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Preface

There are some areas of mathematics that require us to cast aside practicality and
allow ourselves the luxury of enjoying the pure aesthetic beauty without any need for
further justification. Indeed, there must be an avenue where the free flowing lines of the
art world find a crossroads with the analytical worlds of equation and computation. At
that crossroads, we are transported to a world that is at once purely logical in function yet
purely beautiful in form. Such a crossroads in geometry is the multitude of forms and
shapes found in the plane algebraic and transcendental curves. With the advent of
dynamic geometry software, such as Geometer’s Sketchpad (GSP)*, this beauty can be
visualized much more readily and in a variety of interesting ways.

This book, Playing With Dynamic Geometry, is essentially a summary of the
classic plane curves of historical mathematics and, in this regard, it is no different from
many other texts that have been produced in the past. What makes Playing With
Dynamic Geometry unique is that for each curve treated in the text, many different GSP
constructions are also given that will allow the reader to reconstruct the curve and watch
it being drawn on the computer screen in all of its breathtaking wonder.

The book assumes that the reader has mastered analytic geometry as well as the
differential and integral calculus. Further, it is also assumed that the reader is or will
become familiar with the operation of Geometer’s Sketchpad and can therefore reproduce
each construction as it is encountered in the text. Such ability contributes significantly to
one’s understanding of the curve and, at the same time, is a great deal of fun.

With the exception of the first chapter, which contains review material, each
chapter is devoted to one of the classic curves. The order of the chapters has been
dictated by the author’s interest in the curve and is therefore purely arbitrary. The
dynamic geometry constructions are given in tabular form as a series of steps to perform.
To my knowledge, no previous survey of the classic curves has ever included geometric
constructions.

Also included in each chapter are:

e The equations of the curve and formulas for the curve’s derivatives

e The equation of the curve’s tangent

e Metric considerations such as the radial distance to the curve and the distance
from the origin to the curve’s tangent, associated areas, arc lengths, and/or surface
area and volume of associated solids of revolution

e Formulas for the tangential-radial angle, the radial angle, the radius of curvature,
and the coordinates for the curve’s center of curvature.

All of the formulas presented, with the exception of areas, arc lengths, and volumes,
have been verified by a method that is explained in the Appendix. This verification
process (also unique to Playing With Dynamic Geometry) does not necessarily prove that
the formula is correct, but the nature of the process is such that it gives a very high degree
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of confidence that the stated formula is correct. Interestingly enough, the verification
process also makes use of GSP to validate the formula under consideration. Readers who
are interested should refer to the Appendix for an explanation of this verification process
and an example of the way it works.

Each chapter (again, with the exception of the first chapter) begins and ends with
a colorful image, usually depicting a three-dimensional version of the curve that is the
subject of that chapter. The caption on these figures explains what the image represents.

A brief word about how these three-dimensional images were produced: They
were created with a wonderful piece of free software called Persistence of Vision
Raytracer (POV-Ray)t, which is a ray tracing application that, in the hands of an expert,
can produce magnificent computer art. This author’s capability with POV-Ray is very
rudimentary but—with the aid of many of the background scenes that are supplied as part
of the freeware—I have been able to pull off the desired effect (or at least come close to
it). That effect is a surrealistic view of the curve, such as floating over an infinite
checkered plane or suspended in a cloud flecked sky. In my opinion, such surrealism
adds to the mystery and majesty of the curve.

| hope that Playing With Dynamic Geometry helps many readers appreciate and
enjoy the aesthetic, visual aspect of these famous curves—a blend of science, art, beauty,
and balance!

Finally, | dedicate this book to Jo, my friend, my companion, my lover, and my
wife. It would not have seen the light of day without her invaluable assistance.

Don Cole
October 3, 2010

*Geometer’s Sketchpad™ is a product of Key Curriculum Press. A free trial version can be downloaded
from their website at www.keypress.com.
T Persistence of Vision Raytracer (POV-Ray) can be downloaded free at the website www.povray.org.
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Chapter 1 — Background

This book is essentially a reference book for the classic plane curves of
mathematics. With the exception of this chapter, each ensuing chapter is devoted to one
of the classic curves. This chapter, however, reviews the methodologies used to develop
the material contained in subsequent chapters, while the format of this chapter sets the
pattern for the format of all the subsequent chapters.

1.1 Introduction

The first section of each chapter will contain an introduction to the specific curve
under consideration. This introduction may contain any interesting history of the curve,
mathematicians and/or men of science who first worked with the curve, and any other
tidbits of information about the curve that your author thinks worthy of note.

1.2 Equations and Graph

The second section of each chapter will contain the equations and graph of the
curve under consideration. In order to derive or delineate equations, coordinate systems
for representing plane curves need to be discussed. Of the various coordinate systems for
representing plane curves, six are addressed here; however, any representation of a given
curve in a subsequent chapter will not necessarily be given in all of these coordinate
systems. The six are: Parametric, Cartesian, Polar, Pedal, Bipolar, and Intrinsic.

The first three (i.e., Parametric, Cartesian, and Polar) are very well known and
therefore require very little discussion. Coordinate axes for the Cartesian and Parametric
systems are a pair of mutually perpendicular lines usually drawn horizontally and
vertically, where the horizontal line is called the x-axis and the vertical line is called the
y-axis and the point where these two axes intersect is known as the origin. Further, the
distance along the x-axis to the point under consideration is referred to as the abscissa
and the distance along the y-axis to the point under consideration is referred to as the
ordinate. Thus, a point of the curve is determined by a measure of the abscissa and
ordinate of that point, usually notated by (X, y). The Polar coordinate system consists of a
point (the pole) and a ray from this point (the axis) to the curve and here, a point of the
curve is determined by the angle between the horizontal and the axis and the distance
along the axis from the pole to the point of the curve, usually notated by (r, ). The
Cartesian and Polar coordinate systems are basically point concepts; given any point, P,
of the curve, there is one and only one set of coordinates (X, y) or (r, 6) for P. In the
Parametric system, coordinates of a curve are expressed independently as a function of a
single variable, say t, such as x = f (t) and y = g (t). There may be (and usually are) many
different and useful parametric representations.

In the Pedal coordinate system, coordinates are basically dependent on the curve,

and a point of the curve, P, may have many different Pedal coordinates, usually denoted
by (r, p), depending on the specific curve. Refer to Figure 1-1. Let O be a fixed point
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(the pedal point, or pole) lying at the origin, and let C be a differentiable curve (i.e., its
tangent exists). At a point P (the point of the curve whose pedal coordinates are desired),

L

Figure 1-1: The Pedal Coordinate System

construct the tangent line L to C. Then, the Pedal coordinates of P with respect to C and
O are the radial distance r from O to P and the perpendicular distance p from O to L.
Note that for a different curve, say Cy, through point P, r is, of course, the same, but p
may very well be different. Also note that if C does not have a tangent at point P, that is,
if P is an isolated point or cusp, then the Pedal coordinates of P do not exist.

Now consider the bipolar coordinate system by referring to Figure 1-2. Let O,
and O, be two fixed points (the poles) that are a distance 2c apart. The line segment
L = 0,0, is termed the base line, and the bisector of L is known as the center. The

L o,

Figure 1-2: The Bipolar Coordinate System

Bipolar coordinates of a point P on a curve C are the distances r; and r, from O; and Oy,
respectively, to point P. Note that points Oy, Oy, and P form a triangle, therefore ry, ry,
and ¢ must satisfy the inequalities r; + ro>cand | ry — ro [ < c. Further, since ry, r, and ¢
are all assumed to be positive, any equation in Bipolar coordinates describes a locus that
is symmetric about line L; conversely, a locus that is not symmetric about some line
cannot have a bipolar equation.
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The choice of which coordinate system to use to represent a specific curve is
usually dictated by the curve’s physical characteristics or by the particular information
desired from the curve’s properties. Thus, a system of rectangular coordinates (i.e.,
Cartesian) will be selected for curves in which slope is of primary importance. Curves
which exhibit a central property (physical or geometrical) with respect to a point will be
expressed in a polar system with the central point as the pole. (This is well illustrated in
situations involving action under a central force; the path of the earth about the sun, for
example.) Again, if an outstanding feature is the distance from a fixed point to the
curve’s tangent (as in the general problem of Caustics), a system of Pedal coordinates is
most convenient.

The equations of curves in each of these systems, however, are for the most part
"local™ in character and are altered by certain transformations. Let a transformation
(within a particular system or from system to system) be such that the measures of length
and angle are preserved. Then area, arc length, curvature, number of singular points, etc.,
will be invariant. If a curve can be properly defined in terms of these invariants, its
equation would be intrinsic in character and would express qualities of the curve which
would not change from one system to another. In other words, an intrinsic property is
one that depends only on the figure in question, and not its relation to a coordinate system
or other external frame of reference. (For example, the fact that a rectangle has four
equal angles is intrinsic to the rectangle, but the fact that a particular rectangle has two
vertical sides is not, because an external frame of reference is required to determine
which direction is vertical.) William Whewell* introduced a system involving arc length
s and tangential angle g, while Ernesto Cesaro® gave a system involving arc length s and
radius of curvature p. Since ds = p - d¢, by definition, it is evident that these two systems
are related. They are known as intrinsic coordinate systems.

Not only may equations of the curve for the various coordinate systems discussed
above be delineated in this section, but the equation of the tangent line will also be
included. It will always be derived using the following methodology, assuming a
parametric representation for the curve, that is, x =f (t) and y = g (t). The reader may
recall the point-intercept equation for a straight line, namely, y = mx + b, where m is the
slope of the line and b is the point where the line intercepts the y-axis. That is, if we use
the "dot" notation to stand for derivatives with respect to the parameter t, we have

o@=99 @)+,

(g

—"

Hence, solving for b, we have

L William Whewell (1794-1866) was one of the most important philosophers in nineteenth-century Britain.
Whewell is most known today for his massive works on the history and philosophy of science.
2 Italian mathematician (1859-1906) who made important contributions to Intrinsic Geometry.
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Therefore, the Cartesian equation of the tangent line to the curve under consideration at
the point t = g will always be

f(Q) y= Q(Q)' X+ f(Q) Q(Q)_ f(Q)' g(q) Equation 1-1

1.3 Analytical and Physical Properties

The third section of each chapter will contain subsections that deal with the
analytical and physical properties of the curve under consideration.

1.3.1 Derivatives of the Curve

Given that the curve has a parametric representation, the first and second
derivatives of the curve will be delineated using this parametric form. That is, if the
parametric representation is x = f (t) and y = g (t), then the derivatives will include

> %:X:L(t):f
dt dt
dy dg(t)
> _— ===
a T a9
dy ., ¢
» Ly =2
dx y f
d?x d?f(t .
SECIP ST
dt dt
d?y . d?g(t) .
> = = =
dt? y dt? g
d?y y'
> _— ”:—
dt? y f

1.3.2 Metric Properties of the Curve

For some of the curves, the following quantities may be calculated: arc length,
plane area, volume of the solid of revolution of the curve, surface area of the solid of
revolution, distance from the origin to the curve, and distance from the origin to the
curve’s tangent.

Three different expressions for arc length may be used in the calculation of the
length of a given curve. The three expressions are, respectively, for Cartesian,
Parametric, and Polar representations of the curve. They are:
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I 1+ y'?dx

S= I x*+y*dt  Equation 1-2

;{(g_g”zfde

Three different expressions for the calculation of the plane area bounded by a
given curve will be used and they each correspond to the Cartesian, Parametric, and Polar
representations. They are:

b
A:jy-dx
A=Jg(t)f (t)dt Equation 1-3

B
A=1[r*do

When a plane curve is revolved about one of the coordinate axes, the resulting
figure is called a solid of revolution. For some curves, the volume and/or the surface area
of this solid of revolution can be calculated. When this is possible in subsequent chapters,
the following formulas will be used for the volume calculation depending upon whether
the curve is represented by the Cartesian or Parametric systems, respectively. The
notation, Vy, indicates the revolution takes place about the x-axis.

b
ﬂIyZdX

| flaF i

\V/ Equation 1-4

X

Similarly, the following formulas will be used for the surface area calculation,
again depending upon whether the curve is represented by the Cartesian or Parametric
systems, respectively. The notation A, not only indicates the axis about which the
revolution takes place (in this case, the x-axis), but the mere presence of the subscript
also distinguishes the calculation from the calculation of plane area. Note that when
subsequent chapters include any of these four metrics (i.e., arc length, plane area,
volume, or surface area), not only will the results of the calculation be given, but the
integrals used in those calculations will be shown with some indication of how to perform
the integration.
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b
Zﬂjy 1+ y'%dx
A = t, a Equation 1-5
27 [ g(th/ f*+gdt
4
Two distance calculations make up the final two metric properties for the given

curve. They are the radial distance (i.e., the distance from the origin to the curve) and the
tangential distance (i.e., the distance form the origin to the tangent). The formulas are:

r=x*+ y2 Equation 1-6

_fg-f-g

= Equation 1-7
f2+g°

p

1.3.3 Curvature

This section will contain two calculations, that is, the radius of curvature of the
curve and the coordinates for the center of curvature. For the radius of curvature p we
have

(f7+g?)
fg-f-g

If (e, p) is the notation used to represent the coordinates of the center of curvature, then

gtk
f-g—~f-g
f2+g°)f

=g+~ —
O g
Alternately, the coordinates of the center of curvature may also be calculated using

o Equation 1-8

Equation 1-9

r_ ' 2|
oo x- VB
y' ) Equation 1-10
p= y+1+§¥)

1.3.4 Angles

Three angles are of consequence: the slope angle, ¢, the radial angle, 6, and the
tangential-radial angle, w. The slope angle ¢ of a line is defined as the angle formed by
that line and any horizontal line, such as the x-axis (see Figure 1-3), that intersects the
given line; if the given line is parallel to the x-axis, then the slope angle is assumed to be
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zero. The radial angle @is the angle between the radial line that connects the origin and
point P, a point of the curve, and the x-axis (taken clockwise from the radial line).
Finally, the tangential-radial angle v is defined as the angle between the radial line and
the line L, again taken clockwise but this time from L. Note that all three angles are in
the semi-closed interval [0, ).

B
L
Tangential-Radial Angle
o
Slope Angle
=
«— Radial Angle
9 ¢
LY X

Figure 1-3: The Slope, Radial, and Tangential-Radial Angles

A formula for the tangent of the slope angle ¢ has already been given in the
delineation of the derivatives in section 1.3.1, namely, y’. The radial angle @&is, of
course, one of the coordinate variables in the Polar coordinate system and its tangent is
given as tané = y/x. Finally, the tangential-radial angle v is related to the other two angles
by w= ¢—6. However, another relationship exists for the tangential-radial angle that
may be more useful, namely

xy'—
tany = y y, Equation 1-11
X+

1.4 Geometric Properties

Ten different geometrical properties may be addressed in this fourth section.
They are any asymptotes that the curve may possess, possible branches that the curve
may have, critical points on the curve, if the curve includes any discontinuities, any
envelopes to the curve, intercepts with the coordinate axes, the extent or range of the
curve, loops that the curve may undergo, any singularities the curve may have, and
finally any symmetries exhibited by the curve.

1.5 Types of Derived Curves

Once a curve has been defined, it is possible to use some of its properties together
with auxiliary points, lines, and/or other curves, to obtain a new curve. Although, the
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subsequent chapters of this text do not make a point of addressing the derived curves for
the curve covered by that specific chapter, sometimes a derived curve is mentioned or
plays a role in one of the dynamic geometry constructions. For this reason, a short
exposition of derived curves is included here.

1.5.1 Evolute

The idea of evolutes purportedly originated with Christian Huygens in 1673 in
connection with his studies on light. However, the concept can actually be traced back to
Apollonius (circa 200 BC) where it appears in the fifth book of his Conic Sections.
Simply put, the evolute of a curve, C, is merely the locus of its center of curvature. As
such, one can use Equation 1-9, the expressions for the coordinates of the center of
curvature, for the parametric equation for the evolute. It can be shown that all tangents to
an evolute are normals to the given curve. Hence, an alternate definition of the evolute is
as the envelope of normals to the given curve.

1.5.2 Involute

Twenty years after Huygens addressed the evolute, he discussed and utilized the
involute of a circle (circa 1693) in connection with his study of clocks without pendulums
for service on ships at sea. An involute of a curve, C, is the trace of a selected point on a
line that rolls as a tangent upon the given curve C. Obviously, since the selected point is
an arbitrary point on the tangent line, there can be many different involutes to the given
curve C; however, they are all parallel. It can be shown that if C; is an evolute of C,,
then C, is an involute of C;. If n is the distance from the tracing point to the point of
tangency, then the equations of the involute for the curve C in parametric form are given

by

nf

[ £2 . 2
f + g Equation 1-12

ng

Xx="f-

1.5.3 Parallel Curves

Leibnitz was the first to consider parallel curves in the years 1692 to 1694. He
was prompted, no doubt, by the involutes of Huygens. Let P be a variable point on a
given curve C. The locus of point Q; and Q located + n units distance from P as
measured along the normal through P to C is defined to be the parallel curve; obviously,
there are two branches. For some values on n, a parallel curve may not be unlike the
given curve in appearance, but for other values of n it may be totally different. Note that
since parallel curves have common normals, they have a common evolute. Equation 1-13
gives the parametric equations for the parallels in parametric form; note the similarity to
the equations for the involute.
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nf

x=f=+

Equation 1-13

1.5.4 Inversion

Inversion in geometry is a transformation. Let P be a given point and let C be a
circle centered at point O with a radius of r. The inverse of the point P with respect to C
is a point Q on the radial line OP such that the distance OP multiplied by the distance OQ
is equal to r>. From this definition, two properties are readily evident. First, the point Q
is an inverse of the point P if and only if P is an inverse of Q. Second, points inside the
circle are mapped to the outside and vice-versa. Points on the circumference of the circle
are, of course, fixed; that is, the inversion of any point on the inversion circle is mapped
to itself. As P moves farther away from O, its image Q moves closer to O. From this
observation, we may then define the inverse of the center of the inversion circle to be a
point at infinity, and vice-versa. With such a definition, we have obtained a
transformation on a plane that has a point at infinity, an important concept used in
stereographic projection. It basically shows that such a plane is topologically equivalent
to a sphere. Further, inversion can also be regarded as a generalization of reflection,
where a normal reflection is simply an inversion where the inversion circle has an
infinitely large radius. With this concept of the inversion of a point, the inversion of a
curve is simply the inversion of every point on the curve and can be construed as a way to
derive a new curve from the given curve. If curve A is the inverse of curve B, then curve
B is the inverse of curve A with respect to the same inversion circle. The center of the
inversion circle is sometimes referred to as the pole point. One property that is readily
obvious from this definition of inversion is that the radius of the inversion circle affects
the scale of the inverted curve, but does not affect its shape. Curves that invert into
themselves are called anallagmatic curves. Circles, lines, and Cassinian ovals are all
anallagmatic curves. Asymptotes to a curve C invert into a curve that is tangent to the
inverse of C.

1.5.5 Pedal Curves

The idea of Pedal curves first occurred to Colin Maclaurin in 1718. Given a curve
C and an arbitrary point P on C, construct the tangent to C through P. Then from a fixed
point O (the pole point) located anywhere in the plane, drop a perpendicular to the
tangent. Let the intersection of the perpendicular and the tangent be point S. The locus
of point S as P moves along C is defined to be the first positive pedal curve of C with
respect to the point O. If C is represented in parametric form and if (X, Yo) are the
coordinates of the pole point, then the equations of the first positive pedal are
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X:xof2+f-gz+(y0—g)f-g
f2+g?

yo Y08 4912+~ f)f g
f2+g?

Equation 1-14

1.5.6 Conchoid

Let point O be fixed and let line L be a line through point O intersecting the given
curve, curve C, at point Q. The locus of points P, and P, on L such that P1Q = QP; = a,

P(x,5)

0(x,,5,)

Figure 1-4: Conchoid

where a is a given constant is called a Conchoid of curve C with respect to point O (the
pole point). Refer to Figure 1-4. In general, the locus of the point P; does not connect
with the locus of P, and therefore the conchoid has two branches. If (Xo, yo) are the
coordinates of the pole point, then the parametric equations of the conchoid are given by

x="f+ a(f —%)
2 2
\/(f - ;%5)3 _+§g)_ yO) Equation 1-15
y=g+ .
\/(]c _Xo)2 +(g - YO)Z

1.5.7 Strophoid

Given a curve C and two fixed points, O and A, as shown in Figure 1-5. Now let
there be a line L through point O intersecting the curve C in point Q. Further, let P; and
P, be two points on line L such that P;Q = QP, = QA. The locus of P; and P, as Q varies
over C is the Strophoid of C with respect to points O and A.
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Figure 1-5: Strophoid
If the coordinates of points O and A are (Xo, Yo) and (xy, Y1) respectively, and if C
is represented in parametric form, then the parametric representation of the strophoid is
given by

1+k?
2 2
y=gzk- \/(Xl - f 3- +k(2yl -9) Equation 1-16
+
where k = 9= Yo
f—x,

1.5.8 Cissoid

Let C; and C, be two curves and let O be a fixed point. Let the line L through
point O intersect the two curves C; and C, in points Q; and Q, respectively. Further, let
P be a point on line L such that OP = 0Q, — OQ; = Q,Q1. The locus of points P on all
such lines L is called the Cissoid of C; and C, with respect to point O. See Figure 1-6.

Figure 1-6: Cissoid
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1.5.9 Roulette and Glissette

If a curve C; rolls, without slipping, along another fixed curve C,, any fixed point
P attached to C; describes a Roulette. The term is also sometimes applied to the
envelope of a fixed line attached to C;. A curve similar to the Roulette is the Glissette,
which is defined to be the locus of a point carried by a curve C as it slides between two
given curves C; and C,, or slides tangent to a given curve C; at a point. It can be shown
that any Glissette may also be defined as a Roulette.

1.5.10 Isoptic and Orthoptic

The locus of the intersection point of tangents to a curve C meeting at a constant
angle a is an Isoptic; if = z/ 2, the Isoptic is termed an Orthoptic.

1.5.11 Caustic

A Caustic of a given curve C is the envelope of light rays emitted from a point
source S after reflection or refraction at C. If the light rays are reflected, the curve is
called a Catacaustic; if the light rays are refracted, the curve is called Diacaustic.

1.6 Special Considerations

This section will contain any other interesting problems, facts, or associated
discussion relating to the curve under consideration that your author deems worthy of
including.

1.7 Dynamic Geometry Construction

This section will, of course, contain the main motive for this text—namely the
dynamic geometry constructions. The number per curve will vary; many different
constructions exist for some curves while only a few are known for other curves.
Regardless of the number, they will be in a tabular form with easy-to-follow steps so that
the reader can reproduce the construction, execute the animation, and see the result
unfold in all of its beauty. Some of the constructions will be illustrated with a snapshot
of what the final construction should look like.
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Chapter 2 — The Cissoid of Diocles

Figure 2-1: A Three-Dimensional Version of the Cissoid of Diocles

The Cissoid of Diocles is rendered as a three-dimensional object. It has been extruded
into the third dimension, i.e., normal to the plane of the paper, and then truncated along
its asymptote. The surface of the object has been given a golden-metallic appearance.
The background has been made to appear as though the object is floating in a bluish-
purple sky with white clouds randomly scattered. Lighting has been placed so as to put
the cusp of the object and a portion of the upper branch in shadow.
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2.1 Introduction

Supposedly, in 430 BC, the Athenians were suffering from a terrible plague that
was causing much death and misery. In order to appease the gods and stop the plague,
the oracle of the god Apollo at Delos was consulted. The Athenians were instructed by
the oracle to double the size of their altar, which at the time, was a cube. They then
proceeded to double every edge, but, of course, the ravages of the plague increased.
After some thought, they came to the observation that the problem consists of
constructing a length that is the cube root of 2 times the length of an edge of the original
altar. As a result, the problem of duplicating the cube using only compass and
straightedge became known as the Delian problem. As it turns out, one can never find a
solution requiring only the straightedge and compass, as was proven some centuries later.
However, the Greeks obtained many solutions using a variety of clever techniques.
Special curves were invented and investigated for this purpose, which themselves could
not be constructed by using only a straightedge and compass. One such curve
investigated by Diocles (circa 180 BC) in connection with this Delian problem is a curve
that is today called the Cissoid of Diocles; cissoid means ivy-shaped.

y

A

Figure 2-2: The Cissoid of Diocles as a Locus of Points

Refer to Figure 2-2, which depicts an origin O, a circle of radius a passing
through the origin, and a tangent to the circle at the point (2a, 0). Let any line, L, passing
through the origin intersect the circle in the point P, and intersect the tangent line in Ps.
Let the point Q be a point on L such that the distance from the origin to Q equals the
distance between points P, and P,. The Cissoid of Diocles is then defined as the locus of
point Q for all possible lines L through the origin which intersect the circle and tangent as
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shown. In section 2.5, it will be shown how this curve can be used to solve the Delian
problem. First, however, let us derive the equations of this curve.

2.2 Equations and Graph of the Cissoid of Diocles
It is relatively straightforward to derive the polar equation for the Cissoid from
the geometric relationships depicted in Figure 2-2. From elementary geometry, AAOP; is
a right triangle since one side is the diameter of a circle and the opposite vertex lies on
the circle’s circumference. Therefore, the cosd= OP; / 2a, or OP; = 2acosé. Similarly,
AAOP; is also a right triangle because the line x = 2a is tangent to the circle at point A.
Therefore, cos@= 2a / OP, or OP, = 2a/ cosé. Now, since OQ =r = OP, — OP,, we
have
2a 2a—2acos’0 2a(l—cos’6) 2asin’6
r=———2acosé = = = :
cosé cosé cosé cosé

Hence,
r=2asin@tand Equation 2-1

From this polar representation, it is a simple matter to derive the Cartesian form of the
Cissoid by substituting the familiar polar-to-rectangular coordinate transformations, i.e.,
X = rcosd, y = rsind, and r = (x* + y%) *. Making that substitution in Equation 2-1, we get

2 2 2ay Yy
e

Clearing the fractions and rearranging, we obtain

2ay’ —xy? =x°
or,
2 x° .
y© = Equation 2-2
2a—X

From the Cartesian form of the equation, we can derive a parametric form by considering
the line y = tx. Making this substitution in Equation 2-2 and solving for x, one obtains

2at?
X = >
1+t

Similarly, eliminating x, and solving for y,

y= 2at’
1+t%°

Hence, a parametric representation of the Cissoid of Diocles is
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()= 22" (11) —ooct<too  Equation23
14t
An alternative and useful parametric representation of the Cissoid of Diocles can
be obtained by setting tan 6 =t in Equation 2-1. A little algebraic manipulation will then
yield the following alternative parametric representation

(x,y)=2asin’t(Ltant), —z/2<t<z/2 Equation 2-4

Intrinsic equations can also be derived for the Cissoid of Diocles. The Whewell and
Cesaro equations are, respectively

S= a(sec3 Q —l) Equation 2-5

729(8 + a)8 =a’ [9(8 + a)2 + ,02]B Equation 2-6

Graphing the Cissoid of Diocles, we get the curve shown in Figure 2-3. As can be
seen from this plot, the vertical line x = 2a is an asymptote, and the derivative at the
origin, i.e., (0, 0), does not exist although the curve is continuous at that point.

A

"y

{(0,0) {24.0)

v

Figure 2-3: Graph of the Cissoid of Diocles
The equation of the tangent at the pointt = q is

2y = tangsec’ q(1+ 2cos? q)x— 2atan®q.  Equation 2-7
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2.3 Analytical and Physical Properties of the Cissoid of Diocles

Using the parametric representation of the Cissoid of Diocles given in Equation 2-
4,i.e., x = 2asin’t and y = 2atant-sin’, the following paragraphs delineate the relevant
analytical and physical properties of the Cissoid of Diocles.

2.3.1 Derivatives of the Cissoid of Diocles
> X=4asint-cost.

> % =4alcos’t —sin’t)
> y=2atan’t-(L+2cos’t)

> {=4atant -seczt-(1+ 2cos4t)

>y :%tant-seczt-(h 2cos?t)

3
> rr:—.
y 8asintcos®t

2.3.2 Metric Properties of the Cissoid of Diocles

If A is the area between the Cissoid of Diocles and its asymptote, then A = 3na®.
This result is easily obtained using the Cartesian form of the Cissoid and the appropriate
equation for plane area which yields the following integral for the area under
consideration

2a ¥

A 2_[ X72dx .
v v2a—X

This integral is most easily evaluated by making the substitution x = 2a sin®6. Under this

substitution, we have

A
A=16a2jsin4 0-deé.
0

This resulting integral can be evaluated by elementary methods using the trigonometric
identity sin?0= Y% - ¥ . c0s26, so that we finally get the result indicated above, that is,
A=3na’.

If V is the volume of the solid of revolution about the asymptote, thenV = 2x%a®.
This result may be obtained by considering an incremental cylindrical shell. The volume
of this incremental element is the circumference of its circular portion times its height
times its thickness, i.e., dV = 2n(2a — X) - 2y - dx. By integrating between x =0 and x =
2a we can calculate the total volume, that is,
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22a—x)x%dx |, %
V = 4 [T g (VX V28— xdx.
n! \2a—X n'([

Again, the substitution of x = 2asin®@yields the following integral which can be
evaluated in a manner similar to that used in the previous area calculation.

%
V =64za° [(sin* 0—sin® 0)d0.
0

That is, writing each of the two portions of the integrand in terms of the cos2 6, expanding
the resulting binomials, evaluating the simple integrals that result, and continuing this
process until all remaining integrals can be calculated, we get the result indicated above
of V =2r?a’.
If r is the distance from the origin to the curve, then
r =2asinttant.

If p is the distance from the origin to the tangent, then

—2asin’t

J1+3cost

2.3.3 Curvature of the Cissoid of Diocles
If p represents the radius of curvature of the Cissoid of Diocles, then

p= %sintsec4t(1+ 3cos? tﬁ :

If (o, p) are the coordinates of the center of curvature, then
o= —%sin2 tsec*t({l+5cos’t) and A= 8?atant.

2.3.4 Angles for the Cissoid of Diocles
If ¢is the slope angle, then

tang = %tantsec2 t{l+2cos?t).
If & denotes the radial angle, then
o=t

If v is the angle between the tangent and the radius vector at the point of
tangency, then
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tany = sintcost
1+cos’t

2.4 Geometric Properties of the Cissoid of Diocles
> Intercepts: (0, 0).

» Extrema: (0, 0), x-minimum.
» Extent: 0<x<2a, —0o<y<-+o0,
» Symmetry:y =0.

» Asymptote: X = 2a.

» Cusp: (0, 0).

2.5 Doubling the Cube

In order to double a cube of volume V whose side is s, one must be able to construct

the side of a second cube with length 3/2's. Given a segment s = CB, one can use the
Cissoid of Diocles to construct a segment CM such that CM*® = 2CB?. It is done in the

following manner (refer to Figure 2-4).

Figure 2-4: Doubling the Cube

1. Given two points C and B, construct a circle with center at point C and passing

through point B.

wmn

Construct the tangent to the circle at point A.
4. Construct the Cissoid with origin at point O.
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Construct the line AD.

Construct the line OQ.

©o~No O

Construct point D such that point B is the midpoint of segment CD.
Let the intersection of line AD and the Cissoid be point Q.

Let the intersection of lines CD and OQ be the point M.

If one follows the steps outlined above, upon completion of stef 9, the cube of segment
CM will equal twice the cube of segment CB, i.e., CM® = 2CB°.

2.6 Dynamic Geometry of the Cissoid of Diocles

Dynamic geometry applications, such as the Geometer’s Sketchpad (GSP), can be
used to generate the Cissoid of Diocles in a variety of entertaining ways, as the next

eleven subsections illustrate.

2.6.1 A Construction Based on the Definition of the Cissoid of Diocles

This construction, which can be found in Table 2-1, follows directly from the
definition of the Cissoid of Diocles as addressed in Section 2-1.

