless.  Well, I guess that’s progress and I have no problem with that, however, it 
would be such a shame if the ability to do and enjoy the necessary calculations is eventually lost. 

Don Cole 
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	8.4  The Methodology of Leibniz

	Now, expanding this integrand into partial fractions, we have
	Of course, this simplifies to the following expression
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