Table 2-1: The Cissoid of Diocles by Definition

. Draw horizontal line AB (with point B to the right of point A)

7. Let point E be the intersection of line CD and P;.

. Draw circle AB with center at A and passing through B

8. Draw line segment DE

. Let point C be on the circumference opposite point B

9. Construct a circle centered at C with radius = segment DE

. Construct P; L to line AB through point B

10. Let point F be the intersection of line CD and the 2™ circle

. Let D be a random point on circle AB (on the circumference)

11. Trace point F and change its color

DO |W|INF-

. Draw line CD

12. Animate point D around circle AB

As point D moves around circle AB, point F will trace the Cissoid of Diocles.
Note that the distances DE and FC remain equal to each other even though the values

change due to the movement of point D. Also note that in step 7, where point E becomes
the intersection of P; and line CD, if CD does not appear to intersect Py in your particular
GSP construction, simply drag point D around circle AB until the desired intersection
becomes evident. Further, note also that in step 10 of the construction, the 2™ circle and
the line CD actually intersect in two points; either point will trace the Cissoid of Diocles,
however, the second point (call it point G) will generate a curve that opens in the
opposite direction from that of point F, although both will have cusps at point C.

2.6.2 Diocles’ Method

By some modern accounts, Diocles constructed his Cissoid using a methodology
similar to that delineated below in Table 2-2.

Table 2-2: Diocles' Method

. Draw horizontal line AB 7. Let point F' be the reflection of F across line CD

. Draw circle AB centered at point A and through point B

8. Draw line EF’

. Construct P, L to line AB through point A

9. Construct P, L to line AB through point F

. Let points C and D be the intersections of circle AB and P;.

10. Let point G be the intersection of line EF’ and P,

. Let point E be on circle AB opposite from point B.

11. Trace point G and change its color

OO BA|W[N| -

. Let F be a random point on circle AB (on the circumference)

12. Animate point F around circle AB

® This intersection point cannot be found with a straightedge and compass only.
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As point F moves around circle AB in the construction above, point G will trace
the Cissoid of Diocles. If one also constructs a perpendicular line to AB through point B
and then lets point H be the intersection of line EF' and this new perpendicular, it can be
shown that although distances F'H and EG do not remain constant as point F travels
around circle AB, they do however remain equal.

2.6.3 Newton’s Method

Newton also had a method of generating the Cissoid of Diocles. He used two line
segments of equal length at right angles to each other. If they are moved so that one line
segment always passes through a fixed point and the end of the other segment slides
along a straight line, then the midpoint of the sliding segment traces out the Cissoid. This
method is often referred to as the Carpenter Square (T-square) method of construction.
See Figure 2-5.

Figure 2-5: The Carpenter Square Method

With a right angle at Q, the fixed point A of the T-square moves along CA while
the other edge of the T-square passes through B, a fixed point on the line BC
perpendicular to AC. The path of P, a fixed point on AQ describes the curve. Two items
are of interest here: (1) Let AP = OB =D, and BC = AQ = 2a, with O the origin of
coordinates. Then AB = 2a-sec 8 and r = 2a-sec € — 2b-cos 6. The point Q describes a
Strophoid (see Chapter 3). (2) Point A has the direction of the line CA while the point of
the T-square at B moves in the direction BQ. Normals to AC and BQ at A and B
respectively meet in H the center of rotation. HP is thus normal to the path of P. A
perpendicular to that normal through P will thus be a tangent. Table 2-3 contains the
construction steps for Newton’s method.
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Table 2-3: Newton's Method

. Draw horizontal line segment AB With A to the right of B

8. Draw line segment AF

. Construct P, Lto line segment AB passing through point A

9. Construct circle C; centered at B and radius = segment AF

. To the right of P;, draw circle CD centered at C through D

10. Let points G and H be the intersection of circles C; and C,

Let E be a random point on the circumference of circle CD

11. Draw line segments FG and FH

. Draw ray CE starting at point C and passing through point E

12. Let | and J be the midpoints of segments FG and FH, resp.

. Let point F be the intersection of ray CE and perpendicular P,

13. Trace points | and J and change their color

~|o|u|s|w|N (-

. Construct circle C, centered at F and radius = segment AB

14. Animate point E around circle CD

Note that this construction (if using GSP) traces not only the Cissoid, but also a
straight line that intersects the Cissoid at its cusp; the two traced points share in the
production of the straight line. The straight line is not part of the Cissoid. If, in step 6,
ray CE does not intersect Py, simply drag point E around circle CD until the intersection
occurs.

2.6.4 A Construction Based on Dividing a Circle’s Diameter

The Cissoid of Diocles can also be generated by measuring the ratio into which a
point divides the diameter of a circle. This construction is delineated below in Table 2-4.
In this construction, the ratio that is calculated of course changes as point F moves around
circle CD. However, an examination of another ratio, namely that of segment F'G to
segment FG, will always be equal to that of segment EG to segment DG.

Table 2-4: Construction by Dividing a Diameter

1. Draw horizontal line AB 10. Let point G be the intersection of P; and the parallel line
2. Let C be a random point not on line AB 11. Draw line segment EG

3. Rotate line AB around point C by 180° 12. Measure the length of line segment EG

4. Construct P, L to line AB through point C 13. Draw line segment DG

5. Let point D be the intersection of P, and the rotated line 14. Measure the length of line segment DG

6. Let point E be the intersection of line AB and P, 15. Calculate the ratio of segment EG to segment DG

7. Draw circle CD with center at C and passing through point D 16. Let F' be the image when F is dilated about G by the ratio
8. Let F be a random point on circle CD 17. Trace point F' and change its color

9. Construct the parallel line to line AB through point F 18. Animate point F around circle CD

2.6.5 A Construction Based on Three Lines

This construction for the Cissoid of Diocles opens up or down depending on how
you draw the vertical line asked for in the first step of the construction. If you draw the
vertical line with point A above point B, the curve opens down. If you draw the vertical
line with point A below point B, the curve opens upward. Table 2-5 contains the steps
for this construction which, if you don’t count the perpendiculars, requires only three
straight lines.

Table 2-5: Construction Based on Three Lines

. Draw vertical line AB 7. Construct P, 1 to line AC through point C

. Draw circle AB centered at A and passing through point B

8. Draw line BD

Let C be a random point on circle AB (on the circumference)

9. Let point E be the intersection of line BD and P,.

. Construct P, L to line AB passing through point B

10. Trace point E and change its color.

. Draw line AC

o|u|s|w|Nf e

11. Animate point C around circle AB.

. Let point D be on Circle AB diametrically opposite point C
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2.6.6 The Cissoid of Diocles as the Inversion of a Parabola

In Chapter 1, we learned how inversion can be used to derive a new curve from a
given curve. This concept of inversion of a curve forms the basis for the construction
shown here. It turns out that if the vertex of a parabola is used as the center of inversion,
then the parabola will invert into the Cissoid of Diocles. Table 2-6 contains this
construction.

Table 2-6: The Cissoid of Diocles as the Inversion of a Parabola

1. Draw horizontal line AB 15. Trace point J and change its color

2. Let C be a random point on line AB 16. Let K be the midpoint of line segment CD

3. Construct P, L to line AB through point C. 17. Draw line JK

4. Let D be a random point on perpendicular P;. 18. Measure distance JK

5. Draw line segment CD and hide perpendicular P;. 19. Draw a circle centered at point K of any radius, say KL
6. Draw circle EF anywhere below line AB (centered at E). 20. Measure distance KL

7. Let G be a random point on the circumference of circle EF 21. Calculate KL? / JK

8. Draw line EG 22. Mark the distance calculated in the previous step

9. Let point H be the intersection of lines AB and EG 23. Let K’ be the image as point K is translated by KL? / JK
10. Draw line segment DH 24. Draw circle KK’ centered at K and passing through K’
11. Let | be the midpoint of line segment DH 25. Let point M an intersection of line JK and circle KK’
12. Construct P, L to line segment DH through point I. 26. Trace point M and change its color

13. Construct P; L to line AB through point H. 27. Animate point G around circle EF

14. Let point J be the intersection of perpendiculars P, and P;

Note that line JK obviously intersects circle KK" in two points (i.e., step 25
instructs one to label the intersection point M). The trace of point M is that of a Cissoid
of Diocles which has a cusp at point K; if the other point of intersection is chosen instead,
it will also trace a Cissoid of Diocles with a cusp at point K but it will open in the
opposite direction.

Obviously, the inversion process, in general, requires three steps. First, the curve
which is to be inverted must be constructed—in this case, the Parabola which is done in
steps 1 to 15. Second, the pole point (or inversion point) must be located—in this case,
the vertex of the Parabola. This is the midpoint of line segment CD and is identified in
step 16. Third and finally, the inversion process must be executed—in this case, steps 17
to 27.

2.6.7 The Cissoid of Diocles as the Pedal Curve of a Parabola

In Chapter 1 we learned that if C is a curve and O is a point (referred to as the
pedal point), the locus of the foot of the perpendicular from point O to a variable tangent
to C is called the pedal curve of C with respect to the pedal point O. It so happens that
the pedal curve of a parabola when the pedal point is on the vertex of the parabola is a
Cissoid of Diocles, as can be seen from the following construction (Table 2-7).
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Table 2-7: The Cissoid of Diocles as the Pedal of a Parabola

1. Draw horizontal line AB 11. Let | be the midpoint of line segment DH

2. Let C be a random point on line AB 12. Construct P, L to line segment DH through point |

3. Construct P; L to line AB through point C. 13. Construct P; L to line AB through point H.

4. Let D be a random point on perpendicular P;. 14. Let point J be the intersection of perpendiculars P, and P;
5. Draw line segment CD and hide perpendicular P;. 15. Trace point J and change its color

6. Draw circle EF anywhere below line AB (centered at E). 16. Let K be the midpoint of line segment CD

7. Let G be a random point on the circumference of circle EF 17. Construct P, L to P, through point K

8. Draw line EG 18. Let point L be the intersection of perpendiculars P, and P.
9. Let point H be the intersection of lines EG and AB 19. Trace point L and change its color

10. Draw line segment DH 20. Animate point G around circle EF

The construction used here for the Parabola is the same as that used in the
previous section (i.e., section 2.6.6), that is, steps 1 to 15. Step 16 is, of course, the
identification of the vertex of the Parabola and the remaining steps are the execution of
the Parabola’s Pedal using the vertex as the pole point. Perpendicular P, is the tangent to
the Parabola traced by point J. P4 is perpendicular to this tangent and passes through
point K, the vertex of the Parabola. Therefore, the intersection of these two
perpendiculars (point L) is, by definition, a point on the pedal curve when the vertex is
used as the pedal (or pole) point. Notice how the Cissoid’s cusp and the Parabola’s
vertex coincide. Fascinating!

2.6.8 The Tangent to the Cissoid of Diocles

One of the geometric elements that it is always desirable to construct to a curve is
its tangent. Here is a "sweet" little construction for the tangent to the Cissoid of Diocles
(Table 2-8).

Table 2-8: The Cissoid of Diocles and Its Tangent

1. Create x-y coordinate axes with origin A and unit point B 11. Construct P4 L to line AC through point E

2. Draw circle AB centered at A and passing through point B 12. Construct Ps L to P5 through point D.

3. Let C be a random point on circle AB’s circumference 13. Let point F be the intersection of perpendiculars P, and Ps
4. Draw line AC 14. Let point G be the intersection of perpendiculars P, and P,
5. Construct P, L to line AC through point A 15. Draw line segment FG

6. Construct P, L to P, through point B 16. Let H be the midpoint of line segment FG

7. Let point D be the intersection of perpendiculars P; and P, 17. Let point H' be the image of H translated by vector E —» H
8. Construct P L to the x-axis through point D 18. Draw line AH'

9. Let point E be the intersection of line AC and P; 19. Construct Pg (the tangent) L to line AH' through point E
10. Construct the locus of point E as point C traverses circle AB 20. Animate point C around circle AB

Dynamic geometry applications often support the capability of making certain
geometric elements of the construction stand out by using thicker lines and different
colors. GSP supports such a capability. In the construction above, if one thickens and
colors (say blue) perpendicular Pg (the tangent) and thickens and colors (say red) the
locus (step 10), when the animation is run, it is easier to focus on the elements one is
interested in observing.

2.6.9 The Osculating Circle of the Cissoid of Diocles

As mentioned above, a curve’s tangent is desirable; so to0 is the curve’s
osculating circle. The osculating circle is simply the circle with center point coincident
with the curve’s center of curvature and tangent to the curve. In order to construct this
circle, one must construct the curve’s center of curvature (usually not an easy task). But
it’s like a "five-in-one" deal. Once accomplished, one has a construction that gives not
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only the osculating circle, the radius of curvature, and the center of curvature, but also the
curve’s evolute and the curve’s normal. Table 2-9 gives such a construction (albeit a
very complex one) for the Cissoid of Diocles.

Drawing line segment E3E gives, of course, the radius of curvature for the Cissoid
of Diocles. Drawing line E3E gives the normal to the Cissoid of Diocles, point E3 is the
center of curvature, and finally, if one traces point E; and reruns the animation, point E;
will trace the evolute to the Cissoid of Diocles.

2.6.10 The Generalized Concept of the Cissoid

In Chapter 1 we learned that a concept termed the Cissoid can be used to derive
other curves, and in point-of-fact, we learned that what was required were two curves,
which we called C; and C; and a fixed point O. Let the line L through point O intersect
the two curves in Q; and Q; respectively. Further, let P be a point on line L, such that

Table 2-9: The Osculating Circle for the Cissoid of Diocles

1. Create x-y coordinate axes with origin A and unit point B 27. Draw line segment 1

2. Draw circle AB with center at A and passing through point B | 28. Let K be the midpoint of line segment 1J

3. Let C be a random point on the circumference of circle AB 29. Let K' be the image when K is translated by vector A — K
4. Draw line AC 30. Draw line segment AE

5. Construct P; L to line AC through point A 31. Let L be the midpoint of line segment AE

6. Construct P, L to P, through point B 32. Let L' be the image when L is translated by vector K' —» L
7. Let point D be the intersection of perpendiculars P; and P, 33. Let A' be the image when A is translated by vector L' — A
8. Construct P L to the x-axis through point D 34, Let point M be the intersection of the x-axis and P4

9. Let point E be the intersection of P; and line AC 35. Construct Py L to the x-axis through point M

10. Construct the locus of point E as point C traverses circle AB 36. Let point N be the intersection of Py and line AC.

11. Construct P, L to line AC through point E 37. Let N' be the image when N is translated by vector A —» N
12. Construct Ps L to P through point D 38. Draw line segment A'N'

13. Let point F be the intersection of perpendiculars P, and P, 39. Let O be the midpoint of line segment A'N'

14. Let point G be the intersection of perpendiculars P, and Ps 40. Let O' be the image when O is translated by vector A — O
15. Draw line segment FG 41. Construct Py L to line AC through point O'

16. Let H be the midpoint of line segment FG 42. Let point P be the intersection of perpendiculars Ps and Pyo
17. Let H; be the image when H is translated by vector E — H 43. Construct Py, L to line segment AH, through point A

18. Let H, be the image when Hj is rotated about point A by 90° 44. Construct Py, L to Py through point P

19. Draw line segment AH, 45. Let point Q be the intersection of perpendiculars Py; and Py,
20. Let E; be the image when E is translated by vector H; — E 46. Draw line segment H,Q

21. Let E;, be the image when E; is translated by vector E — E; 47. Construct P13 L to line segment H,Q through point H,

22. Construct perpendicular Pg to P, through point E, 48. Let point R be the intersection of perpendiculars P;; and Pi3
23. Construct P; L to Ps through point B 49. Let E3 be the image when E is translated by vector R — A
24. Construct Pg L to the x-axis through point B 50. Draw circle E3E with center at E; and passing through point E
25. Let point | be the intersection of line AC and P; 51. Make circle E5E thick and change its color

26. Let point J be the intersection of Pg and line AC 52. Animate point C around circle AB

OP =0Q; — 0Q; = Q2Q;1. The locus of points P on all such lines L is called the Cissoid
of C; and C, with respect to the point O (see Figure 1-6). We can therefore generalize
the concept of the Cissoid wherein the Cissoid of Diocles becomes a specific case of the
generalized Cissoid. In Figure 2-2, where we defined the Cissoid of Diocles, if we
replace the circle by any curve, C4, and replace the tangent line by any other curve, C,,
then the resulting locus of Q as P; moves on C; is called the Cissoid of C; and C, with
respect to the pole, O. Note that there are two points on L such that the distances OQ and
P1P, are equal (the one shown and a similar point below the x-axis). The two points are
symmetric around point O on L, so that either one can be used to generate the (same)
Cissoid. As alluded to above, if C; is a circle and C; is a line tangent to C; at point A and
point O is the point on C; opposite point A, then the Cissoid of C;, Cy, and the pole O is
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called the Cissoid of Diocles. If O is an arbitrary point on the circle, the curve is termed
an Oblique Cissoid. A GSP construction for an Oblique Cissoid is given in Table 2-10,
below.

Table 2-10: The Oblique Cissoid

1. Draw vertical line AB 6. Draw line CD

2. Draw circle AB centered at A and passing through point B 7. Let point E be the intersection of line CD and P;.

3. Construct P; L to line AB through point B 8. Let C' be the image when C is translated by vector D —» E
4. Let C be a random point on the circumference of circle AB 9. Trace point C' and change its color

5. Let D be a 2" random point on the circumference of circle AB | 10. Animate point D around circle AB

If the line passes through the center of the circle (as opposed to being tangent to
the circle), and the pole is on the circle’s circumference, then the resulting curve is called
a Strophoid; if the pole is a point on the circumference and farthest from the line, the
curve is a special case of the Strophoid, namely a Right Strophoid (see Chapter 3). The
Cissoid of a line and a circle, with pole at the center of the circle, is any member of the
family known as the Conchoid of Nicomedes (see Chapter 5). It can be shown that when
a Cissoid is based on curves C1, C,, and pole point O, where C; and C, intersect at point
P, then the line OP will be tangent to the Cissoid at point O. Note that if random point C
in the construction shown above is moved to be diametrically opposite point B, then the
Oblique Cissoid becomes the Cissoid of Diocles.

2.6.11 An Alternate Construction for the Osculating Circle

At the risk of being redundant, here is an alternate construction for the osculating
circle of the Cissoid of Diocles. This shows that even the very complex constructions
often have many distinct constructions. Refer to Table 2-11.

Table 2-11: An Alternate Construction of the Osculating Circle for the Cissoid of Diocles

1. Draw horizontal line AB 18. Let point J be the intersection of perpendiculars P4 and Pg
2. Draw circle AB with center at A and passing through point B 19. Construct P7 | to Ps through point A

3. Let C be a random point on the circumference of circle AB 20. Let point K be the intersection of perpendiculars P, and P;
4. Let D be the point diametrically opposite point B 21. Construct the locus of point K as point C traverses circle AB
5. Draw line AC 22. Draw line segment AG

6. Construct P, L to line AB through point D 23. Let L be the midpoint of line segment AG

7. Let E be the intersection of line AC and perpendicular P, 24. Draw line KL

8. Draw line segment BE 25. Let point M be the intersection of line KL with P,

9. Let F be the midpoint of line segment BE 26. Construct Pg L to line KL through point M

10. Construct P, L to line segment BE through point F 27. Let point N be the intersection of perpendiculars P; and Pg
11. Construct P; L to Py through point E 28. Draw line segment AJ

12. Let point G be the intersection of perpendiculars P, and P; 29. Let O be the midpoint of line segment AJ

13. Construct P4 L to P, through point G 30. Draw line NO

14. Let point H be the intersection of line AB and P, 31. Let point P be the intersection of lines KL and NO

15. Construct Ps L to P4 through point H 32. Draw circle PK centered at P and passing through point K
16. Let point | be the intersection of perpendiculars P; and Ps 33. Make circle PK thick and change its color

17. Construct P | to P; through point | 34. Animate point C around circle AB

If you trace point G, you will see point G sweep out a parabola; if you draw circle
JG (i.e., the circle centered at point J and passing through point G) and rerun the
animation, you will find that circle JG is the osculating circle to that parabola. A very
nice construction!
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Figure 2-6: The Solid of Revolution Formed from the Cissoid of Diocles

This image was created by truncating the Cissoid of Diocles along its asymptote and then
taking that result and rotating it around the x-axis. The solid of revolution was then
placed over the infinite checkered plane which meets a cloudy sky at the horizon. The
solid of revolution was then given a silvery-metallic surface so as to reflect its immediate
environment, and one can see that it reflects the plane in its lower half and reflects the
clouds in its upper half. A light source was placed so as to cast the solid’s shadow onto
the checkered plane.
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Chapter 3 — The Strophoid

Figure 3-1: The Solid of Revolution Formed from the Right Strophoid

The Right Strophoid has been truncated along its asymptote and then revolved about the
x-axis. The result is the solid of revolution seen in Figure 3-1. The knob protruding from
the cusp is simply the loop portion of the Right Strophoid after revolution. The solid has
been given a bronze-metallic surface texture and the entire figure has been placed in a
cloud-flecked sky. Notice the lighting—it casts a partial glare on the knob and a portion

of the cusp and the knob creates a shadow that shows up on the surface of the object
itself.
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3.1 Introduction

The Strophoid first appears in work by the English mathematician Isaac Barrow in
1670. (Barrow, incidentally, was Isaac Newton’s teacher.) However, Torricelli actually
describes the curve in his letters prior to Barrow’s work—around 1645—and Roberval
found it as the locus of the focus of the conic obtained when the plane cutting the cone
rotates about the tangent at its vertex. The name Strophoid, meaning a "belt with a
twist, " was proposed by Montucci in 1846. The general Strophoid is a family of curves
represented by the equation in polar coordinates

r =a(cos o £sin@)-sec(d —ar)  Equation 3-1

Each value of the parameter « gives another member of the family. Figure 3-2 shows the
graph of Equation 3-1 for some selected values of the parameter ¢, i.e., = 0, z/ 6, =/
4,and 7/ 3.

A
v

A\ 4

Figure 3-2: Members of the Family of Strophoids

* Gilles Roberval (French mathematician, 1602-1675) developed powerful methods in the early study of
integration, writing Traité des indivisibles. He computed the definite integral of sin x, worked on the
cycloid, and computed the arc length of a spiral. Roberval is important for his discoveries on plane curves
and for his method for drawing the tangent to a curve, already suggested by Torricelli. This method of
drawing tangents makes Roberval essentially the founder of kinematic geometry.
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3.2 Equations and Graph of the Right Strophoid
When the parameter « is zero, i.e., a =0, Equation 3-1 reduces to

r=a(secd+tand) Equation3-2

a member of the family known as the Right Strophoid. The standard substitutions of x =
rcos #andy =r sin 6 into Equation 3-2 will yield the Cartesian equation for the Right
Strophoid, that is,

x(x—a) = y*(2a—x).

However, the more accepted form of the Right Strophoid has the point where the curve
crosses itself at the origin and the other point on the x-axis at (-a, 0). This is, of course,
just a translation to the left along the x-axis of a distance a. Hence, the Cartesian
equation for the Right Strophoid becomes

yz(a - X) = xz(a + X) Equation 3-3

If we now transform this back to polar form, we have

r=a(secd—-2cosd) Equation 3-4

This last equation may be easily transformed to parametric form by substituting the value
of r into the equations x =r cos #and y = r sin ¢, and letting & =t. This gives

(x,y)=all—2cos’t|L, tant), —7/2 <t <+7/2 Equation 3-5
The equation of the tangent line at the pointt =q is
4sinqcosq-y = (sec2 q+4sin®q- 2)x + a(l— 2cos? qXZ —sec’ q). Equation 3-6

Figure 3-3 displays the graph of the Right Strophoid.

y*(a—x)=x*(a+x)

(- a0)

Figure 3-3: Graph of the Right Strophoid
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3.3 Analytical and Physical Properties of the Right Strophoid

Using the parametric representation of the Right Strophoid given in Equation 3-5,
the following paragraphs delineate the relevant properties of the Right Strophoid.

3.3.1 Derivatives of the Right Strophoid
» X=4asintcost

> % =4alcos’t—sin’t)
> yza(seczt+4sin2t—2)
> §=2a(tantsec’ t + 4sintcost)

, _sec’t+4sin’t—2
4sintcost

) 3tan?t+1
> y'= -3 3
16asin®tcos’t

3.3.2 Metric Properties of the Right Strophoid
If A is the area of the Right Strophoid’s loop, then

A= a2(4_n}
2

This result is easily obtained using the Cartesian form of the Right Strophoid which
yields the following integral for the area under consideration

A:_:[ydx=:[x1/%dx.

This integral can best be evaluated by making the substitution

a—x
tan’0=—~".
a+Xx

Under this substitution and much algebraic manipulation, the area integral becomes

A A
A=4a’ _[sinz a6 —8a? _[sin“ aleo.
0 0

Using the identity sin6= Y% - Yac0s26), the first integral becomes
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% .
j(l—lcoszejdﬁzﬂ—z.
2 2 4

0

Using the same identity, the second integral becomes

7,
J' l—1c052¢9+£c03226? deo =
4 2 4

0

37-8

Hence, the area of the loop above the x-axis is

A~ 432 T—2 _8a’ 3t—8 _ g2 4—1
8 32 4 )

The total loop area is therefore, by symmetry, twice this value or as is indicated above,

A= a2(4_n}
2

In a similar manner, the area between the curve and its asymptote can also be
calculated. This calculation is not shown; however, it is done using the same substitution
as was used for the area of the loop. When all integrals have been evaluated, the area
between the Right Strophoid and its asymptote will turn out to be

A_a2(4+ﬂ]
— |

Hence, totaling this area with that of the loop we get the very beautiful result that the total
area of the Right Strophoid between the asymptote (at x = + @) and its tangent (at x = - @)
is 4a°.

Just as the area of the Right Strophoid’s loop was calculated above, one can also
calculate the volume of the solid of revolution that is formed when that loop area is
revolved about the x-axis. The total volume of the revolved loop will be

a a 2 _ a 23
V= nI y’dx = nJMdX = njax—xdx.
) y a+X 5 a+X
This integral is most easily evaluated by simply performing the indicated division, that is,
dividing the numerator of the integrand by a + X, i.e.,

a 3 a a a a
Vv =nj 2ax — x? —2a? +Zi dx:Zna_[xdx—nszdx—Znazjdx+2na3j
0 a+Xx 0 0 0 0

dx
a+x
Hence,
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V= 21ta{1 xz} o [x3]a— Znaz[x]a+ 2na’[In(a + x)]a .
2 o 3 0 0 0
Therefore,

2na’

V= (3In2-2).

If r is the distance from the origin to the curve, then
r =a(l—2cos? t)sect .
If p is the distance from the origin to the tangent, then

_ —afl-2cos?tf
V1+4cos?t—4cos*t

3.3.3 Curvature of the Right Strophoid
If p represents the radius of curvature of the Right Strophoid, then
_aft+4cos’t-4cos't)"
4cos* t(1+ 2sin® t)
If (o, p) are the coordinates of the center of curvature, then

_a(Bsin®t—12sin* t +6sin® t - 3) and _ dasin’t
4c0s* t{1+2sin’t) cost(L+2sin?t)

3.3.4 Angles for the Right Strophoid

If w is the angle between the tangent and the radius vector at the point of
tangency, then

1-2cos?t

tany = cott - .
v 1+2cos®t

If ¢ denotes the tangential angle, i.e., the angle between the tangent to the Right
Strophoid and the horizontal, then

_sec’t+4sin’t—2
4sintcost

tang

If denotes the radial angle, i.e., the angle between the radius vector to the Right
Strophoid and the horizontal, then

N
1l

t.
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3.4 Geometric Properties of the Right Strophoid
> Intercepts: (-a, 0) and (0, 0).

» Extrema: x-minimum at (—a, 0); x-maximum at (a, o)
o y-minimum at (a, —0); y-maximum at (a, +o).

» Extent: —-a<x<a,—oo<y<+on.

» Symmetry: symmetric about the x-axis.
» Asymptote: x =a.

» Loop: —-a<x<0.

3.5 Dynamic Geometry of the Strophoid

Dynamic geometry applications, such as GSP, can be used to generate the Right
Strophoid in a variety of entertaining ways. In fact, six different constructions for the
Right Strophoid and two constructions for the general Strophoid follow.

3.5.1 A Construction for the General Strophoid

As alluded to in Chapter 2, if, in the construction of a Cissoid generated by a
circle and a straight line, we let the pole point be anywhere on the circumference of the
circle and we require the straight line to pass through the center of the circle, the resulting
curve is the Strophoid. This is illustrated by the GSP construction delineated below in
Table 3-1.

Table 3-1: The General Strophoid

1. Draw circle AB centered at A and passing through point B 8. Draw line segment DE

2. Let C be a random point not on circle AB 9. Construct circle C, centered at point F with radius = DE
3. Draw line AC. 10. Drag point D until circle C, surrounds circle AB*

4. Let D be a random point on the circumference of circle AB 11. Let point G be the intersection of circle C, and line DE*
5. Let E be a 2™ random point on the circumference of circle AB | 12. Trace point G and change its color

6. Draw line DE 13. Animate point E around circle AB

7. Let point F be the intersection of lines AC and DE

*

See discussion below

The reason for step 10 is simply to ensure that when executing step 11, the correct
intersection point is selected; there are two of them and one will trace the Strophoid and
the other will not. The one that should be selected is the intersection point such that point
D will lie between points E and G. Note also that each different position of point D on
circle AB will cause the point G to trace a different member of the Strophoid family.
When point D is at the position on circle AB that is the maximum distance from line AC
(i.e., on a perpendicular to AC through the point A), then the Strophoid is a Right
Strophoid.

3.5.2 The General Strophoid as the Pedal of a Parabola

Delineated below, in Table 3-2, is an alternate construction for the general
Strophoid. The general Strophoid can be generated as the pedal curve of an ordinary
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parabola when the pedal point is selected as any random point on the directrix of the
parabola.

Table 3-2: The General Strophoid as the Pedal of a Parabola

1. Draw horizontal line AB 9. Construct P, L to line AB through point G.

2. Let C be a random point above line AB 10. Let | be the midpoint of line segment CG

3. Draw circle DE (below line AB) with center at point D 11. Construct P, L to line segment CG through point |

4. Let F be a random point on the circumference of circle DE 12. Construct P L to P, through point H

5. Draw line DF 13. Let point J be the intersection of perpendiculars P, and P
6. Let point G be the intersection of lines AB and DF 14. Trace point J and change its color

7. Let H be a random point on line AB 15. Animate point F around circle DE

8. Draw line segment CG

Note that if the construction for the general Strophoid shown above is continued

as follows,
16. Construct point K, the intersection perpendiculars P; and P,.
17. Trace point K and change its color.

then, as point F travels around circle DE, point K traces the parabola whose pedal curve
was constructed. Its focus is at point C and it is tangent to the Strophoid. Additionally, if
we continue the construction further,

18. Construct line segment KH.

19. Construct point L, the midpoint of line segment KH.

20. Draw line segment JL.

21. Construct perpendicular P, to line segment JL through point J.

Perpendicular P, that is drawn in step 21 is tangent to the Strophoid, and remains tangent
as it moves with the animation of point F around circle DE. Quite spectacular! Also note
that if the pedal point is on the directrix directly below the vertex of the parabola, then the
Strophoid is a Right Strophoid.

3.5.3 A Construction Based on the Definition of a Right Strophoid

The Right Strophoid can be defined in the following way (refer to Figure 3-4): Let
AB and AC be the sides of an angle of arbitrary, fixed measure, i.e., angle BAC. Let D
be a random point lying on line AB, but on the opposite side of A from B. Let L be a
straight line passing through point D intersecting line AC in point E. We now locate on L
two points, P; and P,, symmetrical to point E such that the lengths of the segments EP; =
EP, = EA. When line L rotates around the point D, the points P; and P, describe a Right
Strophoid. A GSP construction based on this definition is delineated below in Table 3-3.

Table 3-3: The Right Strophoid by Definition

1. Draw horizontal line AB 7. Let point G be the intersection of lines AC and DF

2. Draw line AC, where C is any point not on line AB 8. Draw circle GA centered at G and passing trough A

3. Let D be a point on line AB on the opposite side of A from B 9. Let points H & | be the intersections of circle GA and line DF
4. Draw circle DE centered at D with radius > AD 10. Trace points H and | and change their color

5. Let F be a random point on the circumference of circle DE 11. Animate point F around circle DE.

6. Draw line DF
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Figure 3-4: Defining the Right Strophoid

3.5.4 Newton’s Carpenter Square Construction of the Right Strophoid

As alluded to in Chapter 2, Newton’s Carpenter Square method of constructing a
Cissoid can also be used to generate a Right Strophoid. That GSP construction is
repeated here (Table 3-4) with the appropriate modifications required to produce the
Right Strophoid.

Table 3-4: Newton's Construction of the Right Strophoid

1. Draw horizontal line segment AB with A to the right of B 7. Construct circle C, centered at F with radius = segment AB
2. Construct P; L to segment AB through point A 8. Draw line segment AF

3. Draw circle CD to the right of segment AB 9. Construct circle C, centered at B with radius = segment AF
4. Let E be a random point on the circumference of circle CD 10. Let points G and H be the intersections of circles C, and C,
5. Draw line EC 11. Trace points G and H and change their color

6. Let point F be the intersection of line EC and P, 12. Animate point E around circle CD

Again note that if GSP is being used, the trace of points G and H not only produce
the Right Strophoid, but also produce a straight line that is tangent to the Right Strophoid.
This straight line is not part of the Right Strophoid, but is a result of the way in which
GSP switches points G and H at the point of tangency.

3.5.5 The Right Strophoid as an Envelope of Circles

A particularly beautiful construction for the Right Strophoid is given in Table 3-5.
In fact, this construction is really a slight variation of the construction for the Strophoid
given in section 3.5.2 where the general Strophoid was generated as the pedal curve of a
Parabola with the pedal point as an arbitrary point on the Parabola’s directrix. In this
case, point J traces the Parabola and is the center of the circles whose envelope defines
the Right Strophoid. Execute this construction, perform the animation, and watch as the
Right Strophoid unfolds. It is a thing of beauty!
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Table 3-5: The Right Strophoid as an Envelope of Circles

1. Construct vertical line AB 10. Construct P, 1 to line AB through point G

2. Let C be a random point not on line AB 11. Draw line segment CG

3. Let D be a random pt. on the opposite side of line AB from C 12. Let | be the midpoint of line segment CG

4. Draw circle DE centered at D and passing through point E 13. Construct P L to line segment CG through point |

5. Construct P; L to line AB through point C 14. Let point J be the intersection of P, and Ps

6. Let F be a random point on the circumference of circle DE 15. Draw circle JH centered at J and passing through point H
7. Draw line DF 16. Trace circle JH and change its color

8. Let point G be the intersection of lines DF and AB 17. Animate point F around circle DE

9. Let point H be the intersection of line AB and P,

3.5.6 The Right Strophoid as the Inverse of a Hyperbola

If the point of inversion is taken as the vertex of a Rectangular Hyperbola, then
the Hyperbola inverts to a Right Strophoid, as seen in the construction of Table 3-6.

Table 3-6: The Right Strophoid as the Inverse of a Hyperbola

1. Draw circle AB centered at A and passing through point B 13. Let G’ be the image when G is translated by distance EG*

2. Let C be a random point on the circumference of circle AB 14. Draw line FG'

3. Draw horizontal line AD such that AD > AB 15. Draw circle G'H centered at point G' and of any radius = G'H
4. Draw line segment CD 16. Measure distance G'F

5. Let E be the midpoint of line segment CD 17. Measure distance G'H

6. Construct P, L to line segment CD through point E 18. Calculate (GH) */ G'F

7. Draw line AC 19. Let G" be the image of translating G' by result of step 18*

8. Let point F be the intersection of line AC and P, 20. Draw circle G'G" centered at G' and passing through point G"
9. Trace point F and change its color 21. Let point | be one intersection of circle G'G" and line G'F

10. Draw line segment AD 22. Trace point | and change its color

11. Let G be the midpoint of line segment AD 23. Animate point C around circle AB

12. Measure distance EG

*The translations in both steps 13 and 19 should be done along line AD, i.e., at 0°

Steps 1 — 9 are the construction of the Rectangular Hyperbola. Steps 10 — 13 are
to locate the vertex of the Rectangular Hyperbola, which is then labeled G'. Finally, steps
14 — 21 are the construction of the inverse of the Hyperbola. Note that step 15 is simply
the creation of the inversion circle. As we have learned it can be any size, affecting the
scale of the inverted curve, but not the nature of the curve; that is why you can draw it
with an arbitrary size radius. In step 21, either intersection of the circle and line may be
chosen; both will ultimately yield a Right Strophoid, however, they will open in opposite
directions. For that matter, either vertex can also be chosen, again yielding Right
Strophoids that open in opposite directions.

3.5.7 The Right Strophoid as an Inversion of Itself

Finally, if an inversion circle is centered at the point where the Right Strophoid
crosses the x-axis and has radius the distance of that point to the origin, then the Right
Strophoid is invariant under inversion in that circle. When a curve inverts into itself, it is
called anallagmatic with respect to the given point of inversion. The following
construction, delineated in Table 3-7, illustrates this invariant concept. In the
construction below, steps 18 — 25 are the inversion of the Right Strophoid which is
constructed in steps 1 — 17. This is quite a beautiful construction; note that the three
perpendiculars of the construction are all concurrent.
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Table 3-7: The Right Strophoid as an Inversion of Itself

1. Draw horizontal line AB 14. Draw line EL

2. Draw line CD such that line CD intersects line AB 15. Construct P; L to line EL through point |

3. Let E be a random point on neither lines AB nor CD 16. Let point M be the intersection of line EL and P5

4. Construct P, L to line CD through point E 17. Trace point M and change its color

5. Draw circle FG (any radius) below line AB 18. Draw circle EJ centered at E and passing through point J
6. Let H be a random point on the circumference of circle FG 19. Measure distance EM

7. Draw line FH 20. Measure distance EJ

8. Let point | be the intersection of lines FH and CD 21. Calculate (EJ)* / EM

9. Let point J be the intersection of line CD and P, 22. Let E' be the image when E is translated by (EJ)* / EM
10. Draw line segment EI 23. Draw circle EE’ centered at E and passing through point E’
11. Let K be the midpoint of line segment El 24. Let N be one of the intersections of circle EE’ and line LE
12. Construct P, L to line segment EI through point K 25. Trace point N and change its color

13. Let point L be the intersection of line CD and P, 26. Animate point H around circle FG

3.5.8 The Right Strophoid and Its Tangent
Table 3-8 contains a construction for the curve and its tangent.

Table 3-8: The Right Strophoid and Tangent

1. Create x-y axes with origin as point A and unit point as B 12. Let F' be the image when F is translated by vector A —» C

2. Let C be a random point on the negative x-axis. 13. Construct the locus of point F' as point D traverses circle AC
3. Draw circle AC centered at A and passing through point C 14. Let point E; be the reflection of point E across line AD

4. Construct P, L to the x-axis through point C 15. Let E; be the image when E; is translated by vector F — E;
5. Let D be a random point on the circumference of circle AC 16. Let point G be the intersection of the x-axis and P,

6. Draw line AD 17. Let E; be the image when E; is translated by vector G — E;
7. Let point D’ be the reflection of point D across the x-axis 18. Let E4 be the image when E; is translated by vector E; —> E,
8. Draw line AD’ 19. Draw line segment AE,

9. Let point E be the intersection of line AD’ and P, 20. Construct P L to line segment AE, through point F

10. Construct P, | to line AD through point E 21. Construct line L, parallel to P; through point F/

11. Let point F be the intersection of line AD and P, 22. Animate point D around circle AC

Make the locus of step 13 and line L, of step 21 thick and colored and run the

animation. It’s a sight to behold!

3.5.9 The Strophoid and Its Osculating Circle
Finally, as the last construction for this chapter, Table 3-9 contains a construction

for the Strophoid’s osculating circle.
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Table 3-9: The Strophoid's Osculating Circle

1. Draw horizontal line AB 19. Let K be a random point on line AB

2. Draw circle AB with center at A and passing through point B 20. Construct P; L to P, through point K

3. Construct P; L to line AB through point B 21. Let point L be the intersection of perpendiculars P, and P;
4. Let C be a random point on the circumference of circle AB 22. Construct the locus of point L as point C traverses circle AB
5. Draw line AC 23. Draw line segment JK

6. Let point D be the intersection of line AC and P, 24. Let M be the midpoint of line segment JK

7. Let E be diametrically opposite point B 25. Draw line segment GK

8. Draw line segment DE 26. Let N be the midpoint of line segment GK

9. Let F be the midpoint of line segment DE 27. Draw line LN

10. Construct P, L to line segment DE through point F 28. Let point O be the intersection of P, and line LN

11. Construct P L to P, through point D 29. Construct Pg L to line LN through point O

12. Let point G be the intersection of perpendiculars P, and Ps 30. Let point P be the intersection of perpendiculars P; and Pg
13. Construct P, L to P, through point G 31. Draw line MP

14. Let point H be the intersection of P, and line AB 32. Let point Q be the intersection of line MP and line LN

15. Construct Ps L to P4 through point H 33. Draw circle QL

16. Let point | be the intersection of perpendiculars P; and Ps 34. Make circle QL thick and change its color

17. Construct Pg L to P through point | 35. Animate point C around circle AB

18. Let point J be the intersection of perpendiculars P4 and Pg

First of all, note that the locus of point L should be a Strophoid. If in your
construction it is not, drag point K along line AB until the Strophoid forms. Second, note
that there are some hidden goodies in this construction. If you construct the locus of
point G as point C travels on circle AB you will find that the locus is a parabola. Further,
if you construct circle JG (i.e., the circle centered at point J and passing through point G)
and then rerun the animation, you will find that circle JG is the osculating circle of the
parabola. Also note that the Strophoid is constructed as the parabola’s pedal curve, as we
discussed in section 3.5.2.
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Figure 3-5: The Right Strophoid in Three Dimensions

To see the Right Strophoid, you look along the left edge of this figure. In other words, the
cross-section of this figure is a Right Strophoid. To create it, the Right Strophoid was
extruded into this third dimension and then the curve was truncated along its asymptote.
The surface of the resulting figure was then given a sienna colored finish. The figure was
then placed as though floating in an azure-blue sky and a light source was situated so as
to cast the shadow caused by the extruded loop portion of the curve. The light source
itself can be seen reflecting off the surface of the loop.
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Chapter 4 — The Witch of Agnesi

Figure 4-1: The Witch of Agnesi in Three Dimensions

The "Witch of Agnesi" curve can be seen along the leading edge of the three-dimensional
figure above. To construct this figure, however, the curve was extruded into the third
dimension, truncated along its asymptote, and then given a semi-reflective silver finish
that reflects, to some extent, the clouds on the horizon. The infinite blue and yellow
checkered plane was then added to complete the figure.

Chapter 4: The Witch of Agnesi 4-1 Playing With Dynamic Geometry



4.1 Introduction

Maria Agnesi (1718 to 1799) was the author of a famous two-volume work on the
methods of Calculus circa 1748. This work by Agnesi is the first surviving mathematical
work by a woman. The book includes a discussion of the curve now known as the
"Witch of Agnesi.” It is unfortunate that this curve has come down to us through the
years with this name, for it is certainly not the name that Ms. Agnesi intended, or for that
matter, the name which anybody else intended. The curve was first discussed by Fermat
and a construction for the curve was given by Grandi® in 1703. In 1718 Grandi gave the
curve the Latin name versoria which means turning curve, so named because of its shape.
Grandi also gave the Italian versiera for the Latin versoria and indeed Agnesi quite
correctly states in her book that the curve was called la versiera. However, an
Englishman by the name of John Colson translated Agnesi’s book from Italian into
English and Colson mistook la versiera for laversiera which means ungodly woman or
she-devil. Hence, today we know the curve as the Witch. (Colson now has the
distinction of being the first mathematical male chauvinist; however, in Colson’s favor is
the fact that a chapter entitled "Turning Curve™ is not anywhere near as romantic
sounding as one entitled "The Witch of Agnesi."”)
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Figure 4-2: Definition of the Witch of Agnesi

Refer to Figure 4-2, which depicts an origin O, a circle of diameter a tangent to
the x-axis at the origin that passes through the point Q(0, a), and a line M which is

> Guido Grandi (1671 to 1742) was the author of a number of works on geometry. In 1703 he studied the
curve that is today known as the Witch of Agnesi; in fact, his work of 1703 was important in introducing
Leibniz’s calculus into Italy.
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parallel to the x-axis and also passes through Q. Let any line, L, passing through the
origin intersect the circle in point B and intersect the line M in point A. Let the
projection of point B on the x- and y-axis be points C and D, respectively. Finally, let
point P be the intersection of two perpendiculars, the first through point A and
perpendicular to line M and the second through point B and perpendicular to the y-axis.
The Witch of Agnesi is defined as the locus of point P for all possible lines L.

4.2 Equations and Graph of the Witch of Agnesi

It is relatively straightforward to derive the Cartesian equation for the Witch from
the geometric relationships depicted in Figure 4-2. First note that ABPA is similar to
AAQOQO. Thus, AQ/BP =QO /PA. However, AQ =x, Q0O =a,and PA=a-y.
Therefore,

X _a o gpXeoy)

BP a-y a
Now, in AOBC, we have OB? = OC? + BC? = (x — BP) 2 + y. Substituting the value of
BP from above, we have

x> +a’)y?
OB? = %.
Further, in AQDB, we have BQ? = QD? + DB? = (a—Y) ? + (x— BP) 2. Again,
substituting the value of BP, we have

2(a W L v2y2
Bsza(a );)2+xy.

Finally, in AQOB, which incidentally is a right triangle because it is inscribed in a semi-
circle, we have, a®> = OB? + BQ?. Hence, adding the two previous results, equating it to
a%, and simplifying, we get the Cartesian form of the Witch of Agnesi, i.e.

3

a
y=— > Equation 4-1
X" +a

There are at least two different, useful parametric representations of the Witch
which offer a convenient form. First let x = at. Then,

y- a®  a
a’t?+a? 1+t?

Hence, the first parametric representation is

(X,y):at,i, —oo<t<+4o Equation 4-2
1+t2

For the second representation, let x = a-tant. Then,
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a’ a a

2
= = = =acos’t.
a’+a’tan’t 1+tan’t sec’t

Therefore, the second parametric representation is

(x,y)= a(tant,cos2 t), -7 <t<w Equation 4-3

Of course, substitution of the usual polar coordinate transformations of x = rcos ¢
and y = rsin 0 gives the Witch’s polar form as

r*sin@—rsino(r> +a?)+a’ =0 Equation 4-4

Finally, the equation of the tangent line at the pointt = q is

y +2sinqgcos® - X = acos? q(1+ 2sin® q) Equation 4-5

The graph of the Witch of Agnesi is depicted in Figure 4-3.

F 3

y
y= a3
a* +x* (0.0)
) 100 x>

v

Figure 4-3: Graph of the Witch of Agnesi

4.3 Analytical and Physical Properties of the Witch of Agnesi

Using the parametric representation given in Equation 4-3 (i.e., x = atan t and
y = acos’t), the following paragraphs delineate the relevant properties of the Witch of
Agnesi.
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4.3.1 Derivatives of the Witch of Agnesi
> X=asec’t

» X =2asintsec’t
» y=-asin2t
» y=-2acos2t

> y' =-2sintcos®t
” 2 4 2
> y"=—cos t(3—4cos t)
a

4.3.2 Metric Properties of the Witch of Agnesi
If A is the area between the Witch and its asymptote then

A= _[ydx af

a+x

This integral is recognizable as the inverse tangent form, i.e.,

a3J. 2dx ~=a’ Lian X =a2(£+z =na’.
cas+Xx a al 2 2

In other words, the area between the Witch of Agnesi and the x-axis is four times the area
of the initial, defining circle pictured in Figure 4-2.

If V is the volume of the solid of revolution that is formed when the Witch is
rotated about the x-axis, then

V=r|y -dXx=m" | ——.

frocet [0
This integral is most easily evaluated by making the substitution x = a-tané. Under this
substitution, the integral is transformed to

% 2 %
¢ [ asec @-do : )

V =7 Jm:m JCOS 0-do.
% %

Using the identity cos?6 = % + %-c0s26, we have
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T 01
V =m® I (—+—c052¢9jd0:
272

rla

If r represents the radial distance from the origin to the curve, then

r=a+tan’t+cos*t .

If p is the distance from the origin to the tangent of the Witch, then

B all+2sin’t)
- Jsec* t+4sin2tcos?t

4.3.3 Curvature of the Witch of Agnesi

If p represents the radius of curvature of the Witch of Agnesi, then

_afl+4cos tsin’t)?
~ 2[4sin?t-1)cos’t

If (a, B) are the coordinates of the center of curvature of the Witch, then

. 4a(1+ cos® t)sin3t

_al
cost(4sin’t -1 and - f=

4.3.4 Angles for the Witch of Agnesi

1+10cos® t —12cos° t)
2cos* t(4sin?t-1)

If w is the angle between the tangent and the radius vector at the point of

tangency, then

(2sin®t +1)cos’t
(2cos®t —1)sint
If ¢ denotes the tangential angle, then

tany =

tang = —2sintcos’t.
If &denotes the radial angle, then

_cos’t

tand = ——.
sint

4.4 Geometric Properties of the Witch of Agnesi
> x-intercept: x =0.

» y-intercept: y = a.
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» The minimum value of the curve occurs at (£ «, 0).

» The maximum value of the curve occurs at (0, a).

» Points of inflection occur at (i % , %aJ

» Extent: —o<x<+o0;0< y<a.
» Symmetry: The curve is symmetric about the y-axis.
» Asymptote: The curve is asymptotic to the x-axis.

4.5 Dynamic Geometry of the Witch of Agnesi

Five GSP dynamic geometry constructions involving the Witch of Agnesi follow.
The first is based on the definition of the Witch, the second is for the Tangent line to the
Witch, the third shows how to construct the pedal curve of the Witch, the fourth is an
alternate construction of the Witch’s tangent, while the fifth is for the Osculating Circle.

4.5.1 The Witch of Agnesi Based on the Definition

See Figure 4-2 and the accompanying write-up to understand how the Witch of
Agnesi is defined as a locus of points. The GSP construction shown in Table 4-1 follows
from that definition.

Table 4-1: The Witch of Agnesi from the Definition

1. Draw vertical line segment AB with point A below point B 8. Let point E be the intersection of lines AD and L,

2. Construct P; | to line segment AB through point A. 9. Construct P, | to L, through point E

3. Construct line L, parallel to P, through point B. 10. Construct P; | to P, through point D

4. Let C be the midpoint of line segment AB 11. Let point F be the intersection of perpendiculars P, and P;
5. Draw circle CA centered at C and passing through point A 12. Trace point F and change its color

6. Let D be a random point on the circumference of circle CA 13. Animate point D around circle CA

7. Draw line AD

4.5.2 The Tangent to the Witch of Agnesi

As the next construction we will show how to construct the tangent line to the
Witch of Agnesi. Of course, in order to construct the tangent to the Witch, one must first
construct the Witch itself (herself?). That is done below in Table 4-2 as it was done in
section 4.5.1 with a few slight changes.
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Table 4-2: The Witch of Agnesi and Tangent Line

1. Draw vertical line Segment AB with point A below point B 11. Let point F be the intersection of P, and Ps

2. Construct P; L to line segment AB through point A 12. Construct P4 to P, through point E.

3. Construct P, L to line segment AB through point B 13. Draw line AF

4. Let C be the midpoint of line segment AB 14. Construct Ps L to P, through point D

5. Draw circle CA centered at C and passing through point A 15. Let point G be the intersection of circle CA and line AF

6. Let D be a random point on the circumference of circle CA 16. Let point H be the intersection of P4 and Ps

7. Draw line AD 17. Draw line GH

8. Draw line segment CD 18. Change the color and thickness of line GH

9. Construct P; L line segment CD through point D 19. Construct the locus of point H as point D traverses circle CA
10. Let point E be the intersection of line AD and P, 20. Animate point D around circle CA

The thickened line (line GH) is, of course, the tangent. Note how almost all of the
construction lines come together (i.e., merge) at point A and then again at point B as the
animation is run.

4.5.3 The Pedal Curves of the Witch of Agnesi

We learned in Chapter 1 that a Pedal curve is simply the locus of the intersection
point of a given curve’s tangent and the perpendicular to that tangent from a given point,
called the pedal point or pole. Since we now know how to construct the tangent to the
Witch (see previous construction), it is a simple matter to also construct the Witch’s
Pedal Curves. Table 4-3 below depicts such a construction.

Table 4-3: The Witch of Agnesi's Pedal Curves

1. Draw vertical line segment AB with point A below point B 13. Draw line AF

2. Construct P; L to line segment AB through point A 14. Construct Ps L to P, through point D

3. Construct P, L to line segment AB through point B 15. Let point G be the intersection of circle CA and line AF
4. Let C be the midpoint of line segment AB 16. Let point H be the intersection of P, and Ps

5. Draw circle CA centered at C and passing through point A 17. Construct the locus of point H as D traverses circle CA
6. Let D be a random point on the circumference of circle CA 18. Draw line GH

7. Draw line AD 19. Change the color and thickness of line GH

8. Draw line segment CD 20. Let | be a random point anywhere in the plane

9. Construct P; L to line segment CD through point D 21. Construct Ps L to line GH through point |

10. Let point E be the intersection of line AD and P, 22. Let point J be the intersection of line GH and Ps

11. Let point F be the intersection of P,and P 23. Trace point J and change its color

12. Construct P, L to Py through point E 24. Animate point D around circle CA

No, that’s not a typo or grammatical error in using the plural in "Pedal Curves."
Although the above construction will only display one of the Witch’s Pedal curves, you
can drag the pedal point (point I) to another location in your GSP construction and rerun
the animation. For each different location of point I, one will get a different pedal curve.
It is particularly interesting to drag point | onto line segment AB (or its extension) and
rerun the animation. A pedal curve symmetric about segment AB is obtained.

4.5.4 An Alternate Construction for the Tangent to the Witch of Agnesi

Although the tangent line to a curve at a given point on the curve is unique, the
method of constructing such a line is not. Table 4-4 gives an alternate construction for
the Witch’s tangent which is rather interesting (the construction for the curve is slightly
different also).
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Table 4-4: The Witch's Tangent (Alternate Construction)

1. Create x-y axes with A as origin and B as the point (1, 0) 13. Construct Ps L to the x-axis through point G

2. Draw circle AB centered at A and passing through point B 14. Let point H be the intersection of P;and Ps

3. Let C be a random point on the circumference of circle AB 15. Construct the locus of point H as Point C traverses circle AB
4. Draw line AC 16. Construct Ps L to P; through point G

5. Construct P; L to line AC through point A 17. Let point | be the intersection of P; and the y-axis

6. Let D be the intersection of circle AB with the positive y-axis | 18. Let F' be the image when F is translated by vector | - F
7. Let E be the intersection of circle AB with the negative y-axis | 19. Construct P; L to the x-axis through point F’

8. Construct P, L to P, through point D 20. Let point J be the intersection of Ps and P,

9. Let point F be the intersection of P; and P, 21. Draw line AJ

10. Construct P5 L to the y-axis through point F 22. Construct Pg L to line AJ through point H

11. Construct P, L to the y-axis through point E 23. Animate point C around circle AB

12. Let point G be the intersection of P; and P4

Of course, perpendicular Pg, constructed in step 22, is the tangent line. Note how
the tangent line coincides with the x-axis when the point that traces the curve (point H)
approaches infinity—the curve is asymptotic to the x-axis.

4.5.5 The Osculating Circle for the Witch of Agnesi

Generally, the constructions associated with the Witch of Agnesi are relatively
simple. However, as Table 4-5 portrays, the construction for the Witch’s Osculating
Circle is rather complex.

Table 4-5: The Osculating Circle for the Witch of Agnesi

1. Draw circle AB with center at A and passing through point B 23. Construct Pyo L to P; through point B"

2. Draw line AB 24. Let point K be the intersection of perpendiculars Py and Py
3. Let C be a random point on the circumference of circle AB 25. Draw line segment AK

4. Draw line AC 26. Construct Py; L to line AB through point B'

5. Construct P, L to line AB through point A 27. Let point L be the intersection of line AB and Py,

6. Construct P, L to line AC through point A 28. Let L' be the image when L is translated by vector A — L

7. Let D and E be the two intersections of circle AB with P, 29. Construct Py, 1 to line AB through point L'

8. Construct P; L to P, through point D 30. Let point M be the intersection of line AC with Pg

9. Let F be the intersection of perpendiculars P, and Ps 31. Let M' be the image when M is translated by vector ] - M
10. Construct P4 L to P, through point F 32. Construct P43 L to P, through point M'

11. Construct Ps L to P, through point E 33. Let point N be the intersection of perpendiculars Py, and P15
12. Let point G be the intersection of perpendiculars P, and Ps 34. Let point N' be the image when N is rotated about A by — 90°
13. Construct Ps L to line AB through point G 35. Construct P14 L to segment AK through point A

14. Let point H be the intersection of perpendiculars P, and Ps 36. Construct Pss L to Py, through point N'

15. Construct the locus of point H as point C traverses circle AB 37. Let point O be the intersection of perpendiculars P4 and Pis
16. Construct P; L to line AB through point B 38. Draw line segment KO

17. Let point | be the intersection of line AC and P, 39. Construct Py L to line segment KO through point K

18. Construct Pg L to line AC through point | 40. Let point P be the intersection of perpendiculars Py, and Pag
19. Let point J be the intersection of line AB and Psg 41. Let H' be the image when H is translated by vector P — A
20. Construct Pg L to line AB through point J 42. Draw circle H'H centered at point H' and passing through H
21. Let B' be the image when B is reflected across line AC 43. Make circle H'H thick and change its color

22. Let B" be the image when point B'is reflected across line AB | 44. Animate point C around circle AB

No less than 16 perpendiculars are required for this fantastic construction. By the
way, when the center of the osculating circle, i.e., the center of curvature, crosses the
curve (in this case the Witch of Agnesi), the point or points where the crossing takes
place is (are) the point(s) of inflection of the curve. In other words, the intersection
point(s) of the curve and its evolute is (are) the point(s) of inflection.
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Figure 4-4: The Solid of Revolution Formed by the Witch of Agnesi

This figure shows the solid formed when the Witch of Agnesi is revolved about the x-axis.
The background has been made solid black to give the appearance that the solid is
floating in space. The surface of the solid has been given a weathered brass finish and
the light source has been placed so as to illuminate the upper right portion of the solid
and to partially shadow the rest of the object.
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Chapter 5 — The Conchoid of Nicomedes

Figure 5-1: The Solid of Revolution Formed from the Conchoid of Nicomedes

The Conchoid of Nicomedes is a curve with two branches. One branch has a loop in it
for certain values of the curve’s parameters. Figure 5-1 portrays the loop branch of the
Conchoid of Nicomedes after it was truncated along its directrix and then rotated about
the y-axis. The surface of the solid so formed has been given a bright gold finish and
then placed over an infinite green plane that meets a cloud-bedecked sky at the horizon.
Two light sources have been configured so as to form the shadows seen on the green
plane; one in the background and one directly under the solid of revolution.
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5.1 Introduction

In Chapter 1, we learned about the concept of a Conchoid, namely, one method of
deriving a new curve from a given curve. That is, given a curve C and a fixed point O,
points P; and P, are taken on a variable line through O at a distance + a from the
intersection of the line and the curve C. Then, the locus of P, and P, is called the
Conchoid of the given curve C with respect to the point O. When the given curve C is
itself a straight line, the Conchoid is called the Conchoid of Nicomedes.

Nicomedes was born in Greece about 280 BC and died approximately 210 BC.
Very little is known of Nicomedes’ life; even the birth and death dates are
approximations. However, Nicomedes is famous for his treatise On Conchoid Lines
which contains his discovery of the curve that is today referred to as the Conchoid of
Nicomedes. According to modern accounts, the Conchoid of Nicomedes was first
conceived by Nicomedes to solve the angle trisection problem (we will address this
problem later in the chapter). The name conchoid is derived from Greek and it means
"shell,” as in the word "conch"; the curve is also sometimes known as a cochloid. In
actuality, the Conchoid of Nicomedes describes a whole family of curves, a different
curve for each value of the parameter a; i.e., given a line L, a point O that is not on L,
and a specified distance a, the Conchoid of Nicomedes is defined as follows (refer to
Figure 5-2). Draw a line K passing through point O and intersecting line L in point P.
Locate points P; and P, on line K such that the distance PP; = PP, =a. Then, the locus
of points P; and P, for each point P on L gives the Conchoid of Nicomedes.

A
y
Pz(xs 1)
. (0, b) vt R
a i
P, b
- 0 x
/
v

Figure 5-2: The Definition of the Conchoid of Nicomedes
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The point O is called the pole point and the given line, L, is called the conchoid’s
directrix and is an asymptote to the curve.

5.2 Equations and Graph of the Conchoid of Nicomedes

To arrive at a parametric representation for the Conchoid of Nicomedes, we could
simply plug a parametric representation for a straight line into Equation 1-15 (given in
Chapter 1) and be done with it. However, it is more informative to derive the equations
directly from the definition. As a matter of fact, let’s do both, since there is something to
be learned from performing both exercises. To derive the Cartesian equation for this
curve directly, first consider the point P, to have coordinates x and y. From Figure 5-2,
one can see that

cosf =

X* +y?

Similarly,

sinH:y—_b.
a

Eliminating @ by squaring and adding, we have

X2 y—b)
W2+ 2+( 2) =1.
y a

Now, clearing the fractions and rearranging, we see that the Cartesian form of the
Conchoid of Nicomedes is

(y-b)? (x2 + yz)— a’y?> =0 Equation 5-1

Note that we could just as easily have considered the point P; to have coordinates x and y.
In that case,

sinezﬂ,
a.

and when @ is eliminated due to squaring and adding, the same final equation is derived.
For the polar form, substitute y = rsin6 and x = rcos6. Making these substitutions
yields
(rsind—b)(r?)-a2r?sin®0=0.

Expanding and simplifying, the polar form of the Conchoid of Nicomedes is

(r—a)sind=b  Equation 5-2
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A convenient parametric form can be obtained by letting y = x- tan t, substituting
this into Equation 5-1 and solving for x. Thus,

(xtant —b)?(x? + X tan® t)— a’x” tan’ t =O0.

Simplifying and rearranging, we get

b
X =——+acost.
tant

Similarly, solving for y, we obtain
y =b? +asint.
Hence, a parametric representation for the Conchoid of Nicomedes is,
b 2 . .
(x,y)= (ﬁ +acost,b® +asint), —7<t<7 Equation5-3
an

Now let us do the derivation by plugging the parametric equation for the liney =b
into Equation 1-15. Doing that yields

at ab

X=t+t——— and y=b+t——.
Vt? +b? Vt? +b?

If we now substitute t = b tang, we obtain

x=tang(b+acos¢) and y=Db+acose.

Since ¢is just a dummy parameter, we can call it t (our usual notation) and we have an
alternate parametric representation, that is,

(x,y)=(b+acost)tantl), —=<t<3%4 Equation5-4

Nevertheless, continuing with our second derivation, if we now square both x and y and
add the results together, we have

x? +y? =(b+acosg) sec’ ¢.

However, b + acosg=y and secg=a/ (y —b). Therefore,

2
x2+y?=y? 2|
y y[y—b]
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Simplifying, we get Equation 5-1, as promised. The value of this exercise was that we
were able to obtain a convenient alternate parametric representation along the way,
namely Equation 5-4.

If we graph the Conchoid of Nicomedes, we get the two-branched curve shown in
Figure 5-3.

(0,a+5) Y
Y (... S
€ x >

(0,6 —a)
(y—z':v)z[x2 +yzj—a2y2 =0

Figure 5-3: Graph of the Conchoid of Nicomedes

Note that the graph of the curve shown in Figure 5-3 shows what the curve looks
like if the parameter b <a. If b = a, the loop becomes a cusp and if b > a, the bottom
branch is smooth like the top branch shown in the figure.

The equation of the tangent line at the pointt =q is

(b +acos’ q)- y+asingcos®q-x=(b+acosq)’. Equation 5-5

5.3 Analytical and Physical Properties of the Conchoid of Nicomedes

Using the parametric representation of the Conchoid of Nicomedes given in
Equation 5-4,i.e., x=(b+acost)-tantand y =b + a cos t, the following are the
relevant properties of the Conchoid of Nicomedes:

5.3.1 Derivatives of the Conchoid of Nicomedes
» X=bsec’t+acost

» X =2bsintsec®*t—asint
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» y=-asint

» y=-acost
- 2

—asin
> y- as tcoit
b+acos’t

,_ acos’ t(2b —3bcos?t —acos® t)
(b+acos®t)

5.3.2 Metric Properties of the Conchoid of Nicomedes

As can be seen from the graph (Figure 5-3), the Conchoid of Nicomedes has the
line y = b as an asymptote; however, unlike curves in previous chapters, the area between
the curve (that is, either branch of the curve) and the asymptote is infinite. Nevertheless,
the area of the loop can be calculated. Consider an incremental portion of the loop area
of width 2x and height dy. The area of this incremental portion is simply dA = 2x - dy.
Hence, by integrating between a — b and 0, we can obtain the loop area, i.e.,

A:Zj' x-dy:ZT ﬁw/a2 —(y-b)dy.
b-a b-a ¥

This integral is most easily evaluated by making the substitution u =y —b. Under this
substitution, we get

-b -b 2 2
A= ZI\/az —u®du +2bjudu.
-a —-a u
The first integral has the value

—b
{u\/az —u?+a’® sinl(gﬂ =a? cosl(gj—b a’ —b2.

-a
The second integral has the value

[ A2 2
[2b\/a2 —u?-2ab Iog[uﬂ
u

b
[ A2 2
=2bva’® —b? —2ab Iog(%}

—a

Hence, adding these two values together gives the loop area of the Conchoid of
Nicomedes, that is,
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[a2 R2
A=bva®-b* —2ab Iog(%] +a’ cosl(gj.
The volume of the solid of revolution that is formed when the loop of the
Conchoid of Nicomedes is rotated about the y-axis can also be calculated. Consider an
incremental disk of width dy. Its volume is simply dV = nx?dy. Therefore, by integrating

from b —a to 0, we can calculate the total volume. That is,

o] y[Eo0 Y,

b-a y - b)2

Making the substitution y - b = u yields the following readily integrable form

-b 2(42 2 -b 212 2 2,2 2,2 3 4
V:”I(b+u)u(§ -u )du=7zJ'ab +2ahu+a uuz—b u‘—2bu’-u du.

This now breaks into six different integrals, each of which is integrable as either a
positive or negative power of u. Performing the indicated integrations, evaluating the
results between the two limits of integration, and then collecting like terms, we obtain a
final form for the desired volume.

V = 7ab(a - 2b)+27za’b Iog[g) - %(4a3 ~b%)

If r is the radial distance from the origin to the curve, then

r_b+acos.t
cost

If p is the distance from the origin to the tangent line, then

(b+acost)’
Jb? +2abcos®t +a?cos*t

5.3.3 Curvature of the Conchoid of Nicomedes
If p denotes the radius of curvature of the Conchoid of Nicomedes, then,

(b +2abcos®t+a? cos* t)*
s t|lab(2tan®t-1)-a® cost|’

If (a, B) denote the coordinates of the center of curvature for the Conchoid of
Nicomedes, then
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b® +ab? cos® t(5—3cos? t)+ a’hcos* t(3— 2cos )
acos*t(2b—3bcos’t —acos’t)

in2 2
g S ttant(3b +2abcost) and =

2b—3bcos?t —acos®t

5.3.4 Angles for the Conchoid of Nicomedes

If y is the angle between the tangent and the radius vector (i.e., the tangential-
radial angle), then

_cost(b+acost)
bsint '

tany =

If &denotes the radial angle, then

O=rnl2-t.
If ¢ denotes the tangential angle, then
— in 2
tang = asi tcos t
b+acos’t

5.4 Geometric Properties of the Conchoid of Nicomedes
> Intercepts: (0, b—a); (0, 0); and (0, a + b).

» Maximum: (0, a + D).

> Extent: -o<x<+oo;(b—a)<y<a+h.

» Symmetry: The curve is symmetric about the y-axis.
» Asymptote: The curve is asymptotic to the line y = b.

5.5 Trisecting the Angle

As alluded to in the introductory section of this chapter, the Conchoid of
Nicomedes can be used to solve the Greek angle trisection problem. Given an acute
ZAOB, we must construct an angle that is ¥5 of ZAOB. (If the given angle is obtuse,
then one simply performs the construction on its supplement.) Refer to Figure 5-4.

Draw a line J that is perpendicular to segment AO of Z/AOB.

Let point C be the intersection point of segment AO and line J.

Let point D be the intersection point of line J and segment BO of Z/AOB.
Let a Conchoid of Nicomedes be constructed with pole at point O,
directrix of line J, and distance of 2-0D.

Draw line K through point D and perpendicular to line J.

6. Let E be the intersection of the curve (on the opposite side of the pole) and
line K.

Eal e

o
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Draw line segment OE.

Let point F be the intersection of line J and segment OE.
Let point G be the midpoint of segment FE.

0. Draw segment DG.

B2 ©o o~

=

Figure 5-4: The Trisection of an Angle Using the Conchoid of Nicomedes

Since triangles DEG, OGD, and GFD are all isosceles and since triangle FDE is a
right triangle, it can easily be shown that /AOE = ZOED = 5sZA0OB. The essential
element that makes the trisection possible is the construction of the point E on line K such
that the segment FE is equal to twice segment OD. A slight modification of this
construction can actually be used to generate the Conchoid of Nicomedes (i.e., essentially
reversing the steps of the trisection process) and is presented as one of the dynamic
geometry constructions in section 5.6.

5.6 Dynamic Geometry Considerations

Dynamic geometry programs such as GSP can be used to generate the Conchoid
of Nicomedes and demonstrate other properties of the curve. A few such constructions
follow.

5.6.1 The Conchoid of Nicomedes Based on the Definition

The construction presented below in Table 5-1 basically follows from the
definition of the Conchoid of Nicomedes given in section 5.1. Note that in this
construction, by moving point I into different locations in the plane relative to points G
and H, one can cause one branch of the curve to have a cusp, or a loop, or to be smooth
(as briefly addressed in section 5.2).
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Table 5-1: The Conchoid of Nicomedes Based on the Definition

1. Draw horizontal line AB 8. Draw circle HI with center at H and passing through point |
2. Let C and D be two random points anywhere below line AB 9. Let C; be the image as circle HI is translated by vector H — F
3. Draw circle CD with center at C and passing through point D 10. Draw line GF

4. Let E be a random point on the circumference of circle CD 11. Let J and K be the intersections of line GF and circle C;

5. Draw line CE 12. Trace points J and K and change their color

6. Let point F be the intersection of lines AB and CE 13. Animate point E around circle CD

7.

Let G, H, and | be random points anywhere above line AB

5.6.2 The Trisection Construction

A rather complex but beautiful construction can be based on the trisection
problem as discussed earlier. It is presented below in Table 5-2.

Table 5-2: The Trisection Construction

1. Draw horizontal line segment AB with B to the left of point A | 16. Let point | be the intersection of line AB and P,

2. Let C be a random point above line segment AB 17. Draw circle 1B with center at | and passing through point B
3. Draw line segment BC 18. Let point J be the intersection of ray BC' and P,

4. Draw a dashed line through points A and B 19. Construct P, L to P, through point |

5. Draw a dashed line through points B and C 20. Draw line HB

6. Let m; be the measure of ZCBA 21. Let ms be the measure of distance Bl

7. Letmy="%-my 22. Letmy = 2-mg

8. Let C' be the image when C is rotated about point B by Zm, 23. Let point K be the intersection of circle IB and ray BC'

9. Draw ray BC' from point B through point C' 24. Draw line segment Kl

10. Let D be a random point on line segment BC 25. Let H' be the image when point H is translated by distance m4
11. Construct P; L to line CB through point D 26. Draw circle HH' centered at H and passing through point H'
12. Draw circle EF centered at point E where EF is any radius 27. Let L and M be the intersections of circle HH' and line HB
13. Let G be a random point on the circumference of circle EF 28. Trace points L and M and change their color

14. Draw line EG 29. Animate point G around circle EF

15. Let point H be the intersection of line EG and P,

In step 8 of the above construction, make sure that the angle units are set for
directed degrees (i.e., select directed degrees in the object preferences box found under
the preference entry of GSP’s display menu).

5.6.3 The Generalized Conchoid

We learned in Chapter 1 and again at the beginning of this chapter that the
Conchoid of Nicomedes can be thought of as a special case of a more general type of
curve, namely, something that we call the generalized Conchoid or just Conchoid. As an
example of this more general concept, consider the dynamic geometry construction of the
Conchoid of a circle with respect to a given pole and distance a.

Table 5-3: The Generalized Conchoid

1. Draw line segment AB 6. Construct circle C, centered at point E with radius = AB
2. Draw circle CD with center at point C and CD =to any radius | 7. Let G and H be the intersections of circle C, and line FE
3. Let E be a random point on the circumference of circle CD 8. Trace points G and H and change their color

4. Let F be a random point not on circle CD 9. Animate point E around circle CD

5. Draw line FE

In step 1, the length of line segment AB represents the distance a. In step 2, circle
CD represents the circle for which we desire to construct the Conchoid. And, in step 4,
point F represents the pole point. Note that by dragging point A (or point B) in order to
change the length of segment AB and thereby change the radius of circle C,, different
members of the family for the Conchoid of a circle can be generated. Dragging point F
will also have this same effect.
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5.6.4 The Tangent Lines of the Conchoid of Nicomedes

Below, in Table 5-4, is a construction of the tangent lines to the Conchoid of
Nicomedes, one tangent line for each branch.

Table 5-4: Tangent Lines to the Conchoid of Nicomedes

1. Draw horizontal line AB 12. Let J and K be the two intersections of line GF and circle C,
2. Let C and D be two random points below line AB 13. Construct P, | to line GF through point G

3. Draw circle CD with center at C and passing through point D 14. Construct the locus of point J while E traverses circle CD
4. Let E be a random point on the circumference of circle CD 15. Construct the locus of point K while E traverses circle CD
5. Draw line CE 16. Let point L be the intersection of perpendiculars P, and P,
6. Let point F be the intersection of lines AB and CE 17. Draw lines JL and KL

7. Let G, H, and | be three random points above line AB 18. Construct P L to line JL through point J

8. Draw circle HI with center at H and passing through point | 19. Construct P, L to line KL through point K

9. Let C; be the translation of circle HI by the vector H — F 20. Change the color of the two loci

10. Draw line GF 21. Change the color and thickness of perpendiculars P; and P4
11. Construct P, L to line AB through point F 22. Animate point E around circle CD

5.6.5 The Pedal Curves of the Conchoid of Nicomedes

As we learned earlier, the pedal of a given curve is defined to be the locus of the
intersection point of the tangent to the given curve and the perpendicular to that tangent
from the pole or pedal point. In the last section (section 5.6.4), we constructed the
tangents to both branches (one tangent per branch) of the Conchoid of Nicomedes. It
should therefore be "duck soup™ to construct the pedal curves to either branch of the
Conchoid of Nicomedes. Let’s do it! The pedal curve construction is found below in
Table 5-5.

Table 5-5: Pedal Curves of the Conchoid of Nicomedes

1. Draw horizontal line AB 15. Let point L be the intersection of perpendiculars P, and P,
2. Let C and D be two random points below line AB 16. Draw lines JL and KL

3. Draw circle CD with center at C and passing through point D 17. Construct P; L to line JL through point J

4. Let E be a random point on the circumference of circle CD 18. Construct P4 L to line KL through point K

5. Draw line CE 19. Let M be a random point anywhere in the plane

6. Let point F be the intersection of lines AB and CE 20. Construct Ps L to P5 through point M

7. Let G, H, and | be three random points above line AB 21. Let the intersection of P; and Ps be point N

8. Draw circle HI with center at H and passing through point | 22. Trace point N and change its color

9. Let circle C, be the translation of circle HI by vector H — F 23. Let point O be another random point anywhere in the plane
10. Draw line GF 24. Construct Ps L to P4 through point O

11. Construct P, L to line AB through point F 25. Let point P be the intersection of perpendiculars P, and Pg
12. Let J and K be the intersections of line GF and circle C, 26. Trace point P and change its color

13. Trace points J and K and change their color 27. Animate point E around circle CD

14. Construct P, L to GF through point G

Obviously, points M and O serve as the pole points in this construction. Either
point M or point O, or both, may be dragged to different positions and the animation then
rerun. Each different position of the pole point(s) yields a member of the pedal curve
family. Some very weird curves can be generated by playing around with this
construction. Have fun!
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5.6.6 The Conchoid as the Cissoid of a Line and Circle

In Chapter 1, we learned of the concept of a Cissoid as a means of deriving a new
curve from two given curves. That is, given two curves C; and C,, a fixed point O
(called the pole point), and a line L that intersects the two curves in Q; and Q; if we now
locate a point P on L such that OP = Q;Q3, then the locus of P for all lines L is called the
Cissoid of C; and C, with respect to the point O. Well guess what? If the two curves are
a circle and a straight line and if the pole point is the center of the circle, it turns out that
the locus will be a Conchoid of Nicomedes. You don’t believe it? Well, take a look
below in Table 5-6 where just such a construction should make a believer out of you.

Table 5-6: The Conchoid of a Circle and a Straight Line

1. Draw circle AB with center at A and passing through point B 6. Let G be the unlabeled intersection of circle AB and line AE
2. Draw a random line CD anywhere in the plane 7. Let A' be the translation of point A by vector F —» G

3. Let E be a random point on the circumference of circle AB 8. Trace point A’ and change its color

4. Draw line AE 9. Animate point E around circle AB

5. Let point F be the intersection of lines CD and AE

It probably doesn’t need to be said, but here goes: circle AB is curve C4, line CD
is curve C,, and point A is the pole point.

5.6.7 One Tangent Line for Both Branches

In section 5.6.4 we geometrically constructed the tangent to the Conchoid of
Nicomedes, one such tangent line for each branch of the curve. We will now see a
construction that uses only a single tangent line but moves during the animation so as to
be tangent to both branches, one after the other. Also note that the construction of the
Conchoid of Nicomedes itself is different than what has been used previously. Refer to
Table 5-7.

Table 5-7: One Tangent Line for Both Branches

1. Draw circle AB with center at A and passing through point B 11. Let E' be the image when E is translated by vector G — E

2. Let C be a random point on the circumference of circle AB 12. Construct the locus of point E' while C traverses circle AB
3. Draw line AC 13. Construct P, L to line AC through point D

4. Draw line AB 14. Let point H be the intersection of line AB andP,

5. Construct P, L to line AB through point B 15. Construct line L, parallel to line AC through point H

6. Let point D be the intersection of P, and line AC 16. Construct P L to line L, through point E'

7. Draw line segment AD 17. Let point | be the intersection of perpendicular P; and line L,
8. Let E be the midpoint of line segment AD 18. Draw line Al

9. Draw circle AF centered at A such that radius AF > radius AB | 19. Construct P, L to line Al through point E'

10. Let point G be either intersection of circle AF and line AC 20. Animate point C around circle AB

Perpendicular P4 is, of course, the tangent. Note that if the other intersection of
line AC with circle AF is used, point E is translated to the other branch. So, in either
case, the locus of E' gives the same curve.

5.6.8 The Osculating Circle of the Conchoid of Nicomedes

In the construction of Table 5-8 below, the osculating circle of the Conchoid of
Nicomedes is presented. This construction shares the osculating circle with its two
branches just as the previous construction shared the tangent line. This construction is
rather complex; however, geometric constructions of the center of curvature of most
curves tend to be complex. Execute this construction and watch with wonder as the
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osculating circle grows to infinite radius and shrinks to fit inside the loop of the curve as
the center of curvature traces the curve’s evolute.

Table 5-8: The Osculating Circle of the Conchoid of Nicomedes

1. Draw circle AB centered at A and passing through point B 22. Construct P; L to line AB through point H

2. Draw line AB 23. Let point J be the intersection of P; and line AC

3. Let C be a random point on the circumference of circle AB 24. Let J' be the image when point J is translated by vector E — J
4. Draw line AC 25. Draw line segment AJ/

5. Draw circle AD centered at A with radius AD > AB 26. Let K be the midpoint of line segment AJ'

6. Construct P; L to line AB through point B 27. Let K’ be the image when K is translated by vector G’ —» K
7. Let point E be the intersection of P; and line AC 28. Construct Pg L to line AC through point K’

8. Let F be one of the intersections of circle AD and line AC 29. Let E' be the image when E is translated by vector H - E
9. Draw line segment EF 30. Let E” be the image when E’ is translated by vector E — E'
10. Let G be the midpoint of line segment EF 31. Construct Py L to P5 through point E”

11. Let G’ be the image when G is translated by vector A — G 32. Let point L be the intersection of Pg and Py

12. Construct the locus of point G’ as point C traverses circle AB | 33. Construct Py, L to line Al through point L

13. Construct P, L to line AB through point A 34. Let point M be the intersection of Py, and line Al

14. Construct P; L to line AC through point E 35. Draw line segment I'M

15. Construct P4 L to line AC through point G’ 36. Construct Py; L to line segment I’'M through point I

16. Let point H be the intersection of P; and line AB 37. Let point N be the intersection of line Al and Py,

17. Construct Ps L to P5 through point H 38. Let G"" be the image when G’ is translated by vector N - A
18. Let point | be the intersection of P, and Ps 39. Draw circle G"'G' centered at G"' and passing through G’
19. Let I' be the image when point | is rotated about A by 90° 40. Make circle G"G’ thick and a different color

20. Draw line Al 41. Animate point C around circle AB

21. Construct Pg L to line Al through point G’
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Figure 5-5: The Loop of the Conchoid of Nicomedes in Three Dimensions

To create this figure, the loop branch of the Conchoid of Nicomedes was truncated along
its asymptote and then extruded into the third dimension. The resulting figure was then
given a brown-agate finish and super-imposed over the arc of a rainbow. Light sources
were placed so as to cast shadows on the inside of the loop.
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Chapter 6 — The Cardioid

Figure 6-1: The Cardioid in Three Dimensions

The cross-section of this pseudo-cylinder is the curve known as the Cardioid. To create
the object above, the Cardioid was extruded into the third dimension, given a lustrous tan
finish, and placed above an infinite checkered plane which meets the wispy, clouded sky
at the horizon. Light sources were placed so as to cast the object’s shadow on the plane
and to partially shade the inner surface of the object.
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6.1 Introduction

The word cardioid is from the Greek root cardi, meaning heart; hence cardioid
means heart-shaped. We learned in Chapter 1 that a Roulette is the curve resulting as the
trace of a fixed point on a curve C; that rolls without slipping along another fixed curve,
C,. A special name is given to the Roulette when both C; and C; are circles and when the
fixed point is on the circumference of the rolling circle; that name is Epicycloid and the
Cardioid is a special instance of an Epicycloid. Before we define the Cardioid, let us
more precisely define an Epicycloid. An Epicycloid is defined as the path of a point P
fixed on the circumference of a circle of radius b, as it rolls at a uniform speed along the
circumference and outside of a second circle of radius a. Let the fixed circle be centered
at the origin of the x-y plane. Suppose the moving circle is rolling along the fixed one in
such a way that its center has rotated about the origin to an angle t at time t (see Figure 6-

2).
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Figure 6-2: The Concept of an Epicycloid

We then find for the position at the time t of the point P = [x (t), y ()], which at
the time t = 0 is the point of contact (a, 0), the parametric equations

x =(a+b)cost—b cos(aTertj
Equation 6-1

y=(a+b)sint— bsin[aTmtj
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This then defines an Epicycloid. As alluded to above, a Cardioid is a special case
of an Epicycloid; namely, when a = b (i.e., when the radius of the fixed circle is the same
as the radius of the rolling circle), the curve traced is called a Cardioid.

6.2 Equations and Graph of the Cardioid

Obtaining a parametric equation for the Cardioid is simply a matter of letting
b =ain Equation 6-1. Thus,

X =2acost —acos 2t

. ] -z<t< sz Equation 6-2
y =2asint—asin 2t

By eliminating the parameter t between the two components of Equation 6-2, one
can derive the Cartesian equation, which is

(x2+y? —2ax) =4a2(x* + y?) Equation 6-3

Similarly, one can derive the polar equation of the Cardioid by making the
familiar substitutions of x = r-cosé, y = r-sin6, and r? = x> + y%. That is,

r= 2a(l+ cos 6’) Equation 6-4

With the origin taken at the center of the fixed circle, the pedal equation of the
Cardioid is
9(!’2 —az):8p2 Equation 6-5

Further, the Whewell equation is

s=8a cos% Equation 6-6

And the Ceséaro equation is

s*+9p*=64a’ Equation 6-7
Finally, the equation of the tangent line to the Cardioid at the pointt = q is
(1—cosq)1+2cosq) 3a(cosq-1)

= : Equation 6-8
sing(2cosq—1) X+sinq(ZCosq—l) quation

The graph of the Cardioid is shown in Figure 6-3. Note that the vertex of the
Cardioid is defined to be the point opposite the Cardioid’s cusp, and the diameter of the
Cardioid is the segment between the cusp and the vertex.
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(x2 +y2 —20317)z = 4ar2(x:Z +y2)
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Figure 6-3: Graph of the Cardioid

6.3 Analytical and Physical Properties of the Cardioid

Using the parametric representation of the Cardioid given in Equation 6-2, i.e.,
X = 2acost — acos2t and y = 2asint — asin2t, the following subparagraphs delineate further
properties and characteristics of the Cardioid:

6.3.1 Derivatives of the Cardioid
> x=2asint(2cost -1).

> X‘=2a(4coszt—cost—2).
> y=2a(l-cost)l+2cost).
>y =2asint(4cost—1).

, _ (1—cost)1+2cost)
sint(2cost —1)

3(1-cost)

> y'= .
2asin®t(2cost —1)°

6.3.2 Metric Properties of the Cardioid
In Chapter 1, we addressed the arc length of a curve in polar coordinates as
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6, dr 2
s:j [—j +r2dé.
AT

Therefore, % the length of the Cardioid would be its arc length between =0 and = .
That is,

s = J.\/4a2 sin® 6+ 4a*(L+ cos 0)° 6 = 2a+/2 [ 1+ cos 0d6.
0 0

Now, using the identity
v1+cosé = \/Ecosg ,

we have,

S = 8a_|.d(sin Qj = Sa{sin Q} =8a.
5 2 2

0
Since the Cardioid is symmetric about the x-axis, the total length of the Cardioid will be
twice this value or s = 16a.

Chapter 1 also expresses the area in polar coordinates by considering the area of a
small circular sector of incremental angle d&. The area of this incremental sector is
simply dA =% r%.d@. Therefore, the area of the Cardioid above the x-axis is

A=%I4a2(1+c039)2d6?= 2a2J‘d6?+4a2J‘c056?-d9+2a2J‘cos2 6-dé
0 0

0 0
The contribution from the first integral is 2na’, the contribution from the second integral
is zero, and the contribution from the third integral is na®. Hence, the area above the x-

axis is 3na® and the total area, by symmetry, is 6ma’.

The surface area of the solid of revolution that is formed when the Cardioid is
rotated about the x-axis can be calculated using the parametric form addressed in Chapter

1. That is,
t, 2 2
S :27z.[y\/(%j +[d—yj dt,
: dt dt

where x and y are the components from the parametric representation in Equation 6-2 and
where t; and t; are 0 and =, respectively. We know from section 6.3.1 that

%:ZasinZt—Zasint and %ZZ&CGSt—ZaCOSZt.

Therefore,

2 2
\/(%) +(?i—)t/j =2a+/2 -\/1-cost , and

Chapter 6: The Cardioid 6-5 Playing With Dynamic Geometry



S = ZﬁI(Zasint —asin 2t)(2a\/§ 1- cost)dt.
0
Breaking this up into two integrals, we have
S= 87za2\/§jsin t+/1—costdt — 4ﬂa2\/§jsin 2t+/1—costdt.
0 0

Both integrals can be evaluated by making the substitution u =1 — cos t. Under this
substitution, du = sin t-dt and when t =0, u = 0 and when t =, u = 2. Therefore, the two
integrals are transformed to the following

S= 87za2\/_fu}/du 47za2\/_j21 uu’sdu.

The first integral has the value 64na2/3 and the second integral has the value -647a?/15.
Taking the difference of these two quantities therefore yields S, the total surface area of
the surface of revolution formed when the Cardioid is rotated about the x-axis:

3 15 5
If p is the distance from the origin to the tangent of the Cardioid, then

3a\/§

=— 1—cost)?.
p=- 222 _cost)

g _ B4m’ _[_ 647a’° j _128m°

If r is the radial distance from the origin to the Cardioid, then

r=av5—-4cost.

6.3.3 Curvature of the Cardioid
If p represents the radius of curvature of the Cardioid, then

_4av2
3

(1—cost)”.

If (a, B) are the coordinates of the center of curvature of the Cardioid, then

~2(2cos’t+2cost-1) and p= 2—?jisint(lJr cost).
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6.3.4 Angles for the Cardioid

If y is the angle between the tangent and the radius vector at the point of tangency
to the Cardioid, then
3(1—cost)

tany = -
sint

If &denotes the radial angle of the Cardioid, then

2sint(1—cost)

tand = .
2cost —cos 2t

If ¢ denotes the tangential angle of the Cardioid, then

(1-cost)1+2cost)

t =
ne sint(2cost —1)

6.4 Geometric Properties of the Cardioid
> Intercepts: (0, + 2a); (4a, 0).

» X-maximum: (4a, 0).

> x-minima; (— a, i%ﬁaj .

» y-maximum: [37a i J

> y-minimum: (%,—% aJ .

33 33

> Extent: -a<x<4aand ——a< <—a

» Symmetry: The Cardioid is symmetric about the x-axis.
» Cusp: (0, 0).

» Loop: The entire Cardioid is one loop.
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6.5 Dynamic Geometry of the Cardioid

The Cardioid has many interesting properties and can be generated in a variety of
different ways. The following subsections present a few of these properties as well as an
assortment of the methods that can be used to generate the curve itself.

6.5.1 The Cardioid as an Epicycloid

As alluded to in section 6.1, an Epicycloid is defined as the path of a fixed point,
P, on the circumference of a circle of radius b, as it rolls at a uniform speed without
slipping around the circumference and outside of a second stationary circle of radius a.
The Cardioid occurs when the two radii are equal, i.e., whena =b. The GSP
construction delineated below in Table 6-1 is based on this relationship.

Table 6-1: The Cardioid as an Epicycloid

1. Draw horizontal line AB 9. Construct line L, parallel to line AB through point A'

2. Let C be a random point on line AB 10. Let F be the intersection of L, and translated circle

3. Draw circle AC centered at A and passing through point C 11. Let m; be the measure of ZCAD

4. Let D be a random point on the circumference of circle AC 12. Letm, =2m,;

5. Draw line AD 13. Let F' be the image when F is rotated about point A" by Zm,
6. Let point E be diametrically opposite to point D 14. Trace point F' and change its color

7. Translate circle AC by vector E —» D 15. Animate point D around circle AC

8. Let A' be the image when A is translated by vector E —» D

In the above construction, the circle created at step 3 (circle AC) plays the role of
the fixed circle. Steps 4 through 8 are then merely the methodology used to obtain
another circle of equal radius tangent to the fixed circle. Let us call this circle A'D
because it is centered at point A" and passes through point D. Ostensibly, circle A'D is
supposed to be the rolling circle although this is somewhat of a misnomer. When point D
is animated around the fixed circle (in step 15), it looks like circle A'D is rolling around
the fixed circle, but in actuality, it is not — it is sliding around the fixed circle, not rolling.
If you need proof of this fact, simply trace any random point on the circumference of
circle A'D and you will obtain the trace of another circle. If circle A'D were truly rolling
(without slipping), any random point on its circumference would trace a Cardioid. Steps
9 through 13 are then simply an artifice to construct a point that emulates that of a point
on arolling circle. Note that we have created point F' by rotating point F about point A’
by twice angle CAD. Since GSP always maintains that relationship as points are moved,
point F' moves around circle A'D as though it were truly on a rolling circle.

An interesting fact to note is that the diameter of the Cardioid generated in this
manner is 4 times the radius of the fixed circle.

6.5.2 The Cardioid as an Epicycloid Revisited

The previous construction is based upon a fixed circle and a circle of equal radius
rotating without slipping around the outside of the fixed circle. The construction shown
below in Table 6-2 is similar except that the rotating circle is twice the radius of the fixed
circle and it rotates in such a way that the fixed circle is inside of the rotating circle. That
a Cardioid may also be generated this way was discovered by Daniel Bernoulli in 1725
and is known as the Double Generation theorem.
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Table 6-2: The Cardioid as an Epicycloid Revisited

. Draw horizontal line AB

6. Let A" be the image when A is translated by vector A' — C'

. Draw circle AB with center at A and passing through point B

7. Draw circle A"C' centered at A" and passing through point C'

. Let C be a random point on the circumference of circle AB

8. Trace point C' and change its color

. Let A" be the image when A is rotated about point C by 180°

(W[N]

9. Animate point C around circle AB

. Let C' be the image when C is rotated about A' by Z/BAC

6.5.3 Orthogonal Tangents to the Cardioid

The following simple, but elegant, construction demonstrates an interesting
property of Cardioids. That is, given a tangent to the Cardioid, one can always find
another tangent that is perpendicular to the given tangent. After completing this
construction, note that segments CC, and C,C, are normals of the Cardioid. Refer to

Table 6-3.
Table 6-3: Orthogonal Tangents to the Cardioid
1. Draw circle AB centered at A and passing through point B 9. Let C; be the image when C; is rotated about point A by 180°
2. Let C be a random point on the circumference of circle AB 10. Draw line segment CC,
3. Let B' be the image when B is dilated about A by a factor of 3 | 11. Let C, be the image when C; is rotated about A" by 180°
4. Draw circle AB' with center at A and passing through point B' | 12, Construct P; L to line segment CC, through point C,
5. Let point A" be the image when A is rotated about C by 180° 13. Draw line segment C,C4
6. Let C, be the image when C is rotated about point A by 180° 14. Construct P, L to line segment C,C, through point C4
7. Let C, be the image when C is rotated about A' by Z/BAC 15. Construct the locus of point C, while C traverses circle AB
8. Let A" be the image when A' is rotated about point A by 180° 16. Animate point C around circle AB

There are at least two items of interest with this construction and Cardioid
property. First, note that even though the main thrust here is to demonstrate this
orthogonal tangent property, the construction contains a general method of constructing a
tangent, something that was pointed out in previous chapters. Second, we have two
tangents meeting at a constant angle as the animation is executed; in Chapter 1 we
learned that the locus of the intersection point of two tangents with that property is called
an isoptic and, further, when the constant angle is 90°, the locus is called an orthoptic. In
this case, the locus is a circle, specifically circle AB’. Therefore the orthoptic produced
by the Cardioid’s orthogonal tangents is a circle.

6.5.4 The Cardioid as the Conchoid of a Circle

In Chapter 1, we discussed the concept of a generalized Conchoid. To review, let
O be a fixed point (called the pole point) and let L be a line through O that intersects a
curve C at a point Q. The locus of points P; and P, on L such that P;Q = P,Q = a, where
a is a constant, is a conchoid of the curve C with respect to point O. Now, consider a
circle of radius r. The Conchoid of this circle with respect to a fixed point on the
circumference of the circle where the constant a = 2r is a Cardioid. See Table 6-4 below

for the GSP construction of this Cardioid.

Table 6-4: The Cardioid as the Conchoid of a Circle

. Draw circle AB centered at A and passing through point B

6. Construct circle C, centered at C and radius = to segment BD

. Draw line AB

7. Draw line BC

. Let C be a random point on the circumference of circle AB

8. Let E and F be the two intersections of line BC and circle C,

. Let D be the point diametrically opposed to point B

9. Trace points E and F and change their color

gl (w|N|F-

. Draw line segment BD

10. Animate point C around circle AB
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This construction, as can be seen, also appears to be a rolling circle of twice the
radius of the fixed circle, and rotating in such a way that the fixed circle is inside of the
rolling circle. However, note that both points E and F need to be traced in order to
generate the entire Cardioid. Tracing only one of the points generates only a fraction of
the curve. This is due to the way GSP is designed. (Other dynamic geometry programs
do not necessarily have this limitation.)

6.5.5 A Cardioid Sliding on Mutually Orthogonal Lines

This construction produces a Cardioid that slides on two mutually perpendicular
lines. This very beautiful construction is delineated below in Table 6-5.

Table 6-5: A Cardioid on Mutually Orthogonal Lines

1. Draw horizontal line AB 14. Let H be the midpoint of line segment DF

2. Let C be a random point on line AB 15. Draw line segment GH

3. Draw circle AC centered at A and passing through point C 16. Let | be the midpoint of line segment GH

4. Let D be a random point on the circumference of circle AC 17. Draw circle ID centered at | and passing through point D

5. Construct P, L to line AB through point A 18. Let point G, be the translation of point G by vector | - G
6. Construct P, L to line AB through point D 19. Draw circle G,G centered at G, and passing through point G
7. Construct P; L to P, through point D 20. Let J be a random point on the circumference of circle ID

8. Let point E be the intersection of perpendiculars P; and P; 21. Let G, be the image when G; is rotated about point | by ZGIJ
9. Let F be the intersection of line AB and perpendicular P, 22. Let E; be the image when E is rotated about point | by ZGIJ
10. Draw line segment EF 23. Let E, be the image when E; is rotated about G, by ZG1J
11. Draw line segment ED 24. Construct the locus of E, while point J traverses circle ID
12. Let G be the midpoint of line segment ED 25. Animate point D around circle AC

13. Draw line segment DF

Note the following about this fascinating construction. Lines AB and AE are the
two mutually orthogonal lines upon which the Cardioid slides. While running the
animation, observe that point E performs simple harmonic motion along line AE while,
simultaneously, point F performs simple harmonic motion along line AB and both of
these points are points on the Cardioid. Further, observe that the cusp of the Cardioid is
confined to two of the constructs, namely, the circumference of circle ID and line
segment EF.

If one constructs the two intersection points of line segment EF with circle ID and
traces those two points, one obtains a curve called the Astroid, a curve addressed in
Chapter 11. In this case, the Astroid is produced with an inscribed circle. However, both
points must be traced to obtain the Astroid with inscribed circle; tracing only one of the
points gives only half of the Astroid and half of the circle. If one traces point E,, one
obtains a curve called the Nephroid, also addressed in Chapter 7. If one traces point E;,
one obtains a curve called the Limacon of Pascal. Finally, if one traces point G; and/or
circle G;G, one obtains an ellipse. This construction is just full of goodies!

6.5.6 The Cardioid as the Caustic of a Circle

In Chapter 1, we briefly addressed the concept of a caustic. To review, the caustic
of a given curve C is the envelope of light rays emitted from a point source after
reflection or refraction at the curve C. When the envelope is due to reflection, the caustic
is referred to as a catacaustic, and if the envelope is due to refraction, the caustic is
referred to as a diacaustic. It turns out that the catacaustic of a circle when the light
source is on the circumference of the circle is a Cardioid. The Cardioid produced in this
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manner is inside the circle and its vertex coincides with the light source. Further, the
Cardioid has a diameter that is 2/3 of the circle’s diameter. See Table 6-6 below for this
construction.

Table 6-6: The Cardioid as the Caustic of a Circle

1. Draw circle AB centered at A and passing through point B 5. Reflect line segment BC across line segment AC

2. Let C be a random point on the circumference of circle AB 6. Let the reflected line segment intersect circle AB in point D
3. Draw line segment AC 7. Trace line segment CD and change its color

4. Draw line segment BC 8. Animate point C around circle AB

As can be seen from Figure 6-4, which is a snapshot of the executing animation,
this construction makes for quite a spectacular looking trace. For best effects, have the
animation do only one revolution and do it at the highest animation speed, i.e., quickly.

Figure 6-4: The Cardioid as the Caustic of a Circle

6.5.7 The Cardioid as the Pedal Curve of a Circle

It just so happens that the pedal curve of a circle when the pedal point is on the
circumference of the circle is a Cardioid, as can be seen from the construction below in
Table 6-7. In this case, the pedal point (point B) forms the cusp of the Cardioid and the
diameter of the circle is the same as the diameter of the Cardioid.

Table 6-7: The Cardioid as the Pedal of a Circle

1. Draw circle AB with center at A and passing through point B 5. Construct P, 1 to P; through point B

2. Let C be a random point on the circumference of circle AB 6. Let point D be the intersection of perpendiculars P; and P,
3. Draw line segment AC 7. Trace point D and change its color

4. Construct P; L to line segment AC through point C 8. Animate point C around circle AB
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6.5.8 The Cardioid and Simple Harmonic Motion

Who would have thought that a rotating Cardioid could produce simple harmonic
motion? But it is a remarkable fact that it can, as can be seen from the construction
delineated below in Table 6-8.

Table 6-8: The Cardioid and Simple Harmonic Motion

. Let C, be the image when C is dilated about A by a factor of 2 | 17. Draw line segment EC;

. Let C, be the image when C is dilated about B by a factor of 2 | 18. Draw line segment EA;

. Let D, be the image when D is dilated about A by a factor of 2 | 19. Construct the locus of point D3 as point D traverses circle AB

1. Draw circle AB with center at A and passing through point B 11. Let C; be the image when C is rotated about C; by Z/BAC
2. Let A; be the image when A is dilated about B by a factor of 2 | 12. Construct P; L to line segment BA, through point C,

3. Dilate circle AB about point B be a factor of 2 13. Let D, be the image when D is rotated about D; by /BAD
4. Let A; be the image when A, is dilated about B by the factor 2 | 14. Draw line segment C,A;

5. Let C and D be two random points on circle AB 15. Let E be the intersection of line segment BA, and P,

6. Draw line segment BA, 16. Let D5 be the image when D;, is rotated about B by ZCsBE
7

8

9

1

0. Let B, be the image when B is rotated about A; by /BA,C 20. Animate point C around circle AB

When running this animation, hide the following elements for aesthetic purposes
and visual clarity: points A, C, D, C4, D1, By, C3, Dy, D3, circle AB, segment BA,,
segment EA,, and the perpendicular P;. Additionally, trace point E. Then it is very easy
to see that as the Cardioid rotates about its cusp, point E which is a point on the Cardioid
oscillates between points B and A; tracing a straight line — simple harmonic motion. In
other words, if the Cardioid is pivoted at its cusp and rotated with a constant angular
velocity, a pin constrained to a fixed straight line and bearing on the Cardioid will move
with simple harmonic motion. Recall, from Equation 6-4, that the polar equation of the
Cardioid is,

r = 2a(l+cos@).

Thus,
ﬁ =-2asin H-d—g and
dt dt

2

2
E: 2acos¢9‘[%) —2asing-
d dt

2

d?’e

t2

Now, if d@/ dt = k, a constant, we have

d Z%tz =—k*(2acos9)=—k?*(r-2a).

Slightly rewriting this, we have the differential equation governing the motion of any
point of the pin as,

= —kz(r — a). Equation 6-9
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6.5.9 The Cardioid as an Envelope of Circles

Similar to the pedal, an envelope can be thought of as a way of deriving a new
curve based on a set of curves. The envelope of a set of curves is a new curve C such that
C is tangent to every member of the set. It so happens that the Cardioid is the envelope
of a specific set of circles as can be seen in the simple, but elegant, construction found in
Table 6-9.

Table 6-9: The Cardioid as an Envelope of Circles

1. Draw circle AB with center at A and passing through point B 4. Trace circle CB and change its color

2. Let C be a random point on the circumference of circle AB 5. Animate point C around circle AB

3. Draw circle CB with center at C and passing through point B

The Cardioid generated in this manner has a diameter of twice that of circle AB,
as can be seen from the dotted circle shown in Figure 6-5 (the dotted circle is not part of
the construction but has been added to make the diameter relationship clear).

Figure 6-5: The Cardioid as an Envelope of Circles

6.5.10 The Cuspidal Chords of the Cardioid

A chord of the Cardioid is merely any line segment whose endpoints lie on the
circumference of the Cardioid. A cuspidal chord is a chord that passes through the cusp.
It is interesting to note that all cuspidal chords of a given Cardioid are equal and therefore
equal the Cardioid’s diameter (since the diameter is a cuspidal chord). This fact can be
demonstrated with the construction found in Table 6-10.

As can be seen from this construction, the cuspidal chord, which is segment C,C,,

is constant in length and equals 4 times the radius of the initial circle. Itis also
interesting to note that the midpoint of the cuspidal chord, point D, always lies on the
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initial circle (this can be verified by tracing point D). Finally, if one traces the cuspidal
chord itself, it will color in the Cardioid making quite a striking picture.

Table 6-10: The Cuspidal Chords of the Cardioid

Let O, be the image when circle Oj is rotated about A by 180° | 17. Animate point C around circle AB

1. Draw circle AB with center at A and passing through point B 10. Construct the locus of point C, as point C traverses circle AB
2. Let C be a random point on the circumference of circle AB 11. Let C; be the image when C; is rotated about point A by 180°
3. Let circle O, be the image as circle AB is dilated about Aby 3 | 12. Let C, be the image when C; is rotated about A, by 180°

4. Let A; be the image when A is rotated about point C by 180° 13. Draw line segment C,C, and change its color

5. Let Os be the image as circle AB is rotated about C by 180° 14. Measure the distance from point C; to point C4

6. Let C, be the image when C is rotated about point A by 180° 15. Let point D be the midpoint of line segment C,C,

7. Let C, be the image when C is rotated about A; by /BAC 16. Calculate 4 times the radius of circle AB (, i.e., 4-AD)

8.

9.

Let A, be the image when A, is rotated about point A by 180°

6.5.11 The Osculating Circle of the Cardioid

In previous chapters, we have at times, given constructions for the osculating
circle of the curve under consideration. Remember that the center of the osculating circle
is the center of curvature for the curve and as such, its trace draws the curve’s evolute.
This chapter is no exception; however, in this case, the evolute of the Cardioid is another
Cardioid. Hence, our point here is not so much to demonstrate a construction for the
Cardioid’s osculating circle but to show that the Cardioid’s evolute is, indeed, another
Cardioid. Table 6-11 contains this construction.

Table 6-11: The Osculating Circle of the Cardioid

1. Draw horizontal line AB 17. Draw line A'F and line EG

2. Draw circle AB centered at A and passing through point B 18. Let point H be the intersection of lines A'F and EG

3. Draw circle BA centered at B and passing through point A 19. Construct the locus of point H as point F traverses circle DA
4. Let C be the point of circle BA diametrically opposite point A | 20. Let point | be the intersection of circle DE and line DF

5. Draw circle CB centered at C and passing through point B 21. Draw line HI

6. Let D be the point of circle CB diametrically opposite point B | 22. Let point J be the intersection of lines A'D and HI

7. Draw circle DC centered at D and passing through point C 23. Let E' be the image when E is dilated about point D by /5
8. Let E be the point of circle DC diametrically opposite point C | 24. Draw circle DE' centered at D and passing through point E'
9. Hide all circles drawn (unnecessary, but it avoids clutter) 25. Let point K be the intersection of circle DE' and line AB
10. Draw circle DA centered at D and passing through point A 26. Draw line segment DJ

11. Draw circle DE centered at D but passing through point E 27. Let L be the intersection of circle DE' and line segment DJ
12. Let F be a random point on the circumference of circle DA 28. Draw line LK

13. Draw line DF 29. Let point M be the intersection of lines HI and LK

14. Let A' be the image when point A is reflected across line DF 30. Trace point M and change its color

15. Draw line A'D 31. Draw circle MH centered at M and passing through point H
16. Let point G be the intersection of circle DE and line A'D 32. Animate point F around circle DA

If all of this complex construction is done correctly, the locus of point M while
point F revolves around circle C; is the evolute of the locus produced by point H and is
another Cardioid 5 the size of the original. And, of course, circle MH is the osculating
circle of the large Cardioid.

Steps 1 through 9 are simply a method of obtaining three collinear points such
that the distance AD = 3 - DE. That is why one can hide the circles (there is no longer
any need for them). A very bizarre fact is that this construction contains no
perpendiculars!
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6.5.12 The Cardioid as the Inverse of a Parabola

The concept of inversion of a curve forms the basis for the construction shown
below in Table 6-12. The inversion of a parabola is a Cardioid when the center of the
inversion circle is taken as the focus of the parabola.

Table 6-12: The Cardioid as the Inversion of a Parabola

1. Construct horizontal line AB 14. Let point J be the intersection of perpendiculars P, and P;
2. Let C be a random point on line AB 15. Construct the locus of point J as point G traverses circle EF
3. Construct P; L to line AB through point C 16. Draw line DJ

4. Let D be a random point on perpendicular P, 17. Measure distance DJ

5. Draw line segment CD and then hide perpendicular P, 18. Draw circle DK with center at D where DK is any radius
6. Draw circle EF centered at point E passing through point F 19. Measure distance DK

7. Let G be a random point on the circumference of circle EF 20. Calculate (DK) ?/ DJ

8. Draw line EG 21. Let D' be the image when D is translated by (DK) */ DJ
9. Let point H be the intersection of line AB and line EG 22. Draw circle DD' with center at D and passing through D'
10. Draw line segment DH 23. Let point L be the intersection of circle DD' and line DJ
11. Let | be the midpoint of line segment DH 24. Trace point L and change its color

12. Construct P, L to line segment DH through point | 25. Animate point G around circle EF

13. Construct P; L to line AB through point H

In this construction, the focus of the parabola and the cusp of the Cardioid
coincide (point D in the construction). Circle DK is the inversion circle and distance DD’
multiplied by distance DJ will always equal the square of the radius DK. The locus of
point L is, of course, the Cardioid. Note that angles are preserved under inversion but
with a reversed sense. That is, if two curves intersect with angle a, their inverses will
also intersect with angle o but in a counter-direction of sweeping.

6.5.13 The Cardioid by Relative Velocity

This very unusual construction of the Cardioid is based on the idea of the two end
points of a line segment traveling around a circle, but one traveling twice as fast as the
other. The envelope of the line segment then forms a Cardioid. Refer to Table 6-13 for
this construction.

Table 6-13: The Cardioid by Relative Velocity

1. Draw circle AB with center at A and passing through point B 7. Draw ray AE starting at point A and passing through point E
2. Draw line segment AB 8. Let point F be the intersection of ray AE and circle AB

3. Let C be the midpoint of line segment AB 9. Draw line segment FD

4. Draw circle AC with center at A and passing through point C 10. Trace line segment FD and change its color

5. Let D be a random point on the circumference of circle AB 11. Animate point D once around circle AB while

6. Let E be a random point on the circumference of circle AC simultaneously animating point E around circle AC

Note that this entire construction is simply designed to result in two points on the
larger circle with the characteristics that when animated to travel around that circle, one
will travel twice as fast as the other. Specifically, point F will travel twice as fast as point
D. Itisalso instructional to trace the midpoint of line segment FD. For best results, both
animations should be run as fast as possible.

6.5.14 Three Parallel Tangents to the Cardioid

At any arbitrary point on the circumference of a Cardioid, construct the tangent to
the Cardioid. Then, no matter what point was chosen, there are two more tangents to the
Cardioid that are parallel to the given tangent. This property can be demonstrated using a
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dynamic geometry program such as GSP, and the methodology for doing so is delineated
below in Table 6-14.

Table 6-14: Three Parallel Tangents to the Cardioid

1. Draw circle AB with center at A and passing through point B 15. Change the color of perpendicular P, (say green)

2. Let C be a random point on the circumference of circle AB 16. Draw line segment C,Cs

3. Let C; be the image when C is rotated about point A by 120° 17. Construct P, L to line segment C,Cs through point Cs

4. Let A; be the image when A is rotated about point C by 180° 18. Change the color of perpendicular P, (say green)

5. Let C, be the image when C is rotated about A; by Z/BAC 19. Draw line segment C5C-

6. Let A, be the image when A, is rotated about point A by 120° | 20. Construct P; L to line segment C5C- through point C;

7. Let C; be the image when C, is rotated about point A by 120° 21. Change the color of perpendicular P; (say green)

8. Let C4 be the image when C; is rotated about point A by 120° | 22. Construct the interior of triangle (polygon) C,CsCs

9. Let A; be the image when A; is rotated about point A by 120° | 23. Change color of the polygon interior C,CsC- (say light green)
10. Let Cs be the image when C, is rotated about A, by 120° 24. Measure the area of polygon C,CsC-,

11. Let Cg be the image when Cs is rotated about point A by 120° | 25. Construct the locus of point C, as C traverses the circle AB
12. Let C be the image when Cg is rotated about A; by 120° 26. Change the color of the locus (say yellow)

13. Draw line segment CC, 27. Animate point C around circle AB

14. Construct P; L to line segment CC, through point C,

There are at least three things worthy (and interesting) to note about the Cardioid
that can easily be investigated with this GSP construction. First, as point C revolves
about circle AB, the area of the triangle (that is, triangle C,CsC5) is constant; however,
the lengths of the sides of the triangle change. Second, the perpendiculars that were
constructed in steps 14, 17, and 20 (e.g., P1, P2, and Pg3) are all tangent to the Cardioid at
points C,, Cs, and C; respectively, and they remain tangent as point C revolves. Further,
they are always parallel to one another (this is, of course, what we set out to
demonstrate). Finally, if the line segments from the points of tangency to the cusp of the
Cardioid are all drawn, the three angles so formed, that is #C,BCs, £C;BC,, and
Z/CsBC5, are always equal to 120°. This last property is depicted in Figure 6-6, but is not
included as part of the construction above.

P
[[Animate Point]

Three Parallel Tangents to
the Cardioid

Area A C5C;C; = 34.27 cm?
m./C,BCs = 120.00°
msC;BC; = 120.00°
m.2-CsBC; = 120.00°

Figure 6-6: Three Parallel Tangents to the Cardioid
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6.5.15 A Cardioid Derived from a Compass-Only Construction

GSP has (at least in the version used by your author) a minor flaw in its design. It
does not always handle the intersection of two circles correctly when the center of one of
the circles is on the circumference of the other circle. If you are using GSP, you can
prove this to yourself by performing a little experiment. Draw circle AB, place a point C
on its circumference, and then draw circle CB. Let the unlabeled intersection of the two
circles be point D. Now drag point C one full revolution around circle AB. If you drag
point C counterclockwise, you will find that when point D coincides with point B, point
D stops even though point C is still being dragged. Point D will remain coincident with
point B until point C is dragged past point B. Then, and only then, will point D continue
around circle AB. This is not correct; Point D should not pause in its motion. (If you
drag clockwise, point D pauses when it is diametrically opposite point B; this is not
correct either.) Because of this flaw, GSP does not handle a compass-only construction
correctly. However, there is a way around this dilemma, as the construction in Table 6-
15 illustrates.

Table 6-15: A Cardioid Derived from a Compass-Only Construction

1. Draw circle AB with center at A and passing through point B 7. Let D and E be the intersections of circle CB and circle B'C

2. Let C be a random point on the circumference of circle AB 8. Draw circle DE with center at D and passing through point E
3. Draw circle CB with center at C and passing through point B 9. Let point F be the unlabeled intersection of circles DE and CB
4. Draw line segment AC 10. Trace point F and change its color

5. Let B' be the image as B is reflected across line segment AC 11. Animate point C around circle AB

6. Draw circle B'C with center at B' and passing through point C

Note that except for steps 4 and 5, no straight edge is required for this
construction. By making point B' the reflected image of point B across segment AC
instead of the intersection of circle AB and circle CB, we eliminate the GSP flaw, but our
construction is not totally compass-only (unfortunately). In this regard, any constructions
found in the rest of the text that are labeled compass-only will require this type of work-
around solution.
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Figure 6-7: A Solid of Revolution Formed from the Cardioid

The Cardioid was rotated about the x-axis thereby forming the solid of revolution seen in
the figure above. As can be seen, the cusp of the Cardioid forms an indentation in the
solid of revolution. It has been placed over an infinite plane; however, in this case, the
infinite plane has been made to resemble water. The object has been given a golden-
bronze colored finish which can be seen reflected in the water that it appears to be
floating above. The light source has been placed so as to illuminate the left side of the
solid and also partially illuminates the indentation formed by the Cardioid’s cusp.
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Chapter 7 — The Nephroid

Figure 7-1: The Nephroid in Three Dimensions

The cross-section of the object in the figure above is the curve known as the Nephroid.
To create the object, the Nephroid was simply extruded into the third dimension, given an
orchid-colored finish and placed over and slightly into a cloud or fogbank. Light sources
are positioned so as to cast a shadow on the inner surface of the extruded object.
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7.1 Introduction

Chapter 6 introduced the concept of an Epicycloid as the trace of a fixed point on
the circumference of a circle rolling around the outside of the circumference of a second,
stationary circle. It further stated that when the radius of the rolling circle is equal to the
radius of the stationary circle, the curve traced by the fixed point is called a Cardioid. It
turns out that if the radius of the rolling circle is ¥z of the radius of the stationary circle,
the curve so traced is called a Nephroid. The Nephroid was studied extensively by both
Christian Huygens and Ehrenfried Tschirnhaus circa 1679 in connection with the theory
of caustics. Nephroid means kidney shaped.

7.2 Equations and Graph of the Nephroid

By letting b = %2a in the parametric equation for the Epicycloid (Equation 6-1), we
obtain a parametric representation for the Nephroid, that is,

X= 3—acost —Ecos3t
2 2

3 —n<t< s Equation7-1
a . a .
y =—sint——sin3t

2 2

By eliminating the parameter t between the two components of Equation 7-1, one

can derive the Cartesian equation, which is

4(x* +y? —a’f =27a'y>  Equation 7-2

Similarly, one can derive the polar equation of the Nephroid by making the
familiar substitutions of x = r-cosé, y = r-sing, and r? = x> + y*. That is, under these
substitutions, Equation 7-2 becomes

—| =|SiInN—| +|COS— Equation 7-3
a 2 2

Likewise, the pedal, Whewell, and Cesaro equations for the Nephroid are,
respectively

4r* —3p®=4a’ Equation 7-4
S= 3asin% Equation 7-5

4p° +s®*=9a* Equation 7-6

Finally, the equation of the Nephroid’s tangent line at the point t = q is

Ccos2q-y=sin2qg-x—2asing. Equation 7-7
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The graph of the Nephroid is shown in Figure 7-2.

4(x2 + y2 —az)3 = 2'7cz4y2
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Figure 7-2: Graph of the Nephroid

7.3 Analytical and Physical Properties of the Nephroid

Using the parametric representation of the Nephroid given in Equation 7-1, i.e.,
X =32cost—2cos3t, y =32sint —2sin3t, the following subparagraphs delineate further

properties of the Nephroid.

7.3.1 Derivatives of the Nephroid

>

>
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X =3asintcos2t.
X‘=3acost-(6coszt—5).
y =6acostsin’t.

j =6asint-(2—3sin’t).
y'=tan2t.

" _ 2
" 3asintcos® 2t
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7.3.2 Metric Properties of the Nephroid
The length of the Nephroid can be calculated using the formula

) (3]

Since the curve is symmetric about the x-axis, we may integrate fromt; =0 to t, = and
then simply double the result. Hence, we have from Equation 7-1,

dx:%a(sinBt—sint)dt and dyz%a(cost—cosSt)dt.

Therefore,

2 2 2 2
(%j +(ﬂ} :9—(1 costcos 3t — smtsm3t)—ga (1—cos 2t)
dt dt 2 2

Now, putting this result under the radical sign, we have

(%T J{ﬂjz = \/ﬁ(l—cos 2t) = 32 i”cosat =3asint
dt) \dt 2 V2 |

Hence the desired integral is simply

3ajsintdt = 3a[- cost]} =6a.
The total length of the Nephroid is therefore twice this result or s = 12a.

The area of the Nephroid can be calculated using the formula
A= Iy —-dt,

where the limits of integration are from ty = -n to t; = +n. We therefore have, after
performing the indicated operations, the following integrals to evaluate.

V4 2 7 2
3a® J'sintsin3tdt—31 J.sinzf:‘tdt—gi jsinztdt.
44 4

In the first integral, write sin3t as sin (t + 2t), expand, and multiply accordingly. After
much manipulation the first integral can be written as
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3a’ T(Bsinzt—4sin4t)dt.

Now, by using the identity sin’t = % - %-cos2t, we can show that this integral evaluates to
zero. Using this same identity on the second and third integrals, it can be shown that
their values are -3ma®/4 and -9ma?/4, respectively. We therefore have for the area of the
Nephroid, A = 0 — (-3ma’/4) — (-9a’/4) = 3na’.

The area of the surface of revolution that results when the Nephroid is revolved
about the x-axis can be calculated by the formula

t 2 2
f dx dy

where the limits of integration are from t, = -x to t; = +n. However, we already know
that the expression under the radical (from the Nephroid length calculation) is 3asin t.
Therefore, we have

S=97-a? J‘sinztdt—B;r-a2 jsintsinBtdt .

From the Nephroid area calculation we know that this second integral evaluates to zero,
so the required area of revolution is simply the value of the first integral, which is upon
reduction using the identity sin’t = % - Y-cos2t,

S=97-a’ j(%—%cos ZtJdt =97%a%,

If p is the distance from the origin to the tangent of the Nephroid, then
p =—2asint.

If r is the radial distance from the origin to the curve, then

r =av1+3sin’t.

7.3.3 Curvature of the Nephroid
If p is the radius of curvature of the Nephroid, then
—%sint
P= :

If (o, p) are the coordinates of the center of curvature of the Nephroid, then
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a:%(BcochosSt) and ﬂ=%(35int+sin3t).

7.3.4 Angles for the Nephroid

If y is the angle between the tangent and the radius vector at the point of tangency
to the Nephroid, then

tany =2tant.

If &denotes the radial angle for the Nephroid, then,

_ 3sint—sin3t

anf=————.
3cost —cos3t

If ¢ denotes the tangential angle for the Nephroid, then

$=2t.

7.4 Geometric Properties of the Nephroid

>

>

>

>

Intercepts: (a, 0); (-a, 0); (0, +2a)
y-maximum: (0, 2a)

y-minimum: (0, -2a)

X-maximum: (aﬁ,t%ﬁj

X-minimum: (—aﬁ,i%ﬁj

Extent: Same as maxima and minima.

Symmetries: The Nephroid is symmetric about both the x and y-axis and

about the origin.

Cusp: (a, 0); (-a, 0)

7.5 Dynamic Geometry of the Nephroid

The next 14 subsections deal with the dynamic geometry of the Nephroid. This
includes GSP constructions that generate the Nephroid and GSP constructions that
demonstrate selected properties of the Nephroid.
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7.5.1 The Nephroid as an Epicycloid

As alluded to in section 7.1, an Epicycloid where the radius of the rolling circle is
Y, of the radius of the stationary circle is called a Nephroid. That definition forms the
basis for the construction found below in Table 7-1.

Table 7-1: The Nephroid as an Epicycloid

1. Draw circle AB with center at A and passing through point B 5. Let C, be the image when C is rotated about C; by /BAC
2. Let C be a random point on the circumference of circle AB 6. Let C; be the image when C, is rotated about C; by Z/BAC
3. Let point C, be the image when C is dilated about A by 1.5 7. Trace point C; and change its color

4

. Draw circle C,C with center at C, and passing through point C | 8. Animate point C around circle AB

The trace of point C, in this construction forms a Limacon, another of the classic curves.

7.5.2 The Nephroid as an Epicycloid Part 11

The Double Generation theorem of Daniel Bernoulli also applies to the Nephroid.
That is, another way to get a Nephroid with a rolling circle type of construction is to
make the radius of the rolling circle equal to 3/2 the radius of the stationary circle and
have the stationary circle on the inside of the rolling circle. Such a construction is shown
below in Table 7-2.

Table 7-2: The Nephroid as an Epicycloid Part 11

1. Draw circle AB with center at A and passing through point B 6. Let A' be the image when A is translated by vector C; — Cs
2. Let C be a random point on the circumference of circle AB 7. Draw circle A'C; with center at A" and passing through Cs
3. Let C, be the image when C is dilated about Aby 1.5 8. Trace point C; and change its color

4. Let C; be the image when C is rotated about C, by ZBAC 9. Animate point C around circle AB

5. Let C; be the image when C; is rotated about C, by Z/BAC

Note how similar this construction is to that of the previous subsection (i.e.,
section 7.5.1). The only real difference between these two constructions is the radii of
the rolling circles; i.e., in one case it is ¥ of the radius of the stationary circle and in the
other it is 3/2 the radius of the stationary circle.

7.5.3 The Nephroid as the Caustic of a Circle

Christian Huygens showed in 1678 that the Nephroid is the catacaustic of a circle
when the light source is at infinity. In other words, the envelope of parallel rays that are
reflected from the circumference of a circle creates a Nephroid. See Table 7-3.

Table 7-3: The Nephroid as the Caustic of a Circle

1. Draw horizontal line AB 8. Draw line segment CC,

2. Draw circle AB with center at A and passing through point B 9. Draw line segment C,C;

3. Let C be a random point on the circumference of circle AB 10. Draw line segment AC,

4. Let C, be the image when point C is reflected by line AB 11. Draw line segment CCs

5. Let C, be the image when C is rotated about A by Z/BAC 12. Trace line segment CC; and change its color
6. Let C; be the image when C, is rotated about A by Z/BAC 13. Animate point C around circle AB

7. Draw line segment CA

For best results with this construction, when point C is animated around circle
AB, do it only once around the circle and at as high a speed as the animation will allow.
Enjoy—it’s a beautiful construction (as can be seen in Figure 7-3)!
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Figure 7-3: The Nephroid as a Caustic of a Circle

7.5.4 The Nephroid as an Envelope of Diameters

The Nephroid can also be generated as the envelope of a diameter of the circle
that itself generates the Cardioid as an Epicycloid. In other words, construct a Cardioid
as an Epicycloid (section 6.5.1) and then construct one of the diameters of the rolling
circle. The trace of that diameter will generate an envelope that is a Nephroid. This is
quite a beautiful construction; it is delineated below in Table 7-4 and illustrated in Figure
7-4.

Table 7-4: The Nephroid as an Envelope of Diameters

1. Draw horizontal line AB 6. Draw circle A'C' with center at A' and passing through C'

2. Draw circle AB with center at A and passing through point B 7. Let C" be the image when C' is rotated about point A' by 180°
3. Let C be a random point on the circumference of circle AB 8. Draw line segment C'C"

4. Let A' be the image when A is rotated about point C by 180° 9. Trace line segment C'C" and change its color

5. Let C' be the image when C is rotated about A' by /BAC 10. Animate point C around circle AB

7.5.5 The Concurrent Tangents of the Nephroid

One of the very fascinating characteristics of the Nephroid is that for any given
tangent to the Nephroid, two other tangents can be found such that all three tangents will
intersect in a common point. The construction for this remarkable characteristic is
delineated below in Table 7-5. (Of course, if three tangents are concurrent, then the three
normals through the three points of tangency are also concurrent.)
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Figure 7-4: The Nephroid as an Envelope of Diameters

The perpendiculars constructed in steps 17, 19, and 21 (Table 7-5) are the three
concurrent tangents. Obviously, line segments CCg, C,Cq, and CsCy; are the respective
normals. If the normals are extended, they too will meet in a common point. Note that
circle AA' is circumscribed about the Nephroid and the point of tangent concurrency is
confined to the circumference of this circumscribed circle; however, the point of normal
concurrency is confined to the circumference of the inner circle, circle AB.

Table 7-5: The Concurrent Tangents of the Nephroid

. Let C, be the image when C; is rotated about point A by 120° 20. Draw line segment CsCy;

1. Draw circle AB with center at A and passing through point B 13. Let Cq4 be the image when Cs is rotated about C, by —120°
2. Let C be a random point on the circumference of circle AB 14. Let Cyo be the image when Cq is rotated about A by 120°

3. Let A' be the image when A is rotated about point B by 180° 15. Let Cy; be the image when Cy, is rotated about C; by —120°
4. Draw circle AA" with center at A and passing through point A' | 16. Draw line segment CCq

5. Let C, be the image when C is dilated about A by 1.5 17. P, L to line segment CCs through point Ce

6. Let C, be the image when C is rotated about point A by 120° 18. Draw line segment C,Cq

7. Let C; be the image when C is rotated about C; by Z/BAC 19. Construct P, L to line segment C,Cq through point Cqy

8

9

. Let Cs be the image when C; is rotated about point A by 120° | 21. Construct P; L to line segment CsCy; through point Cy;

10. Let Ce be the image when C; is rotated about C; by Z/BAC 22. Construct the locus of Ce while point C traverses circle AB

11. Let C, be the image when C, is rotated about point A by 120° | 23. Animate point C around circle AB

12. Let Cg be the image when Cg is rotated about point A by 120°

7.5.6 The Nephroid as the Caustic of a Cardioid

In 1692, Jacques Bernoulli showed that the Nephroid is the catacaustic of a
Cardioid for a luminous cusp. In other words, if the light source is located at the
Cardioid’s cusp, the rays reflected from the circumference of the Cardioid form a
Nephroid. This construction follows in Table 7-6, and Figure 7-5 is a snapshot of the
final construction.
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Table 7-6: The Nephroid as the Caustic of a Cardioid

1. Draw circle AB with center at A and passing through point B 7. Let D be the intersection of line segment BC' and circle AB
2. Let C be a random point on the circumference of circle AB 8. Draw line segment C'D

3. Let A' be the image when A is rotated about point C by 180° 9. Reflect line segment C'D in line segment CC'

4. Let C' be the image when C is rotated about A' by /BAC 10. Trace the reflected line segment and change its color

5. Draw line segment CC' 11. Animate point C around circle AB

6. Draw line segment BC'

Point C', of course, is the point on the circumference of the Cardioid and point B
is the source of the light rays. Line segment BC' therefore represents the incident light
ray and since the angle of incidence must equal the angle of reflection, reflecting DC' in
the normal to the Cardioid at the point C' will represent the reflected rays. Obviously,
line segment CC' is the normal (normal to the Cardioid, that is).

It
fia
|

|

Figure 7-5: The Nephroid as the Caustic of a Cardioid

7.5.7 The Nephroid’s Equilateral Triangle

The construction following in Table 7-7 demonstrates the fact that given any point
on the circumference of a Nephroid, two other circumferential points can be found such
that these three points form the vertices of an equilateral triangle.

Note that the locus of point Cs in this construction is that of the Limacon of
Pascal. Also note that the locus of either point Cg or point Cy is another Nephroid that is
rotated by 90° from that of the Nephroid traced by point C;. Further, if one draws line
segment C;Cg and constructs its midpoint, the locus of that midpoint as point C revolves
about circle AB is another Nephroid which is inscribed in circle AB.
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Table 7-7: The Equilateral Triangle of the Nephroid

. Draw circle AB with center at A and passing through point B

10. Let Cg be the image when C is rotated about point A by 120°

. Let C be a random point on the circumference of circle AB

11. Let Cy be the image when Cg is rotated about C, by 240°

. Let C, be the image when C is rotated about point A by 120°

12. Let Cy0 be the image when C, is rotated about A by 120°

. Let C, be the image when C is dilated about A by 1.5

13. Let Cy; be the image when Cyy is rotated about Cs by 240°

. Let C5 be the image when C; is rotated about point A by 120°

14. Construct the locus of point C; while C traverses circle AB

Let C, be the image when C, is rotated about point A by 120°

15. Draw line segments C,Co, C4Cy1, and C,Cyy

. Let Cs be the image when C is rotated about C, by Z/BAC

16. Construct the interior of polygon C;C4C1; and color it

. Let Cq be the image when Cy is rotated about point A by 120°

17. Measure distances C;,Cgy, C4Cy3, and C,Cyy

©o|o|~N|o|o|a|wdv|e

. Let C; be the image when Cs is rotated about C, by Z/BAC

18. Animate point C around circle AB

7.5.8 The Nephroid as an Envelope of Circles

This simple but elegant construction is based on the idea that a Nephroid is the
envelope of a set of circles with their centers on a given base circle, such that each
member of the set is tangent to a diameter of the base circle. This construction follows in
Table 7-8 and an illustration of it is shown in Figure 7-6.

Table 7-8: The Nephroid as an Envelope of Circles

. Draw horizontal line segment AB

7. Draw circle ED with center at E and passing through point D

. Let C be the midpoint of line segment AB

8. Trace circle ED and change its color

Let D be a random point on line segment AB

9. Draw circle FD with center at F and passing through point D

. Draw circle CA with center at C and passing through point A

10. Trace circle FD and change its color

. Construct P; L to line segment AB through point D

11. Animate point D along line segment AB

o|u|sw|n|e

. Let points E and F be the intersections of circle CA with P,

Figure 7-6: The Nephroid as an Envelope of Circles

7.5.9 A Nephroid Moving Around a Cardioid

The following construction is more for fun than to illustrate a specific property of
the Nephroid. However, it has some instructive characteristics and is presented below in

Table 7-9.
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Table 7-9: A Nephroid Moving Around a Cardioid

1. Draw circle AB with center at A and passing through point B 9. Let D be a random point on circle B'C'

2. Let C be a random point on the circumference of circle AB 10. Construct P, 1 to line BC' through point D

3. Let A' be the image when A is rotated about point C by 180° 11. Let point E be the intersection of line BC' and P,

4. Let C' be the image when C is rotated about A' by Z/BAC 12. Let E' be the image when E is rotated about D by ZC'B'D
5. Draw line BC' 13. Let E" be the image when E' is rotated about D by ZC'B'D
6. Construct P, L to line BC' through point A 14. Construct the locus of C' while point C traverses circle AB
7. Let B' be the image when point B is reflected across P, 15. Construct the locus of point E" while D traverses circle B'C'
8. Draw circle B'C' with center at B' and passing through C' 16. Animate point C around circle AB

Note how the two points at the cusps of the Nephroid describe the Cardioid. It is
also interesting to note that any random point placed on the circumference (i.e., the locus)
of the Nephroid will trace a tangent line to the Cardioid as the animation is run. Further,
the trace of point E' describes an unusual looking double-looped curve.

7.5.10 A Nephroid by Relative Velocity

This unusual construction of the Nephroid is based on the relative velocity of the
two end points of a line segment. If the two end points of a line segment travel around a
circle, but one end point travels three times faster than the other, the envelope of the line
segment forms a Nephroid. The construction is delineated below in Table 7-10 and
illustrated in Figure 7-7.

Table 7-10: A Nephroid by Relative Velocity

1. Draw line segment AB (in upper-right portion of the screen) 9. Construct circle C, centered at C and radius = segment EA
2. Let C be a random point not on line segment AB 10. Let F be a random point on circle C,
3. Let D be the midpoint of line segment AB 11. Let G be a random point on circle C,
4. Draw line segment BD 12. Draw ray FC starting at point F and passing through point C
5. Let E be the midpoint of line segment BD 13. Let point H be the intersection of ray FC and circle C,
6. Draw line segment ED 14. Draw line segment HG
7. Draw line segment EA 15. Trace line segment HG and change its color
8. Construct circle C, centered at C and radius = segment ED 16. Animate F and G around circles C, and C,, respectively
x %5 ©°F s

Figure 7-7: A Nephroid By Relative Velocity
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Note that in this construction, steps 1 through 7 are merely to construct two line
segments, one of which is three times the length of the other, i.e., EA = 3-ED. Now
construct two concentric circles with radii in this same ratio (steps 8 and 9). Then, if two
points can be made to revolve around the circles (one point around one of the circles and
the other point around the other circle), while the point on the larger circle performs one
revolution, the point around the smaller circle will perform 3 revolutions. Hence we have
the desired relative velocity. For best results, in step 16 have point G make one
revolution "quickly."

7.5.11 Orthogonal Nephroids

The following (see Table 7-11) is a construction for two Nephroids which remain
orthogonal to each other as the animation is run. What this really means is that the
intersection point of two mutually perpendicular lines is a point that is common to two
different Nephroids. Further, the perpendicular lines are each normal, respectively, to the
Nephroids. As a result, it’s as though the two Nephroids were orthogonal.

Table 7-11: Orthogonal Nephroids

1. Draw horizontal line AB 13. Let F be a random point on circle A,E

2. Draw circle AB with center at A and passing through point B 14. Construct P, L to line CB through point C

3. Let A, be the image when A is dilated about B by —2 15. Let C; be the image when C; is rotated about A; by ZBA.D
4. Draw circle A;B with center at A; and passing point B 16. Let C; be the image when C is rotated about A, by ZAAF

5. Let C be a random point on the circumference of circle AB 17. Let A be the image when A is rotated about A, by ZAAF

6. Let A; be the image when A, is rotated about point A by 180° | 18. Let C, be the image when C, is rotated about Az by #BA;D
7. Let D be a random point on the circumference of circle A;B 19. Let Cs be the image when Cj is rotated about A, by ZAAF
8. Let E be the point of circle AB diametrically opposite of B 20. Let Cq be the image when Cs is rotated about A, by ZAAF
9. Draw circle A,E with center at A, and passing through point E | 21. Construct the locus of point C, while D traverses circle A;B
10. Draw line CB 22. Construct the locus of point Ces while F traverses circle A;E

11. Let C, be the image when C is rotated about A; by ZBA.D 23. Animate point C around circle AB

12. Let A; be the image when A is rotated about A; by Z/BA;D

7.5.12 A Nephroid from a Compass-Only Construction

Refer to Chapter 6, section 6.5.15 for a discussion of the GSP version of a
compass-only construction. Table 7-12 contains the GSP version of a compass-only
construction for the Nephroid.

Table 7-12: A Nephroid Derived from a Compass-Only Construction

1. Draw circle AB with center at A and passing through point B 14. Let F be the unlabeled intersection of circles DE and C'C

2. Let C be a random point on the circumference of circle AB 15. Draw circle FC with center at F and passing through point C
3. Draw circle CB with center at C and passing through point B 16. Let points G and H be the intersections of circles FC and CC'
4. Draw line segment AC 17. Draw circle GC with center at G and passing through point C.
5. Let B' be the image as B is reflected across line segment AC 18. Draw circle HC with center at H and passing through point C
6. Draw circle B'C with center at B' and passing through point C | 19. Let | be the unlabeled intersection of circle HC and circle GC
7. Draw line segment AB' 20. Draw circle CI with center at C and passing through point |
8. Let C' be the image as C is reflected across line segment AB' 21. Draw circle IC with center at | and passing through point C
9. Hide segment AB' 22. Let J and K be the intersections of circle IC and circle CI

10. Draw circle CC' with center at C and passing through point C' | 23. Draw circle JK with center at J and passing through point K

11. Draw circle C'C with center at C' and passing through point C | 24. Let L be the unlabeled intersection of circle JK and circle Cl

12. Let points D and E be the intersections of circles CC'and C'C | 25. Trace point L and change its color

13. Draw circle DE with center at D and passing through point E | 26. Animate point C around circle AB

Steps 4, 5, 7, and 8 are, of course, the only non-compass construction steps. The
reason for hiding line segment AB' in step 9 is that attempting to carry out step 19, the
construction of point I, will result in an ambiguous intersection if line segment AB' is
visible. Note how, during the animation, all but one of the circles contract to a single
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point at one of the Nephroid’s cusps (the cusp at point B). The one circle that doesn’t
collapse to a point is the circle that is the path for the animated point, circle AB. And at
the other cusp, again all of the circles collapse with the exception of circles AB, CB, and
B'C, the three initial circles. Also, for a construction that one might entitle "The
Nephroid as an Envelope of Circles Derived from a Compass-Only Construction,” try
tracing circle Cl and rerun the animation. And last but not least, the Osculating Circle of
the Nephroid may be constructed by continuing the construction above. That is,

Table 7-12 (Continued): Osculating Circle Addition to Compass-Only Construction of Nephroid

27. Let M and N be the intersections of circle Cl and circle C'C 30. Let O be the unlabeled intersection of circles NC and MC

28. Draw circle MC with center at M and passing point C 31. Draw circle OL with center at O and passing through point L

29. Draw circle NC with center at N and passing through point C | 32. Rerun the animation

Circle OL is, of course, the Osculating Circle. In sum, a truly beautiful
construction!

7.5.13 The Nephroid as an Envelope of Straight Lines
A quite simple but beautiful construction is the one shown below in Table 7-13.

Table 7-13: The Nephroid as an Envelope of Straight Lines

1. Draw circle AB with center at A and passing through point B 6. Construct P; L to line AC' through point C

2. Draw line AB 7. Let point D be the intersection of P; and line AB
3. Let C be a random point on the circumference of circle AB 8. Draw line C'D

4. Let C' be the image when C is translated by vector A — C 9. Trace line C'D and change its color

5. Draw line AC' 10. Animate point C around circle AB

7.5.14 The Osculating Circle of the Nephroid

Although a construction for the osculating circle of the Nephroid has already been
presented (see the continuation of Table 7-12), here is a different construction of it.
Constructions of osculating circles (or centers of curvature) are usually quite complex;
however, the construction for the osculating circle of the Nephroid following in Table 7-
14 is relatively simple and therefore worth the redundancy.

Table 7-14: The Osculating Circle of the Nephroid

1. Draw circle AB with center at A and passing through point B 8. Draw line CCy

2. Let C be a random point on the circumference of circle AB 9. Line C,Cs

3. Let C, be the image as point C is dilated about point Aby 1.5 | 10. Let D be the unlabeled intersection of line C,Cs and circle C,C
4. Let C; be the image as C is rotated about point C, by /BAC 11. Draw line AD

5. Draw circle C,C with center at C; and passing through C 12. Let E be the intersection of lines CC3 and AD

6. Let C; be the image as C, is rotated about C; by Z/BAC 13. Draw circle EC; with center at E and passing through C;

7. Construct the locus of point C; while C traverses circle AB 14. Animate point C around circle AB

Quite a nice little construction for the osculating circle, which is, of course, circle
ECs. Additionally, construct the locus of point E while point C traverses circle AB. This
locus gives you the Nephroid’s evolute (which is another Nephroid rotated 90° from the
original, 5 the size of the original, and inscribed between its cusps). Also, draw and
trace line segment ECs, the radius of curvature of the Nephroid. Now, rerun the
animation and you will find that the traced radius of curvature fills in the original
Nephroid, but envelopes the evolute Nephroid. Quite spectacular!
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7.5.15 A Nephroid-Cardioid Waltz

As a final construction for this chapter, consider the Nephroid-Cardioid dance that

is delineated below in Table 7-15.

Table 7-15: A Nephroid-Cardioid Waltz

1. Draw horizontal line AB 12. Construct P, L to line segment BC through point C

2. Draw circle AB with center at A and passing through point B 13. Let C; be the image when C is rotated about A; by Z/BA;D

3. Let A; be the image when A is dilated about B by a factor of 2 | 14. Let A, be the image when A is rotated about A; by ZBA3;D
4. Let A, be the image when A is dilated about B by —2 15. Let C, be the image when C is rotated about A, by Z/BAE

5. Let A be the image when A is dilated about B by —1 16. Let As be the image when A is rotated about A, by Z/BAE

6. Draw circle A,B with center at A, and passing through B 17. Let C; be the image when C; is rotated about A, by ZBA;D
7. Draw circle A;B with center at A; and passing through B 18. Let C,4 be the image when C; is rotated about As by ZBAE
8. Let C be a random point on the circumference of circle AB 19. Let Cs be the image when C, is rotated about As by Z/BAE
9. Let D be a random point on the circumference of circle AsB 20. Construct the locus of C; while point D traverses circle AsB
10. Let E be a random point on the circumference of circle A,B 21. Construct the locus of Cs while point E traverses circle A,B
11. Draw line segment BC 22. Animate point C around circle AB

Note that the Nephroid and Cardioid are tangent at point C and that the cusps of
the Nephroid remain on the circumference of the Cardioid as the animation revolves.
The dance is most evident if the following elements of the construction are hidden before
running the animation: points A, B, Ay, D, E, Cy, A4, Cy, As, C3, C4, and Cs, circles AB,
A;,B, and A3B, line AB, and line segment BC. If Roemer (see Chapter 8) had been able
to use a dynamic geometry application such as GSP, his study for the best form of gear

teeth would probably have been much easie
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Figure 7-8: The Solid of Revolution Formed by the Nephroid

The Nephroid was revolved about the y-axis to produce the object seen in the figure
above. The resulting solid of revolution was then given a coral-colored finish and placed
above the grey and rose colored checkered plane which meets a dark and forbidding sky
at the horizon. Light sources were placed so as to illuminate the solid of revolution as
shown and to cast shadows on the checkered plane.
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Chapter 8 — The Epicycloid

Figure 8-1: A Five-Cusped Epicycloid in Three Dimensions

The cross-section of the object in Figure 8-1 is a Five-Cusped Epicycloid. It was created
by taking a normal, two-dimensional Epicycloid with five cusps and simply extruding into
the dimension that is normal to the plane of the page. It was then given a shiny, yellow-
green finish and configured as though it were floating in a bright, summer sky. Light
sources have been placed so as to partially shadow the upper, inner surface.
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8.1 Introduction

In Chapter 6 we introduced the concept of the Epicycloid and showed that when
the radii of the fixed and rolling circles are the same, a curve called the cardioid results.
Then, in Chapter 7 we showed that if the radius of the rolling circle is half the radius of
the fixed circle, the resulting curve is a Nephroid. We now take up the Epicycloid in
general.

Back to Roemer, briefly (a very interesting character). Cycloidal curves were first
conceived by Roemer (a Dane) in 1674 while studying the best form for gear teeth.
However, prior to Roemer’s work, in 1599, both Galileo and Mersenne had already
discovered the ordinary cycloid. Olaf Roemer (1644-1710) was a mathematician who
gave the first good estimate of the speed of light. This was done in 1675 by means of the
eclipses of Jupiter’s satellites. Roemer also constructed the fountains at the Versailles
castle near Paris. Relevant to this chapter, Roemer deduced from the properties of
epicycloids the form of the teeth in toothed-wheels best fitted to secure a uniform motion.
As already alluded to, the beautiful Double Generation theorem of these curves was first
noticed by Daniel Bernoulli in 1725. Astronomers find forms of the cycloidal curves in
various coronas. They also occur as caustics. Rectification was first given by Newton in
his Principia.

8.2 Equations and Graph of the Epicycloid

We already have shown (in Chapter 6, Equation 6-1) that when the radius of the
fixed circle is a, and the radius of the rolling circle is b, the parametric equation of the
Epicycloid is

x=(a+b)cost —bcos(22t) and y=(a+b)sint—bsin(2:t) Equation 8-1

We have relabeled it as Equation 8-1 here. A polar equation can easily be derived by
making the following computations

x? =(a+b)* cos?t — 2b(a+b)costcos(2:2t)+b? cos®(2:2t)  and
y? =(a+b)’sin®t —2b(a+b)sintsin(2:2t)+b?sin?(z2 )
By adding these last two expressions, we have,
r? =x?+y? =(a+b)’ +h? —2ab[costcos(1+ 2 )t +sintsin(l+2)].

However, the expression in the square brackets is simply the cosine of the difference of
the two arguments of the functions within the brackets. Therefore,
r? =(a+b)’ +b?—2b(a+b)cos2t Equation 8-2

Note, however, that the parameter t in the above expression for r is not the polar angle.
The polar angle is
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int —bsin(a:
tané?:l: (a+b)smt bsm( b t) Equation 8-3
x (a+b)cost—bcos(2:2t)

If the pedal point is located at the center of the Epicycloid, then the pedal equation is

., (2a+b)
~ 4a(a+h)

Similarly, the Whewell equation is

(r2 —bz) Equation 8-4

s=bsinagp, a<l Equation 8-5
The Ceséaro equation is
p’+a’s*=a’b® Equation 8-6
And, finally, the equation of the tangent to the Epicycloid at the point t = q is
(sinztq—sinq)-y =(cosq—cos2q)-x+(a+2b)cos2q—1) Equation 8-7

To obtain n cusps in the epicycloid, let b = a/ n, because n rotations of the rolling
circle bring the point on its circumference back to its starting position. As we have
already learned, a one-cusped Epicycloid is called a Cardioid and a two-cusped
Epicycloid is called a Nephroid. The only other named Epicycloid is one with five cusps.
It is called the Ranunculoid, named after the buttercup genus Ranunculus. Figure 8-2
depicts the graph of four different Epicycloids, namely, three-, four-, five-, and six-
cusped Epicycloids in red, green, blue and violet, respectively, while Figure 8-3 portrays
a variety of different Epicycloids for various selected values of the two radii of the
associated circles (the fixed circle with radius a and the rolling circle with radius b).
Note that as long as the ratio of a to n is a rational number, the Epicycloid will be closed;
however, in some cases, the rolling circle will make more than one revolution before the
tracing point comes back to its starting position, as is illustrated in all but one of the
Epicycloids in Figure 8-3.

8.3 Analytical and Physical Properties of the Epicycloid

Using the parametric representation of the Epicycloid given in Equation 8-1 i.e.,
x =(a+b)cost —bcos(2:2t)and y = (a+b)sint —bsin(22t), the following subparagraphs
delineate further properties of the Epicycloid.

8.3.1 Derivatives of the Epicycloid
» x=(a+b)sin(z:2t)—sint]
_a+b

> === [(@+b)cos(22t)—bcost]

» y=(a+h)cost—cos(z2t)]
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y=(a+b)sins— bsin(2:21)

x=(a +b)70$t—bcos(%bt)

3-cusped epicycloid
a=3,b=1
SN

v

6-cusped epicycloid
a=6b=1

5-cusped epicycloid
a=5b=1

v

Figure 8-2: Four Different Epicycloids
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(a, b) = (7,3) (a,b)=(7,5) (a,b)=(1,4)

%) [©)

O O

' ) = (' =\/
(a,b) =(7,2) (a,b)=(7, 4) (a, b) =(2, 3) (a,b) = (4,3)

L ©

(a,b)=(5,2) (a,b)=(3,2) (a,b) =(1,3) (a,b)=(3,-7)

Figure 8-3: A Variety of Epicycloids as a Function of the Parameters a and b

©
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> §= aTm[(a+b)sin(aT”’t)—bsint]

_ cost—cos(%t)

> y'=
4 sin(2:2t)-sint

,  (a+2b)1-cos2t)
> Y= - 3
b(a+b)sin 22t —sint)

8.3.2 Metric Properties of the Epicycloid

The following addresses the length and area of the Epicycloid; however, rather
than derive the formulas for length and area through the laborious process of integration
(as we have done in previous chapters), we will make a departure here and show how one
might intuitively arrive at the formulas. Additionally, we present the formulas for the
radial distance and the distance to the tangent for the Epicycloid.

Chapters 6 and 7 showed that the length of the Cardioid and Nephroid were 16a
and 24a, respectively, where a is the radius of the rolling circle. Table 8-1 tabulates the
lengths for the first six epicycloids (the calculations for the three-cusped through the six-
cusped are left as an exercise for the reader).

Table 8-1: Epicycloid Lengths

Number of Cusps Name of the Curve Calculated Length
1 Cardioid 16a
2 Nephroid 24a
3 3-Cusped Epicycloid 32a
4 4-Cusped Epicycloid 40a
5 Ranunculoid 48a
6 6-Cusped Epicycloid 56a

One can quite easily intuit from this table that the length as a function of the
number of cusps is simply L = 8a (n + 1), where n is the number of cusps and a is the
radius of the rolling circle.

Chapters 6 and 7 showed that the area of the Cardioid and Nephroid were 6122
and 127a’, respectively, where a is the radius of the rolling circle. Table 8-2 tabulates the
areas for the first six epicycloids (again, the calculations for the three-cusped through the
six-cusped are left as an exercise for the reader).

Table 8-2: Epicycloid Areas

Number of Cusps Name of the Curve Area
1 Cardioid 6na’
2 Nephroid 12 7a”
3 3-Cusped Epicycloid 20 na’
4 4-Cusped Epicycloid 30 7a”
5 Ranunculoid 42 ma’
6 6-Cusped Epicycloid 56 ma’
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Again, one can quite readily intuit (from Table 8-2) that the area as a function of
the number of cusps can be written as A =ra®- (n + 1) (n + 2).

If r denotes the distance from the origin to the curve, then

r =,/a? +2ab+2b? — 2b(a+b)cos 2t .
If p denotes the distance from the origin to the tangent line of the epicycloid, then
p=—(a+2b)sin2t,

8.3.3 Curvature of the Epicycloid
If p represents the radius of curvature of the Epicycloid, then

pzw.sinit
a+2b 2b

If (e, p) represents the coordinates of the center of curvature of the general
epicycloid, then,

a=—2_[@+b)cost+bcosz2t] and p= [(a+b)sint +bsinat]

a+2b a+2b

8.3.4 Angles of the Epicycloid

If v is the angle between the tangent and the radius vector at the point of tangency
to the general Epicycloid, then

a
a+2b .1—coth

tany = —a
sin—t
b
If ¢ denotes the tangential angle to the general Epicycloid, then

_ cost—cos(2t)
~ sin(32t)-sint

tang

If &denotes the radial angle for the general Epicycloid, then

(a+b)sint —bsin(2:2t)
(a+b)cost—bcos(2t)’

tan@ =
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8.4 Geometric Properties of the Epicycloid

The general Epicycloid is always symmetric about the x-axis; however, it is also
symmetric about the y-axis if the quantity (a + b) / b is an odd integer. It is completely
contained within a circle defined by | r| <a + 2b.

8.5 Dynamic Geometry of the Epicycloid

The next five subsections present some of the dynamic geometry constructions for
the Epicycloid.

8.5.1 An Epicycloid Toy

Do you want to draw designs like those of Figure 8-3? If you do, carefully follow the
steps of the construction delineated below in Table 8-3 and you will reproduce a
marvelous mechanism that can provide many stimulating hours of enjoyment.

Table 8-3: An Epicycloid Toy

1. Draw horizontal line AB 11. Let G be a random point on the circumference of circle AE
2. Draw circle AB with center at A and passing through point B 12. Draw circle DF with center at D and passing through point F
3. Construct P, L to line AB through point A 13. Let H be a random point on the circumference of circle DF
4. Construct P, L to line AB through point B 14. Create circle C, by translating circle DF by vector D — G

5. Let C be a random point on the circumference of circle AB 15. Draw line segment DH

6. Let D be a random point on perpendicular P, 16. Create S; by translating line segment DH by vector D — G
7. Let E be a random point on line AB 17. Let | be the intersection of elements C;and S,

8. Construct Ps L to line AB through point E 18. Trace point | and change its color

9. Draw circle AE with center at A and passing through point E 19. Simultaneously animate point H on circle DF and Point G on
10. Let F be a random point on perpendicular P; circle AE

To see your tracings better, it is recommended that you hide the following
construction elements after completing the construction: Points A, C, D, F, and H; all
three perpendiculars, the line AB, and the line segment DH; and the two circles, AE and
DF. Note that one can obtain different Epicycloids by dragging point E. Have fun!

8.5.2 An Epicycloid of Three Cusps

The simple, but spectacular, construction delineated below in Table 8-4 of a
Three-Cusped Epicycloid contains a curve that we have not yet addressed. See if you can
spot it.

Table 8-4: A Three-Cusped Epicycloid

1. Draw circle AB with center at A and passing through point B 8. Let C, be the image when C, is rotated about A' by ZCAB
2. Let C be a random point on the circumference of circle AB 9. Let C; be the image when C; is rotated about A' by ZCAB
3. Draw line segment AC 10. Draw circle CC; with center at C and passing through Cs
4. Construct P, L to line segment AC through point C 11. Trace circle CC; and change its color

5. Dilate circle AB about point C by a factor of /5 12. Let C,4 be the image when point Cs is reflected by mirror Py
6. Let A' be the image as A is dilated about C by a factor of '4 13. Animate point C around circle AB

7. Let C, be the image when C is rotated about A' by ZCAB

Actually, this remarkable little construction incorporates two curves that we have
not yet encountered. If you turn on the trace of point Cs, a curve called the Deltoid is
drawn. If you trace point C,, an ellipse is drawn. Both of these curves will be addressed
in subsequent chapters. Of course, point C, traces a three-cusped Epicycloid, just as
circle CCs generates an envelope that is a three-cusped Epicycloid. As-a-matter-of-fact,
the outside envelope generated by circle CCj is the Epicycloid while the inside envelope
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is the Deltoid alluded to above. What a fascinating, elegant construction! See Figure 8-4
for a snapshot of this construction.

Figure 8-4: A Three-Cusped Epicycloid

8.5.3 A Compass-Only Three-Cusped Epicycloid

At the risk of being redundant, a construction for a three-cusped Epicycloid
follows in Table 8-5. Yes, the same result was presented in the previous section.
However, this time it is done as a GSP-version of a compass-only construction. Truly
remarkable!

Table 8-5: A Three-Cusped Epicycloid by Compass Only

1. Draw circle AB with center at A and passing through point B 14. Draw circle FB' with center at F and passing through point B'
2. Let C be a random point on the circumference of circle AB 15. Let points G and H be the intersections of circles FB' and B'C
3. Draw circle BC with center at B and passing through point C 16. Draw circle GH with center at G and passing through point H
4. Draw line segment AB* 17. Let | be the unlabeled intersection of circle GH and circle FB'
5. Let C' be the image as C is reflected across line segment AB* | 18. Draw circle IC with center at | and passing through point C
6. Draw circle C'B with center at C' and passing through point B | 19. Let points J and K be the intersections of circles IC and CB'
7. Draw line segment AC'* 20. Draw circle JC with center at J and passing through point C
8. Let B' be the image as B is reflected across line segment AC'* | 21. Draw circle KC with center at K and passing through point C
9. Draw circle B'C with center at B' and passing through point C | 22. Let point L be the unlabeled intersection of circles KC and JC
10. Draw circle CB' with center at C and passing through point B' | 23. Draw circle CL with center at C and passing through point L
11. Let points D and E be the intersections of circles B'C and CB' | 24. Trace circle CL and change its color

12. Draw circle DE with center at D and passing through point E

25.

Animate point C around circle AB

13. Let F be the unlabeled intersection of circles DE and B'C

* Steps 4, 5, 7, and 8 are the only non-compass steps in the construction

8.5.4 An n-Cusped Epicycloid

The construction following in Table 8-6 is that of a five-cusped Epicycloid (e.g., a
Ranunculoid). However, following the construction steps, it will be shown how to
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modify specific steps of the construction in order to change the construction into one for
an Epicycloid of any number of cusps desired, i.e., n cusps.

Table 8-6: A Five-Cusped (or n-Cusped) Epicycloid

1. Create an x-y axis with origin at A and unit point B(1, 0) 9. Draw circle C'C with center at C' and passing through point C
2. Draw circle AB with center at A and passing through point B 10. Let C, be the image when C is rotated about C' hy Z/BAC

3. Let C be a random point on the circumference of circle AB 11. Let C, be the image when C; is rotated about C' by /BAC

4. Measure Z/BAC 12. Let C; be the image when C is rotated about C' by /BAC

5. Draw line segment AC 13. Let C,4 be the image when Cs is rotated about C' by /BAC

6. Measure the length of line segment AC 14. Let Cs be the image when C, is rotated about C' by /BAC

7. Calculate AC/5 15. Trace point Cs and change its color

8. Let C' be the image as C is translated by /\BAC and AC /5 16. Animate point C around circle AB

Make sure that the angle units in the GSP preference table are set for radian
measure before executing the above animation. To alter the steps in the above table for
the construction of an n-cusped epicycloid (where n is any integer), do the following:
Change step 7 to read "Calculate AC / n." Change step 8 to read "Let C' be the image
when C is translated by #BAC and AC / n." Replace steps 11-14 with the steps that
result from executing the following pseudo-language loop

begin loop
fori=2ton
9 +1i. Let C; be the image when point Ci; is rotated about point C’
by ZBAC.
end loop
Finally, change what is now step 15 (and will be step 9 + n) to read "Trace point C, and
change its color.”

8.5.5 Can We Build a Better Mousetrap?

Section 8.5.1 (An Epicycloid Toy) presented an "adjustable” Epicycloid
construction; that is, a construction where a point can be dragged that changes the radius
of the fixed circle, thereby changing the ratio of the radius of the fixed circle to that of the
revolving circle and thence, as we have learned, changing the number of cusps in the
traced Epicycloid. However, that construction suffers from the inability to adjust the
ratio finely enough to result in a closed Epicycloid (i.e., one where the tracing point
eventually returns to its starting point), in other words, making the ratio a rational
number. The following construction (Table 8-7) is an attempt to design a better
adjustable Epicycloid construction, one in which the ratio can be fine-tuned to result in a
closed Epicycloid.

Table 8-7: A Better Mousetrap?

1. Draw circle AB with center at A and passing through point B 10. Let H be a random point on the circumference of circle GG'
2. At top of screen, draw line segment CD screen wide 11. Draw line segment GH

3. Let E be a random point on line segment CD 12. Construct the parallel to line segment GH through point F

4. Let F be a random point on the circumference of circle AB 13. Let point | be the intersection of the parallel and circle FF'

5. Let F' be the image when F is translated by vector C — E 14. Trace point | and change its color

6. Draw circle FF' with center at F and passing through point F' 15. Let m; be a measure of the radius of circle AB

7. Let G be a random point anywhere in the plane 16. Let m, be a measure of the radius of circle GG'

8. Let G' be the image when G is translated by vector C — E 17. Calculate m, / my

9. Draw circle GG' with center at G and passing through point G' | 18. Animate points H and F on circles GG' and AB, respectively
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The idea here is to construct an auxiliary line segment (i.e., line segment CD)
upon which a variable point (point E) can be dragged from one end of the segment to the
other. If the distance from one end of the segment to the variable point is then marked as
a vector and used as the radius of the fixed circle, maybe a fine enough adjustment can be
made to the ratio under consideration as the variable point is dragged, particularly if we
calculate that ratio so that we can see at what location on the segment the ratio become a
whole number. At least that’s the concept!

Well, it was a good idea, anyway! It is very difficult to adjust the ratio to an
integer by sliding point E along line segment CD. However, you can get very close.
Figure 8-5 shows the ratio to be very close to 3 which, of course, represents a two-cusped
Epicycloid (i.e., the Nephroid).

°p
Radius @AB = 0.542 inches
Radius @GG' = 1.625 inches

(Radius ©GG")

(Radius ©AB) 278

Figure 8-5: A Better Mousetrap?

8.5.6 Yes, We Can Build a Better Mousetrap

Table 8-8 presents an adjustable Epicycloid construction that can be adjusted
finely enough to result in closed Epicycloids, but, interestingly enough, only when the
ratio of (a + b) / b is an integer. When the ratio is merely rational (but non-integer), GSP
doesn’t perform very well.

Readers should realize that the following construction (Table 8-8) is not a true
geometric construction but utilizes the graphing capability of GSP to render its
construction elements. However, here we will show how to use it to construct the center
of curvature, the evolute, the osculating circle, as well as the tangent line—a simple but
versatile use of a dynamic geometry application.
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Table 8-8: Yes, a Better Mousetrap

. Create an x-y axis with origin at A and unit point B(1, 0)

11. Calculate y = (a + b) -sint — b-sin [(a + b) t / b]

. Draw circle BC centered at B and passing through point C

12. Let G be the result of plotting the point (X, y)

Let D be a random point on the circumference of circle BC

13. Leta=[a/(a+2b)]- {[(a+b) -cost + b-cos [(a+h)t/b]}

. Draw line segments BD and BC

14. Let B =[a/(a+ 2b)] - {[(a+Db) sint + b-sin [(a + b) t/b]}

. Let t be the measure of ZCBD

15. Let point H be the result of plotting (alpha, beta)

. Let E and F be two random points on the x-axis

16. Trace point H and change its color, say red

Let the x-coordinate of point E be a

17. Draw circle HG with center at H and passing through point G

. Let the x-coordinate of point F be b

18. Trace circle HG and change its color, say green

. Calculate (a+b)/b

plo|o|~|o|o| s w|nf-

19. Animate point D around circle BC

0. Calculate x = (a + b) -cost — b-cos [(a + b) t/ b]

Point G (although we did not trace its path) will trace an Epicycloid. The number
of cusps will depend on the value of (a + b) / b, which can be adjusted to an integer value
by sliding point E and/or F along the x-axis. However, you must make sure that the value
of (a + b) / b is a positive integer. If it is negative, you will not obtain an Epicycloid but
rather a curve called a Hypocycloid. Now, point H, which is the center of curvature for
the curve generated by point G, will trace the evolute, which in the case of an Epicycloid
is also an Epicycloid. Circle HG is the osculating circle for the Epicycloid, and by
tracing it we obtain the Epicycloid as the envelope of those circles. We’ve got everything
but the kitchen sink in this construction; we might as well add the kitchen sink—I mean

the tangent line to the Epicycloid.

Table 8-8 (Continued): Yes, a Better Mousetrap

20. Calculate 0.000

22. Let point | be the result of plotting (0, ¢)

21. Calculate ¢ = (a + 2b)[cos(at/b) — 1] / {sin[(a + b)t/b] — sint}

23. Draw line G and change its color and make it thick
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Figure 8-6: A Six-Cusped Epicycloid in Three Dimensions

The cross-section of the pseudo-cylinder above is a six-cusped Epicycloid. It was
rendered by extruding the cross-section into the third dimension using a technique
referred to as treating the object as a lathe object. The resulting object was then placed
over the blue and yellow checkered plane which meets a pinkish-purple clouded sky at
the horizon. The object’s surface was given a pure reflective finish and one can see the
plane reflected in its side and the sky and clouds reflected in its top. Light sources were
then placed so as to cast the object’s shadow onto the plane.
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Chapter 9 — The Epitrochoid

Figure 9-1: A Three-Dimensional Version of an Epitrochoid

The cross-section of the object in the above figure is that of an Epitrochoid with
parameters (a, b, h) = (6, 2, 7). It was created by extruding a plane Epitrochoid with
those parameters into the third dimension (i.e., the dimension normal to the plane of the
page). It was then given a finish of green marble flecked with red and placed over an
infinite gray plane which meets the slate blue sky at the horizon. Light sources were
placed so as to illuminate the object and cast part of its shadow on the gray plane.
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9.1 Introduction

The Epitrochoid was first described by Albrecht Direr in 1525, who called the
curve "spider lines" because he thought the curve bore resemblance to an arachnid. Olaf
Roemer also studied Epitrochoids in 1674 in connection with his research concerning
gear teeth. Through the ensuing centuries the curve was examined by a variety of
mathematicians including Leibniz, Newton, L’Hopital, Desargues, and the Bernouillis.
Today, Epitrochoids can be found in rotary combustion engines by observing the path
that the rotor tip of the eccentric shaft traces out upon revolving.

The Epitrochoid is the locus of a point, P, that is rigidly attached to a small circle
of radius b which rolls without slippage around the outside of a larger circle of radius a.
Doesn’t this sound just like the Epicycloids that were studied in the previous chapter?
Indeed—however, for Epicycloids the point P was confined to the circumference of the
rolling circle. Not so for the Epitrochoid. The point P may be internal to the rolling
circle or may be external to it. (For the external case, consider it to be on an extension of
the radius of the rolling circle.) Obviously, this makes Epicycloids merely a special case
of the Epitrochoid (namely when P is on the circumference).

9.2 Equations and Graph of the Epitrochoid

If we let the distance from the center of the moving circle to the point P be h then
the point P at t = 0 can be represented in coordinate form by its distance from the origin
(see Figure 9-2). Thatis, P =(a+b—h, 0). Asthe smaller circle revolves
counterclockwise around the larger circle, point P moves to the location shown in the

1. .
b 3 3
0 P x Rotated Position
< ' y >
| | A
(1) J-
I h
| |
A
v P
s s ) X
Initial Position < Ol T >

a

v

Figure 9-2: Epitrochoid Position of Point P at Time t
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rotated position of Figure 9-2. At this time, the coordinates of point P can be described
with the equation

P=[(a+b)cost—hcose, (a+b)sint-hsing].

However, as the small circle rolls around the larger one, it travels the same arc-length
distance, that is, arc AB = arc BC, orat = b (a—t). Hence,

a+b
a=Lt.

b

We therefore have the parametric equations of the Epitrochoid, namely

x =(a+b)cost—hcos 2t

. . —n<t<x Equation9-1
y =(a+b)sint —hsin 2t

Note how similar this equation is to that of the parametric equation for the Epicycloid

(Equation 8-1). In fact, the only difference is the factor h in the second term of each

component of Equation 9-1 versus b in Equation 8-1. And, of course, in the case of an

Epicycloid, h = b, so this is consistent.

x=(a+b)oost— heos(2451) Y (a,b, h)=(6,2,1)
y={a+b)sinz— hsin(22

(a,b, h)=(6,2,3)

(a,b, h) = (8, 2, 3)

(a, b, h) = (4, 2, 3)

v

Figure 9-3: Graphs of a Variety of Epitrochoids

Figure 9-3 represents a graph of four different Epitrochoids. Note that the three
parameters, (a, b, h) completely specify the curve. Further, if b <h, the curve will have
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2 1 inner loops provided that 22 is an integer. Of course, if b = h, as we have already

learned, the curve degenerates to that of an Epicycloid. Finally, if b > h, the curve has no
loops and takes a general form like that shown in the blue graph of Figure 9-3.

The equation of the tangent line to the Epitrochoid at the point t = q is

— atb (). ag—(h?2 2
:(bcosfq hcos Y q) x+h(a+2b)?osbq (h .+ab+b ) quation 9.2
hsin2:2q—bsing hsin2:2q—bsing

9.3 Analytical and Physical Properties of the Epitrochoid

Using the parametric representation of the Epitrochoid given in Equation 9-1, the
following subparagraphs delineate further properties of the Epitrochoid.

9.3.1 Derivatives of the Epitrochoid

> X= aTer[hsin(""%bt)—bsint].

2
X = Mab;zb)cos(%bt)—(a+b)cost :

> y= aTer[bcost —hcos(2:2t)].

2
> §= h(abt b) sin(2:2t)—(a+b)sint.
5 Doost —hcos(22t)

Y= hsin(z2t)—bsint

b® +h?(a+b)-bh(a+2b)cos 2t
(a+b)hsinz2t—bsint)

> yll —

9.3.2 Metric Properties of the Epitrochoid
It makes no sense to talk about the area of an Epitrochoid if the curve is not
closed or if the curve loops back upon itself. For closure, we have learned that 22 must

be an integer; let us call that integer n. To eliminate the loops, we have learned that h
must be less than or equal to b (i.e., h <b). Therefore, the parametric equation of the
Epitrochoid, for these conditions becomes

x=bncost—hcosnt and y=bnsint—hsinnt Equation 9-3

and we may calculate the area using the formula
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1%( dy  dx
A= ([ xY _y By
)

0
Now, making the laborious calculation, we find that the value of the integrand is,
xI_ yd—)t( =b?n? +h’n—bhn(n+1)cos(n —1}k.

Therefore,

2.2 27 2. 271 2
NS PR P bhnin +1) Icos(n—l)tdt :
2 0 2 0 2 0

Integrating and evaluating the results, we find that

_bhn(n+1)

2(n-1)

However, sin2zn is always zero since n is an integer, hence we find that

A=7b%n* + 7h°n sin 27m

2

A=m(p’n+h?)=z(a+b) +ﬂhT(a+b), for0<h<b.

If r denotes the distance from the origin to the curve, then

r=y/(a+b) +h? —2h(a+b)cos2t.
If p denote the distance from the origin to the tangent line, then

_h(a+2b)cos2t—h?—b(a+b)
Jh?+b? —2bhcos 2t

9.3.3 Curvature of the Epitrochoid
If p represents the radius of curvature of the Epitrochoid, then

(a+b)h? +b? - 2bhcos 2t )?
h*(a+b)+b* —bh(a+2b)cos 2t

p:

If (a, B) denotes the coordinates of the center of curvature for the Epitrochoid, then

ah?(a+b)cost —abh(a+b)costcos 2t +abhcos 22 t —abh® cos 2t cos 22 t

d
h?(a+b)+b° —bh(a+ 2b)cos it an

a =
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ah?(a+b)sint —abh(a +b)sintcos 2t + ab’hsin 22t —abh?sin 22t cos 2t

F= h?(a+b)+b° —bh(a+ 2b)cos 2t

9.3.4 Angles for the Epitrochoid

If y is the angle between the tangent and the radius vector at the point of tangency
to the general Epitrochoid, then

(a+b) +h?—h(a+2b)cos?t
ahsin2t '

tany =

If ¢ denotes the tangential angle, then

_ beost—hcos(%2t)

tang = hsin(22t)—bsint

If &denotes the radial angle, then

(a+b)sint —hsin 2t

tand = .
(a+b)cost —hcos 20t

9.4 Geometric Properties of the Epitrochoid
As already alluded to, for 22 =n an integer, the Epitrochoid is closed and there

are n — 1 inner loops whenever h > b. When h <b, the n—1 loops become n—1
"indentations™ in the overall line of the curve but the curve does not cross itself as it must
to form a loop. Further, these "indentations" are not cusps, as the derivative of the curve
exists in every neighborhood of the "indentation." The curve is always symmetric about
the x-axis, and if n is an odd integer, it is also symmetric about the y-axis. The curve is

completely contained within a circle defined by [r|<a+b+h.

9.5 Dynamic Geometry of the Epitrochoid

The next two subsections present two dynamic geometry constructions for the
Epitrochoid.

9.5.1 The Geometry of the Epitrochoid Illuminated

If you think the explanation involving "indentations" in section 9.4 leaves
something to be desired, perform the following simple GSP construction and the idea of
the "indentation” should become clear; Table 9-1 contains this construction.
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Table 9-1: The Geometry of the Epitrochoid Illuminated

. Draw circle AB with center at A and passing through point B

6. Let C, be the image of C, rotated about point C' by /BAC

. Let C be a random point on the circumference of circle AB

7. Draw line C'C,

. Let C' be the image of C dilated about A by a factor of 5.0

8. Let D be a random point on line C'C,

. Draw circle C'C with center at C' and passing through point C

9. Construct the locus of D while point C traverses circle AB

gl w|N| -

. Let C, be the image of C rotated about point C' by Z/BAC

10. Change the color and line thickness of the locus

Now, drag point D along line C'C, and note how the locus of point D changes.
When point D and point C' coincide, the locus is a circle. As point D moves away from
point C', the locus becomes slightly elongated and flattened on two opposing sides. As
point D continues to move away from point C', the flattened portions becomes two
"indentations" which, as point D continues moving, becomes two cusps (forming a
Nephroid) and then eventually two loops. Of course, the flattened and/or "indentation™
configuration corresponds to an Epitrochoid with parameter h < b. The cusp
configuration corresponds to an Epitrochoid with parameter h = b, or as we have learned,
an Epicycloid. Finally, the loop configuration corresponds to an Epitrochoid with

parameter h > b.

9.5.2 An Epitrochoid to Play With

The construction found in Table 9-2 is similar to the construction in the "Can We
Build a Better Mousetrap?" section of Chapter 8, except that the tracing point can be
dragged to simulate different values of the parameter h.

Table 9-2: An Epitrochoid to Play With

. Draw circle AB with center at A and passing through point B

10. Let H be a random point on the circumference of circle GG'

. Draw segment CD across the entire width of the screen top

11. Draw line segment GH

Let E be a random point on line segment CD

12. Construct the parallel to line segment GH through point F

Let F be a random point on the circumference of circle AB

13. Let | be a random point on the parallel line

Let F' be the image when F is translated by vector C » E

14. Trace point | and change its color

. Draw circle FF' with center at F and passing through point F'

15. Let m; be a measure of the radius of circle AB

. Let G be a random point anywhere in the plane

16. Let m, be a measure of the radius of circle GG'

. Let G' be the image when G is translated by vector C — E

17. Calculate m, / m;

. Draw circle GG' with center at G and passing through point G'

18. Animate points H and F on circles GG' and AB, respectively

By dragging point E along line segment CD so that the ratio of m, to m; is an
integer (or as close to an integer as one can obtain), one can cause point | (the tracing
point) to trace a closed curve (or very close to it). By dragging point | along the parallel
so that it is internal to circle FF' and then adjusting the ratio to be less than one (< 1), we
can obtain Epitrochoids with the so called “indentations.” As a matter of fact, adjusting
the ratio as close to 0.25 while keeping point | internal to circle FF', we can trace the
Epitrochoid shape found in the rotary combustion engine (i.e., the path that the rotor tip
of the eccentric follows when revolving).
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Figure 9-4: An Epitrochoid Solid of Revolution

In order to obtain the object above, an Epitrochoid with parameters (a, b, h) = (20, 4, 2)
was revolved about the x-axis. It was then placed above the reflecting pool and a light
source was located so as to cast the object’s shadow onto the pool. Note how the object’s
shiny surface also reflects the pool itself as well as the horizon line, sky, and ground.
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Chapter 10 — The Deltoid

Figure 10-1: The Deltoid in Three Dimensions

This three-dimensional version of the Deltoid was rendered by extruding into the third
dimension using its parametric representation. The resulting object was then given a
shiny, aquamarine finish and situated over the red and white checkered plane. The plane
meets a bright-blue sky at the horizon. Light sources were placed so as to cast shadows
of the object on the plane in various locations. Also note the light sources reflecting off
the object itself—one on the outer surface and one on the inner surface.
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10.1 Introduction to the Deltoid

Conceived by Leonhard Euler in 1745, the Deltoid (sometimes called the
Tricuspoid) was studied in connection with caustic curves. It was also investigated by
Steiner in 1856 and is sometimes called Steiner's Hypocycloid. In point of fact, the
Deltoid is a member of a family of curves called Hypocycloids. This variety of cycloid is
obtained as the locus of a point attached to the circumference of one circle rolling along
the circumference of another circle, but rolling interior to it. In other words,
Hypocycloids are very much like the Epicycloids that we studied Chapter 8, but are
produced by a rotating circle interior to the fixed circle instead of exterior. The Deltoid is
the specific Hypocycloid where the radius of the fixed circle is three times as large as the
radius of the rolling circle.

10.2 Equations and Graph of the Deltoid

To find the parametric equations for the Deltoid, let a be the radius of the rolling
circle and 3a that of the fixed circle, as shown in Figure 10-2. The fixed circle has
equation x* + y* = 9a% and for t = 0, the point P has coordinates P = (3a, 0). Then, after
the moving circle has rolled through an angle t (that is, the line 0,0, connecting the
centers of the two circles makes an angle t with the x-axis), the point P has rolled around
O, through an angle 3t —t = 2t. If the coordinates of point O, are O, = (O, Oy), then P =
(Oy, Oy) + (acos2t, —asin2t). But, (O, Oy) = (2acost, 2asint). Therefore, the parametric
representation for the Deltoid is

2¢
a

\

A
S’
-

3a

v

Figure 10-2: Derivation of the Deltoid Equations

(x,y)=a(2cost +cos2t,2sint —sin2t), -z <t<z Equation 10-1
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Eliminating the parameter t from these two equations yields the Cartesian form of the
Deltoid as

(X2 +y? +12ax+9a? ) =4a(2x+3a)’ Equation 10-2
If the pedal point is taken as the center of the fixed circle, then the pedal equation is
r’+8p®>=9a*> Equation 10-3
Similarly, the Whewell equation is
3s=8acos3¢p Equation 10-4
The Ceséro equation is
9s® + p® =64a’ Equation 10-5
Finally, the equation of the tangent line to the Deltoid at the point t = g is
sing-y=(cosq—1)-x+a(l—cosq)l+2cosq). Equation 10-6

Figure 10-3 depicts the graph of the Deltoid.

. {~a,0) 3a,0)

(x2 +y* + 12ax+ 902)2 —4a(2x + ?ya)3

v

Figure 10-3: The Graph of the Deltoid

10.3 Analytical and Physical Properties of the Deltoid

Using the parametric representation of the Deltoid given in Equation 10-1, i.e.,
X = 2acost + acos2t and y = 2asint — asin2t, the following subsections present the
Deltoid’s derivatives, metric properties, curvature, and angles of interest.
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10.3.1 Derivatives of the Deltoid
> %=-2asint(l+2cost)

> X=4a—2acost(l+4cost)
> y=2a+2acost(l—2cost)=2a(l+2cost)1—cost).

> y=2asint(4cost—1)

> Y= cost=1_ tan[ﬂ—lj.
sint 2

, 1—cost
> Y= — .
2asin’t(1+2cost)

10.3.2 Metric Properties of the Deltoid

The Deltoid’s length can be calculated by considering one branch of the curve,
calculating its length, and then multiplying that result by three since each of the three
branches are of equal length. Therefore, the length of the branch fromt=0to t=2x/3 is

) o= T2 (&)

s ~2a(sint +sin2t) and % = 2a(cost —cos 2t)

2
[%} =4a’sin®t +8a’sintsin 2t + 4a’ sin® 2t
d 2
(d_i’j =4a’ cos”t—8a” costcos 2t +4a” cos’ t.
Adding these last two expressions together yields

2 2
(%j + (%j =8a’(1—cos3t).
dt dt

However, 1 — cos 3t = 2sin’ (3t/2). We therefore have

8_a [COS% ;% = 16_8.

3
We may therefore conclude that the total length of the Deltoid is 16a, where a is the
radius of the rolling circle.

27 %
s=4a| sin L dt = 52 [ dlcos%)=
0 2 3 0

Chapter 10: The Deltoid 10-4 Playing With Dynamic Geometry



The area of the Deltoid may be computed from the formula

=_I( dt dtj b

where, in this case, o = 0 and = 2n. From the previous calculation of the Deltoid’s
length, we have expressions for dy/dt and dx/dt. Therefore,

xz—)t/ =4a’ cos’t—2a%costcos2t —2a%cos?2t, and

y% = —4a’sin®t —2a’sintsin 2t + 2a®sin® 2t .

Forming the difference from these last two expressions yields
S 2a” —2a*(cost cos 2t —sintsin 2t) = 2a®(1—cos 3t ).

Therefore, the area is

227z

_—IZa 1 cos 3t dt_a jdt——jd 5|n3t 27ma

If p is the distance from the origin to the Delt01d’s tangent, then

p= %a(1+ 2cost)y/2(1 - cost).

If r is the distance from the origin to the curve, then

r=a+5+4cos3t.

10.3.3 Curvature of the Deltoid
If p is the radius of curvature of the Deltoid, then

.3t
=-8asin—.
P 2
If (e, p) are the coordinates of the center of curvature of the Deltoid, then
a =3a(l+2cost—2cos’t) and  B=6asint(1+cost)

10.3.4 Angles for the Deltoid
If 6 is the radial angle of the Deltoid, then
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2sint(1—cost)

tangd = :
2cost(l+cost)-1

If y is the tangential-radial angle of the Deltoid, then

(1+2cost )1 -cost)

t =
anv 3sint(1-2cost)

If ¢is the tangential angle of the Deltoid, then
¢=r-1/2.

10.4 Geometric Properties of the Deltoid
> Intercepts: (3a, 0); (-a, 0); (O,ia\/6x/§—9).

33 33

» Extent: —%a£x£3a; ——a<y<—a

» Symmetry: The Deltoid is symmetric about the x-axis and the lines

y = /3.

» Cusps: (3a, 0); (—ga +% J

10.5 Dynamic Geometry of the Deltoid

The following subsections provide a variety of different and interesting
constructions of the Deltoid.

10.5.1 The Deltoid as a Hypocycloid

As briefly addressed in Section 10.1, the Deltoid is defined as a specific
Hypocycloid, one where the radii of the fixed circle and rotating circle are in the ratio of
3to 1. Our first dynamic geometry construction, found in Table 10-1, is based on this
very definition.

Table 10-1: The Deltoid as a Hypocycloid

. Draw circle A'C with center at A" and passing through point C | 9. Animate point C around circle AB

1. Draw circle AB with center at A and passing through point B 6. Let C, be the image when C, is rotated about A' by ZCAB
2. Let C be a random point on the circumference of circle AB 7. Let C; be the image when C; is rotated about A' by ZCAB
3. Let A' be the image when A is dilated about C by 5 8. Trace point C; and change its color

4

5

. Let C, be the image of C rotated about point A' by /CAB

Step 1, of course, is to obtain the fixed circle while steps 2 through 4 construct
the moving circle whose radius is one-third that of the fixed circle. Steps 5 through 7
then perform the necessary functions in order to simulate a point on the circumference of
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the moving circle that rolls without slipping around the interior of the fixed circle. Note

that point C, will trace an ellipse.

10.5.2 The Pedal Curve of the Deltoid

Remember, the pedal curve of a given curve C is merely the locus of the
intersection point created by dropping a perpendicular from the pedal point to a tangent
of C. Therefore, if we can construct a tangent to the Deltoid, it will be "duck soup™ to
construct the Deltoid’s pedal curve. Such a construction is found below in Table 10-2.

Table 10-2: The Pedal Curve of the Deltoid

. Draw circle AB with center at A and passing through point B

9. Construct the locus of C; while point C traverses circle AB

. Let C be a random point on the circumference of circle AB

10. Draw line segment CCy

. Dilate circle AB about point C by a factor of /3

11. Construct P; L to line segment CC; through point Cs

. Let A; be the image when A is dilated about C by %

12. Let D be a random point in the plane

. Draw line segment AC

13. Construct P, L to P, through point D

. Let C, be the image when C is rotated about A; by Z/CAB

14. Let point E be the intersection of perpendiculars P, and P,

. Let C, be the image when C; is rotated about A; by Z/CAB

15. Trace point E and change its color

O(N|O || WINF-

. Let Cs be the image when C is rotated about A, by ZCAB

16. Animate point C around circle AB

In the above construction, point D acts as the pedal point. You can drag it
anywhere in the plane so as to change the pedal curve. It is particularly instructive to
drag it to where it is internal to the Deltoid and specifically when it is coincident with
point A, the center of circle AB. If instead of tracing point E, you construct the locus of
point E as point C traverses circle AB (i.e., the locus of the pedal curve), then when you
drag point D, you can see how the pedal curve changes.

10.5.3 The Deltoid as an Envelope of Simson Lines

First of all, what is a Simson line? Let there be any triangle inscribed in a circle
and let the point P be any random point on the circumference of the circle. On one of the
sides of the triangle mark a point Q;, such that the line PQ; is perpendicular to the side so
chosen (one may have to extend the side of the triangle in order to find the point Q).
Now do the same thing for the other two sides of the triangle with points Q, and Qs,
respectively. It turns out that the points Q1, Q, and Qs are collinear and the line passing
through them is called a Simson line. The envelope of the set of all Simson lines (the set
composed from all points, P) form a Deltoid, as can be seen from the construction that

follows in Table 10-3.

Table 10-3: The Deltoid as an Envelope of Simson Lines

. Draw circle AB with center at A and passing through point B

8. Let point H be the intersection of line EF and perpendicular P,

. Let C, D, E, and F be four random points on circle AB

9. Draw line DF

. Draw line DE

10. Construct P; L to line DF through point C

. Construct P; Lto line DE through point C

11. Let point I be the intersection of line DF and perpendicular P3

. Let G be the intersection of line DE and perpendicular Py

12. Draw line GH

. Draw line EF

13. Trace line GH and change its color

N[O~ |[WIN|EF

. Construct P, L to line EF through point C

14. Animate point C around circle AB

Note that in this construction, we never really drew the triangle, however, it is
implied (it is ADEF). Note also, that when we draw line GH (step 12), that line also
passes through point I, i.e., G, H, and I are all collinear. See Figure 10-4 for a snapshot

of this construction.
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Figure 10-4: The Deltoid as an Envelope of Simson Lines

10.5.4 The Evolute of the Deltoid

As addressed earlier (Chapter 1), the evolute of a curve is the locus of its center of
curvature. The construction delineated below in Table 10-4 is the evolute of the Deltoid,
which, it turns out, is another Deltoid. Obviously, to use this construction as a means of
generating a Deltoid requires one to possess another construction of the Deltoid in order
to begin constructing its evolute. Bottom line—obviously this is not a very good

"generation from scratch” technique!

Table 10-4: The Evolute of the Deltoid

. Draw circle AB with center at A and passing through point B

8. Draw line CC,

. Let C be a random point on the circumference of circle AB

9. Let C; be the image when C; is rotated about point C; by 180°

. Let m; be the measure of angle Z/BAC

10. Draw line AC;

. Calculate m, = -3m;

11. Let point D be the intersection of lines AC; and CC,

. Let C, be the image when C is dilated about A by %

12. Trace point D and change its color

. Draw circle C;C with center at C; and passing through point C

13. Animate point C around circle AB

N[O~ wW|N|F-

. Let C, be the image when point C is rotated about C; by /m,

When executing this construction, make sure that the unit for angle measurement
in the preferences window under the display menu of GSP is set for either radian measure
or directed degree measure. (Of course, if it is set for radian measure, then step 9 should
really read "Let C3 be the image when C; is rotated about C; by 3.14159 ... radians".)
Note that point D, the intersection point of lines ACzand CC; (step 11), is the center of
curvature for the Deltoid traced by point C3. Also note that tracing point C, produces the
Deltoid for which the trace of point D is the evolute. And note how the evolute is
circumscribed about the fixed circle (circle AB). Very neat!

Chapter 10: The Deltoid

10-8

Playing With Dynamic Geometry




10.5.5 The Deltoid as an Envelope of Osculating Circles

The previous construction, the evolute of the Deltoid, shows us how to locate the
center of curvature. From that, it is a simple matter to construct the Deltoid’s osculating
circle. For this construction, execute steps 1 — 11 of section 10.5.4 and then perform the
following three steps:

12. Draw circle DC, with center at point D and passing through point C.
13. Trace circle DC; and change its color.
14.  Animate point C around circle AB.

Figure 10-5 illustrates this construction.

Figure 10-5: The Deltoid as an Envelope of Osculating Circles

The reader might ponder why this construction is even included in the text, given
that it is so similar to the previous construction. After all, they are basically the same
construction. If one is at all serious about learning about these curves, the previous
construction is instructive because it shows that the evolute of the Deltoid is another
Deltoid and, lo and behold, this is true for all Hypocycloids; that is, their evolute is
another version of the same curve. However, this construction is included because it
creates such a beautiful picture when the animation is executed — your author couldn’t
bear to leave it out!

10.5.6 A Rotating Deltoid

The construction delineated in Table 10-6 is quite elaborate and beautiful. Itis
worth reproducing.
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Table 10-5: A Rotating Deltoid

1. Draw horizontal line AB 16. Draw circle GF' with center at G and passing through point F'
2. Let C be a random point on line AB 17. Draw circle GF" with center at G and passing through F"

3. Construct P; L to line AB through point A 18. Let G' be the image when G is dilated about F" by '

4. Draw circle AC with center at A and passing through point C 19. Draw circle G'F" with center at G' and passing through F"
5. Let D be a random point on the circumference of circle AC 20. Let H be a random point on circle GF"

6. Construct P, L to P, through point D 21. Rotate circle G'F" about point G by ZF"GH

7. Construct P; L to line AB through point D 22. Let E; be the image when E is rotated about G by Z/F'GH
8. Let E be the intersection of line AB and perpendicular P; 23. Let G" be the image when G' is rotated about G by ZF'GH
9. Let point F be the intersection of perpendiculars P; and P, 24. Let E, be the image when E; is rotated about G" by ZHGF"
10. Draw line segment EF 25. Let E; be the image when E; is rotated about G" by ZHGF"
11. Let F' be the image when F is dilated about A by % 26. Let E, be the image when E; is rotated about G" by ZHGF"
12. Let E' be the image when E is dilated about A by %2 27. Construct the locus of point E, as H traverses circle GF"
13. Draw line segment E'F' 28. Let points | and J be the intersections of circle AC and P,
14. Let F" be the image when F' is rotated about point E' by 180° 29. Animate point D around circle AC

15. Let G be the midpoint of line segment E'F'

Note that as the Deltoid rotates it remains tangent to line AB and perpendicular
P;. Further, point G' describes an ellipse, and line segment EF and line segment E'F' both
describe a curve we have not yet examined called an Astroid (Chapter 11). Changing
either one or both of these line segments to dashed segments, changing their color, and
tracing them as the animation runs, paints quite an interesting picture.

10.5.7 The Deltoid as an Envelope of Straight Lines

In section 10.5.3 we showed how the Deltoid can be generated as an envelope of
Simson lines. It’s not only Simson lines that do the job, as can be seen from the
construction of Table 10-6.

Table 10-6: The Deltoid as an Envelope of Straight Lines

1. Draw horizontal line AB 6. Let C' be the image when point C is reflected across line AB
2. Draw circle AB with center at A and passing through point B 7. Construct P, L to line BC through point C'

3. Let C be a random point on the circumference of circle AB 8. Trace perpendicular P, and change its color

4. Construct P, L to line AB through point C 9. Animate point C around circle AB

5. Draw line BC

Alternately, here is a different construction for the Deltoid as an envelope of
straight lines (see Table 10-7).

Table 10-7: An Alternate Straight Line Envelope Construction of the Deltoid

1. Draw horizontal line AB 6. Let B' be the image when B is reflected across P,
2. Draw circle AB with center at A and passing through point B 7. Draw line B'C

3. Let C be a random point on the circumference of circle AB 8. Trace line B'C and change its color

4. Draw line BC 9. Animate point C around circle AB

5. Construct P; L to line AB through point C

Combining these two "straight-line constructions” in one sketch results in one
Deltoid being superimposed upon the other Deltoid, but separated by 60°, thereby
making quite an interesting graphic. (These two constructions are really not different
from one another in terms of the geometry involved but are rather slight variations of one
another, i.e., in terms of the line used to trace the Deltoid.)
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10.5.8 A Deltoid-Nephroid Gear

Table 10-8 below presents a rotating Deltoid coupled, in this case, to a Nephroid.
Note the similarities and differences between this construction and the rotating Deltoid of
section 10.5.6.

Table 10-8: A Deltoid-Nephroid Gear

1. Draw circle AB with center at A and passing through point B 12. Let C, be the image when C is rotated about A; by Z/BA;D
2. Let A; be the image when A is dilated about B by a factor of 3 | 13. Let C, be the image when C is rotated about A, by ZBAE
3. Let A, be the image when A is dilated about B by -2 14. Let A, be the image when A is rotated about A, by Z/BAE
4. Create circle O, by dilating circle AB about B by a factor of 3 | 15, Let C; be the image when C; is rotated about A; by /DAB
5. Create circle O, by dilating circle AB about B by -2 16. Let C4 be the image when C; is rotated about A4 by ZBAE
6. Let C be a random point on the circumference of circle AB 17. Let Cs be the image when Cj is rotated about As by /DA:B
7. Draw line segment BC 18. Let C; be the image when C, is rotated about A4 by ZBAE
8. Construct P; | to segment BC through point C 19. Let C, be the image when Cs is rotated about A; by Z/DA;B
9. Let D be a random point on the circumference of circle O, 20. Construct the locus of Cs while point E traverses circle O,
10. Let E be a random point on the circumference of circle O, 21. Construct the locus of C; while point D traverses circle O,
11. Let A; be the image when A is rotated about A; by ZBA.D 22. Animate point C around circle AB

As a suggestion, simultaneously animate point C on circle AB, point D on circle
04, and point E on circle O,. Then trace points Cq, C,, Cs, C4, and Cs. Point C, traces
another Nephroid, point C, traces a 3-looped Epitrochoid, and point Cs traces a Cardioid,
while points C; and Cj3 trace curves called Hypotrochoids (see Chapter 13).

10.5.9 The Deltoid from a Compass-Only Construction

This construction is essentially the same construction that was presented in
section 8.5.3. However, instead of creating a three-cusped Epicycloid with the traced
element, we now trace an element that yields the Deltoid directly (see Table 10-9).

Table 10-9: The Deltoid from a Compass-Only Construction

1. Draw circle AB with center at A and passing through point B 13. Let F be the unlabeled intersection of circles DE and B'C

2. Let C be a random point on the circumference of circle AB 14. Draw circle FB' with center at F and passing through point B'
3. Draw circle BC with center at B and passing through point C 15. Let points G and H be the intersections of circles FB' and B'C
4. Draw line segment AB 16. Draw circle GH with center at G and passing through point H
5. Let C' be the image of C reflected across line segment AB 17. Let | be the unlabeled intersection of circle GH and circle FB'
6. Draw circle C'B with center at C' and passing through point B | 18. Draw circle IC with center at | and passing through point C
7. Draw line segment AC' 19. Let points J and K be the intersections of circles IC and CB'
8. Let B' be the image of B reflected across line segment AC' 20. Draw circle JC with center at J and passing through point C
9. Draw circle B'C with center at B' and passing through point C | 21. Draw circle KC with center at K and passing through point C

10. Draw circle CB' with center at C and passing through point B' | 22. Let L be the unlabeled intersection of circle KC and circle JC

11. Let points D and E be the intersections of circles B'C and CB' | 23. Trace point L and change its color

12. Draw circle DE with center at D and passing through point E | 24. Animate point C around circle AB

Instead of tracing point L, construct the locus of point L as point C traverses circle
AB and then add the following steps to the construction.

25. Let point M be the unlabeled intersection of circle DE and circle CB'.
26. Draw circle ML.

Now rerun the animation and you will see that circle ML is the osculating circle to the
Deltoid, constructed with a compass-only methodology. Spectacular!
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10.5.10 Orthogonal Tangents to the Deltoid

Given any tangent to the Deltoid, one can always draw a second tangent that is
perpendicular to the given tangent. See Table 10-10.

Table 10-10: Orthogonal Tangents to the Deltoid

1. Draw circle AB with center at A and passing through point B 14. Trace line segment CC, and change its color

2. Let C be a random point on the circumference of circle AB 15. Let Cs be the image when C, is rotated about point A by 180°
3. Dilate circle AB about point A by a factor of %5 16. Construct P; L to segment CC, through point C,

4. Dilate circle AB about point C by a factor of %5 17. Change the color of Perpendicular Py

5. Let A' be the image when A is dilated about C by ' 18. Let Cg be the image when Cs is rotated about A" by 180°
6. Draw line segment AC 19. Let D be the intersection of line segment AC and P,

7. Let C, be the image when C is rotated about point A by 180° 20. Draw line segment C,Cs

8. Let A" be the image when A' is rotated about point A by 180° 21. Trace line segment C,Cg and change its color

9. Let C; be the image when C is rotated about A' by ZCAB 22. Construct P, L to line segment C,Cs through point Cs

10. Let Cs be the image when C; is rotated about A' by Z/CAB 23. Change the color of perpendicular P,

11. Let C4 be the image when Cj is rotated about A' by ZCAB 24. Let point E be the intersection of perpendiculars P; and P,
12. Construct the locus of C4 while point C traverses circle AB 25. Animate point C around circle AB

13. Draw line segment CC,

Figure 10-6 portrays a snapshot of this construction. In Figure 10-6, the two cyan
colored lines are the two orthogonal tangents. They are tangent to the dark blue Deltoid
at points C4 and Cg, respectively. They intersect at point E and when the animation is
executed point E revolves around the inner circle that was constructed in step 3. The
locus of the intersection point of tangents to a curve meeting at a constant angle is an
isoptic of the curve. In this case, the tangents meet at a constant 90° and trace a circle.
Therefore, the circle is a 90°-isoptic (sometimes called an orthoptic) of the Deltoid. Line
segments C,Cg and CC, are traced simply to fill in the space between the Deltoid and the
outer circle; it makes for a more spectacular picture. Note that the Deltoid will also have
two orthogonal normals. This same construction can be used to create the normals.
Simply construct perpendiculars to the two tangent lines through the points of tangency.
They are not shown in Figure 10-6.

Figure 10-6: Orthogonal Tangents to the Deltoid
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10.5.11 Two Deltoids for the Price of One

In sections 10.5.4 and 10.5.5 we presented the Evolute of the Deltoid and the
Deltoid as an envelope of its osculating circle. As alluded to earlier, these two previous
constructions are really the same; that is, the evolute is the locus of the centers of
curvature and that locus is the same as the locus of the centers of the osculating circles.
There is really nothing more to be learned by combining them into one construction;
however, the resulting picture and dynamic geometry animation are truly beautiful. Asa
result, this combined construction is presented in Table 10-11 and shown in Figure 10-7.
Note, however, that we do not actually construct the osculating circle, only its radius.

Table 10-11: Two Deltoids for the Price of One

1. Draw circle AB with center at A and passing through point B 9. Draw line A'Cs

2. Let C be a random point on the circumference of circle AB 10. Construct P; L to line CCs through point C

3. Let A' be the image when A is dilated about C by !4 11. Let point D be the intersection of P, and line A'Cs
4. Let C, be the image when C is rotated about A' by ZCAB 12. Draw line AD

5. Let C; be the image when C, is rotated about A' by ZCAB 13. Let point E be the intersection of lines AD and CCs
6. Let C; be the image when C, is rotated about A' by ZCAB 14. Draw line segment EC;

7. Trace point C; and change its color 15. Trace line segment EC; and change its color

8. Draw line CCs 16. Animate point C around circle AB

Figure 10-7: Two Deltoids for the Price of One

Note how the larger Deltoid, e.g., the one formed by the trace of line segment
ECs, is offset from the smaller Deltoid by 90°. Also note that the cusps of the smaller
Deltoid bisect the respective sides of the larger Deltoid. Finally, note how the stationary
circle is inscribed in the larger Deltoid and circumscribes the smaller Deltoid. This
particular construction forms a graphic that is so symmetric, esthetically pleasing, and
interesting to look at, it’s very surprising that it has not been chosen by some large
corporation as their company logo.

10.5.12 The Deltoid and a Three-Cusped Epicycloid as Gears

The construction below in Table 10-12 is that of both a Deltoid and a three-
cusped Epicycloid interacting as though they were mechanical gears in an elaborate Rube
Goldberg machine of some kind.
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Table 10-12: The Deltoid-Epicycloid as Gears

1. Draw circle AB with center at A and passing through point B 13. Let C; be the image when C; is rotated about As by /DA;B
2. Let A; be the image when A is dilated about B by a factor of 3 | 14. Let C; be the image when C is rotated about A, by ZBAE
3. Let C be a random point on the circumference of circle AB 15. Let A, be the image when A is rotated about A, by ZBAE
4. Dilate circle AB about B by a factor of 3 to create circle O, 16. Let C,4 be the image when C; is rotated about As by /DA;B
5. Let A, be the image when A; is rotated about point B by 180° 17. Let Cs be the image when C; is rotated about A, by ZBAE
6. Let D be a random point on the circumference of circle O; 18. Let C; be the image when C, is rotated about A; by /DAB
7. Rotate circle O; about point B by 180° to create circle O, 19. Let C, be the image when Cs is rotated about A, by Z/BAE
8. Draw line segment BC 20. Let Cg be the image when C; is rotated about A, by ZBAE
9. Let C, be the image when C is rotated about A; by Z/BA;D 21. Construct the locus of Ce while point D traverses circle O,
10. Let A; be the image when A is rotated about A; by Z/BA;D 22. Construct the locus of Cg while point E traverses circle O,
11. Let E be a random point on circle O, 23. Animate point C around circle AB

12. Construct P, L to line segment BC through point C

The perpendicular to segment BC is tangent to both the Deltoid and the
Epicycloid. The Deltoid rotates about its center, point A, and the Epicycloid rotates
about its center, point A,. The cusps of the Deltoid and Epicycloid coincide as this
rotation takes place. It’s as if they were gears, albeit strange looking gears, in some large,
intricate machine. The remarkable thing about this is that if one actually manufactured
gears with the cross-section of these two curves, they would, indeed, operate correctly. It
is also instructive to simultaneously animate point C around circle AB, point D around
circle O, and point E around circle O, while tracing points C;, C,, C3, C4, Cs, and Cs.
You’ll find that point C3 traces a three-cusped Epicycloid, point C4 traces a Cardioid,
point Cs traces a four-looped Epitrochoid, and point C- traces a five-looped Epitrochoid.
Points C1 and C2 trace curves called Hypotrochoids (see Chapter 13).

It’s not a coincidence that Epicycloids and Hypocycloids appear to satisty
requirements for gears. All Cycloidal curves were first conceived by Roemer (circa
1674) while studying the best form for gear teeth. However, enough of these "gear"
constructions; let’s look at a couple of more pure Deltoid constructions!

10.5.13 Steiner’s Deltoid

Here is another Deltoid generation construction where the Deltoid is formed from
an envelope of straight lines. Through each point P on the circumcircle of AABC,
construct a line parallel to the line obtained by reflecting line AP in the bisector of
/BAC. (You get the same direction if line BP is reflected in the bisector of ZABC, and
likewise for line CP reflected in the bisector of Z/ACB.) If you do this, you will find that
the envelope of all such lines forms a Deltoid, as can be seen from the construction found
in Table 10-13. This construction is sometimes called Steiner’s Deltoid. Jakob Steiner
(1796 — 1863) was a Swiss mathematician who extensively investigated, among many
other things, the Deltoid curve.

Table 10-13: Steiner's Deltoid

. Draw circle AB centered at A and passing through point B

7. Draw line CD

. Let C, D, E, and F be random points on circle AB

8. Let line L; be the reflection of line CD across the bisector

. Draw line segment DE

9. Construct line L, parallel to L, through point C

. Draw line segment EF

10. Trace line L, and change its color

. Draw line segment DF

11. Animate point C around circle AB

OO W|INF-

. Construct the bisector of Z/EDF
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10.5.14 The Deltoid as a Hypocycloid — Again

Well, we started out this dynamic geometry section with a Deltoid construction
based on the definition of a Hypocycloid, and we will finish this section with the same
concept. As addressed in section 10.5.1, when the radius of the moving circle is one-
third the radius of the fixed circle, a point on the circumference of the moving circle
traces the Deltoid. Well, the Double Generation theorem of Daniel Bernoulli tells us that
a Deltoid is also traced if the radius of the moving circle is two-thirds that of the fixed
circle. Details of a construction based on this fact follow in Table 10-14.

Table 10-14: The Deltoid as a Hypocycloid — Again

1. Draw circle AB with center at A and passing through point B 6. Let C; be the image when C; is rotated about A' by Z/CAB
2. Let C be a random point on the circumference of circle AB 7. Let A" be the image when A is translated by vector A' — Cj
3. Let A' be the image when A is dilated about C by %5 8. Draw circle A"Cs with center at A" and passing through Cs
4. Let C, be the image when C is rotated about A' by ZCAB 9. Trace point C; and change its color

5. Let C, be the image when C, is rotated about A' by ZCAB 10. Animate point C around circle AB

Note that this is really the same as the construction of section 10.5.1 except the
smaller circle (the one with a radius of one-third that of the fixed circle) is not drawn and
a two-thirds radius circle is drawn through the same tracing point (point C3) as before.
The center of that larger circle is located by translating point A in step 7. But,
nevertheless, when the animation is run, one can see that a point on a two-thirds radius
rolling circle does indeed trace the Deltoid.
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Figure 10-8: A Three-Dimensional Version of the Deltoid

Here, the Deltoid is rendered as a solid three-dimensional object using a technique
called the "prism" methodology. It has been given a glossy, cadet-blue finish that reflects
the infinite, hexagonally checkered plane on the two lateral sides visible in the picture. A
light source is placed so as to cast the Deltoid’s shadow below and onto the plane.
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Chapter 11 — The Astroid

Figure 11-1: The Solid of Revolution Generated from the Astroid

The Astroid has been rotated about the x-axis to obtain the solid of revolution seen
above. The resulting object has been given a light metallic-blue finish and placed over
an infinite plain rendered to simulate water. The water surface has been rippled so that
it appears as though the object has just emerged from the depths. The sky meeting the
water at the horizon has been given a stormy-purplish color which is reflected in the
water, giving it a purple color. A light source has been placed in the scene in order to
partially reflect the object in the water and can be seen glaring off the water in the lower
right.
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11.1 Introduction to the Astroid

Chapter 10 introduced the concept of a Hypocycloid as the trace of a fixed point
on the circumference of a circle rolling around the inside of the circumference of a
second, stationary circle. It further stated that when the radius of the rolling circle was %4
of the radius of the stationary circle, the curve traced by the fixed point is called a
Deltoid. It turns out that if the radius of the rolling circle is % the radius of the stationary
circle, the curve so traced is called an Astroid. Astroid (also sometimes referred to as the
tetracuspid) of course means star-shaped.

11.2 Equations and Graph of the Astroid

To find the parametric equations for the Astroid, let a/4 be the radius of the
rolling circle and a that of the fixed circle. Now, using an analogous argument to that in
Chapter 10, section 10.2, where we derived the parametric equations for the Deltoid, we
find that the parametric equations for the Astroid are:

(x,y)=2(3cost +cos3t,3sint—sin3t), —z<t<sz Equation 11-1

However, a more compact form for the parametric representation can be obtained by
writing these equations as

X =3 cost + 2 cos(2t +1)
y =3sint—2sin(2t +1)

and then expanding the cos (2t +t) and sin (2t + t) to obtain,

x =2 cost +2(cos 2t cost —sin 2tsint)
y =3sint —2(sin 2t cost +sint cos 2t )

Of course, these last expressions can be written as

X =32 cost + 2 cost(cos? t - sin t)— sint(2sint cost)
y = &sint -2 cost(2sintcost)— 2sint(cos’ t —sin’t)

By multiplying out and collecting like terms, we finally arrive at
X =acos’t
3 Equation 11-2
y=asin’t

Equation 11-2 is a form from which it is quite easy to derive the Cartesian equation of the
Astroid, that is,

X7 + y% —a” Equation 11-3

The pedal, Whewell, and Ceséro equations for the Astroid are, respectively
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r’=a’-3p®> Equation 11-4
s=acos2¢ Equation 11-5
and p° +4s=4a* Equation 11-6

Finally, the equation of the Astroid’s tangent at the point t = ¢ is

y+tanq-x=asinq Equation 11-7

The graph of the Astroid is seen in Figure 11-2.

A

Figure 11-2: Graph of the Astroid

11.3 Analytical and Physical Properties of the Astroid

Based on the Astroid’s parametric representation found in Equation 11-2, that is,
x = acos’t and y = a sin’, the following subsections contain an analysis of the Astroid.

11.3.1 Derivatives of the Astroid
» x=-3acos’t-sint

> % =-3acost(l-3sin’t)
> y=3asin’t-cost

> §=3asint(3cos’t—1)
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> y' =—tant

4
>y = sec.t
3asint

11.3.2 Metric Properties of the Astroid

The Astroid’s length may be calculated using the parametric representation and
the formula

ds =+/(dx)* +(dy)* .

Hence, dx = -3acos’t sin t-dt and dy = 3asin’t-cos t-dt. Squaring these two expressions
and adding gives us

(dx)* +(dy)* =9a®sin?tcos? t-dt.
And, obviously,

ds = 3asintcost-dt.

Therefore, the total length of the Asteroid is

2a

% %
S :4_[3asintcostdt :12ajsint-d(sint):l—sin2t ’: = 6a.
2
0 0

The area of the Astroid can be calculated by considering a small incremental
rectangle, whose area is dA = y-dx. Since, from the Cartesian equation, y = (8" - x”*) ¥2,
integrating between x = 0 and x = a, gives us the area of the Astroid in the first quadrant.

By symmetry, we can then conclude that the total area of the Astroid is
A=4I(a% —x%ydx.
0

This integral can be evaluated by making the substitution x = asin®0. Under this
substitution, the integral for the area becomes

A A A
A=12a2_[sin2 6 -cos* 9~d9:12az'[cos4 6?-d0—12a2_fcos6 6-da.
0 0 0

The first integral has a value of 3/16 and the second integral has a value of 5m/32.
Therefore, the total value of the area enclosed by the Astroid is

A—12a2(3—ﬂ—5—7[j _ 3w’
16 32) 8
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The volume of the solid of revolution that is formed when the Astroid is rotated
about the x-axis can be calculated by considering the incremental volume of a circular
disk. The volume of this disk is simply its area times its thickness or dV = nydx. Of
course, y is the ordinate of the curve and because of symmetry considerations, we have as
the total volume

V = 272']1(3.% —x%)adx.
0

This integral can be evaluated by making the substitution x = asin®0. Under this
substitution, the integral is transformed to

A 7 A
V= 67za3jcos7 @sin’6-do = 67@{[0057 49-d6?—J‘cos9 6-do|.
0 0 0

By writing the argument of the first integral as (1 — sin’0)*-cos 6-d6 and then expanding
the cubed expression, one can obtain a series of integrals that are all powers of the sin
function multiplied by cos 6-d6. These easily integrate and one obtains as a final value of
this first integral 16/35. By similar reasoning and manipulation, one obtains as a final
value of the second integral 128/315. Hence, the total volume under consideration is

16 128} _32r-a’

V= 67za3{— -
35 315 105

The surface area of the solid of revolution that is formed when the Astroid is
rotated about the x-axis can easily be calculated using the formula

SzZﬂiy-dS,

where y is the ordinate of the curve and s is the arc length over the portion of the desired
surface area. In section 11.3.2, we have already shown that the incremental arc length for
the Astroid is 3asin t-cos t-dt. Due to symmetry considerations, we can integrate between
0 and 7/2 and simply multiply the result by 2. Hence, the total surface area of the Astroid
is

% % 12/’
S = 47rjasin3 t-3asintcostdt =127a° Isin“tcostdt =
0 0
If p represents the distance from the origin to the tangent of the Astroid, then

p =—asintcost.

If r denotes the distance from the origin to the Astroid, then
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r=+sin*t—sin®tcos?t+cost .

11.3.3 Curvature of the Astroid
If p is the radius of curvature of the Asteroid, then

© =3asintcost.
If (o, p) are the coordinates of the center of curvature of the Astroid, then

o= 3—acost —%coth and p :S?asint +%sin3t :

11.3.4 Angles for the Astroid

If 6 is the radial angle, then
tan@d =tan’t.

If v is the tangential-radial angle, then

tanw — —sin2t
V' 2cosat
If ¢ is the tangential angle, then
tang = —tant

11.4 Geometric Properties of the Astroid
> Intercepts: (a, 0); (-a, 0); (0, a); (0, -a).

> Extrema: Same as intercepts.
> Extent: Same as intercepts.
>

Symmetries: The Astroid is symmetric about the x-axis, the y-axis, and
the origin.

» Cusps: Same as intercepts.

11.5 Dynamic Geometry of the Astroid
The following subsections contain constructions that can all be used to generate
and demonstrate interesting properties of the Astroid.
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11.5.1 The Astroid as a Hypocycloid

In section 11.1, we introduced the Astroid as a Hypocycloid in which the radius of
the moving circle is one-fourth the radius of the stationary circle. Table 11-1 delineates a

construction based on this concept.

Table 11-1: The Astroid as a Hypocycloid

. Draw circle AB with center at A and passing through point B

6. Let B, be the image when B, is rotated about A' by Z/CAB

. Let C be a random point on the circumference of circle AB

7. Let B; be the image when B; is rotated about A' by Z/CAB

. Dilate circle AB about point C by a factor of ¥4

8. Let B4 be the image when B; is rotated about A' by Z/CAB

. Let A" be the image when A is dilated about C by ¥

glbhlfw|N| -

9. Trace point B, and change its color

. Let B, be the image when B is dilated about C by ¥

10. Animate point C around circle AB

For fun, draw line segment AB, as a dashed line segment, trace it, and color it.
When the animation is run, the trace of this line segment will fill in the area enclosed by
the Astroid in an interesting pattern.

11.5.2 Concurrent Tangents of the Astroid

Given a tangent to the Astroid, it is always possible to find two additional
tangents that are concurrent with each other and with the given tangent. The construction
of Table 11-2 illustrates this property.

Table 11-2: Concurrent Tangents to the Astroid

. Draw circle AB with center at A and passing through point B 13. Let Ce be the image when Cs is rotated about A, by ZCAB

. Let A; be the image when A is dilated about B by %2 14. Let C, be the image when Cs is rotated about point A by 120°

. Draw circle AA; with center at A and passing through A; 15. Let Cg be the image when Cs is rotated about A; by —120°
Let C be a random point on the circumference of circle AB 16. Let Cq be the image when Cg is rotated about point A by 120°

. Let A; be the image when A is dilated about C by ¥4 17. Let Cyo be the image when C; is rotated about A, by —120°

. Let A; be the image when A; is rotated about point A by 120° | 18. Draw line segments CCs, C1Cg, and C3Cio

. Let A, be the image when A; is rotated about point A by 120° | 19. Construct P; L to line segment CCs through point Cs

. Let C, be the image when C is rotated about point A by 120° 20. Construct P, L to line segment C,Cg through point Cg

©o|o|~|o|u|s|w|d| e

. Let C, be the image when C is rotated about A, by Z/CAB 21. Construct P; L to line segment C3Cy through point Cqo

10. Let C; be the image when C; is rotated about point A by 120° | 22. Construct the locus of Cg while point C traverses circle AB

11. Let C4 be the image when C; is rotated about A, by ZCAB 23. Animate point C around circle AB

12. Let Cs be the image when C, is rotated about A, by Z/CAB

Note that circle AA; has nothing whatsoever to do with the actual construction.
However, observe how the point of concurrency (the common intersection point of the
tangents) is confined to the circumference of this circle. Three other circles can be drawn
which also have nothing to do with the actual construction, but make the final
construction look a little more like a finished product. They are circles A;C1, A,C, and
A4Cs;. Note how these circles remain tangent to concentric circles AB and AA;. Finally,
if one creates a random point on line segment CCg (or C3Cy or C;Cg) and traces this
random point, it will trace a four-sided figure that approaches an Astroid as the point is
made to move closer and closer to the point Cg (or Cy9 Or Cg) and, of course, degenerates
into a circle as the point is made to move closer to the other end of the line segment. We
will learn, a couple of chapters from now, that this four-sided figure is a Hypotrochoid.

11.5.3 The Astroid as an Envelope of Line Segments

Here is a very beautiful and interesting construction for the Astroid (see Table 11-
3). Note that in this construction, circle AB, the animation circle, becomes inscribed in
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the Astroid generated by the traced line segment, whereas in the Hypocycloid (section
11.5.1) construction, the animation circle circumscribes the Astroid.

Table 11-3: The Astroid as an Envelope of Line Segments

1. Draw circle AB with center at A and passing through point B 7. Let D be the midpoint of line segment CB;

2. Let C be a random point on the circumference of circle AB 8. Let C' be the image when C is translated by vector D — C
3. Let B, be the image when B is rotated about A by Z/CAB 9. Draw line segment B;C'

4. Let B, be the image when B; is rotated about A by Z/CAB 10. Trace line segment BsC' and change its color

5. Let B be the image when B; is rotated about A by Z/CAB 11. Animate point C around circle AB

6. Draw line segment CB;

Trace point D for an interesting curve not yet encountered. Figure 11-3 displays a
snapshot of this construction.

Figure 11-3: The Astroid as an Envelope of Line Segments
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11.5.4 A Revolving Astroid and an Equilateral Triangle
Table 11-4: A Revolving Astroid and Equilateral Triangle

1. Draw horizontal line AB 17. Let G; be the image when G is dilated about point D by Y.
2. Let C and D be two random points on line AB 18. Let G, be the image when G; is dilated about point F; by ¥,
3. Draw circle DC with center at D and passing through point C 19. Draw circle G;G with center at G, and passing through G
4. Let E be a random point on the circumference of circle DC 20. Draw line segments D'H and HF

5. Rotate line AB about point D by —120° to obtain line L, 21. Construct the interior of polygon D'HF and change its color
6. Rotate line AB about point D by +120° to obtain line L, 22. Let | be a random point on the circumference of circle G;G
7. Construct the parallel to line AB through point E 23. Draw circle G;F; with center at G, and passing through F;
8. Let point F be the intersection of the parallel line and line L, 24. Let G; be the image when G; is rotated about G; by ZF;G;l
9. Construct P, L to line L, through point F 25. Draw circle Gsl with center at G; and passing through point |
10. Let D' be the image when D is translated by vector E — F 26. Let F, be the image when F is rotated about G; by ZF:G;l
11. Construct P, L to line AB through point D' 27. Let F5 be the image when F; is rotated about G; by ZIG;F;
12. Draw line segment FD' 28. Let F4 be the image when F; is rotated about G; by ZIG;F,
13. Let point G be the intersection of perpendiculars P, and P, 29. Let Fs be the image when F, is rotated about G; by ZIG;F;
14. Construct Ps L to line L, through point G 30. Let Fg be the image when Fs is rotated about G; by ZI1G;F,
15. Let point H be the intersection of line L; and perpendicular P; | 31. Construct the locus of Fs while point | traverses circle G;G
16. Let F, be the image when F is dilated about G by 4/3 32. Animate point E around circle DC

Table 11-4 presents an interesting construction of an Astroid that appears to
revolve about its center along with an equilateral triangle whose vertices are confined to
the circumference of the Astroid. Although the Astroid appears to be rotating, note that
point H performs simple harmonic motion along the first rotated line (L;), point F
executes simple harmonic motion along the second rotated line (L), and point D' does the
same thing along line AB.

11.5.5 The Trammel of Archimedes

The Astroid has the following interesting property: If one defines the axes of an
Astroid to be two mutually perpendicular lines that pass through the cusps of the Astroid,
then the length of any tangent cut by these axes is constant. Because this length is
constant, no matter which tangent is selected (for a given Astroid), one can construct a
mechanical device made up of a fixed bar with ends sliding on two perpendicular tracks.
The envelope of the bar will then generate the Astroid. Such a device is called the
Trammel of Archimedes. A GSP construction for this device is shown in Table 11-5.

Table 11-5: The Trammel of Archimedes

1. Draw horizontal line AB 7. Let point D be the intersection of perpendiculars P; and P3
2. Draw circle AB with center at A and passing through point B 8. Let E be the intersection of line AB and perpendicular P,
3. Construct P; L to line AB through point A 9. Draw line segment DE

4. Let C be a random point on the circumference of circle AB 10. Trace line segment DE and change its color

5. Construct P, L to line AB through point C 11. Animate point C around circle AB

6. Construct P; L to P, through point C

Of course, line segment DE is the moving bar whose end points travel on the
mutually perpendicular tracks, AB and DA. An interesting, alternate construction for the
Trammel of Archimedes is also included here as Table 11-6.
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Table 11-6: An Alternate Trammel of Archimedes Construction

1. Draw horizontal line segment AB 8. Let F and G be the intersections of circle DC and P,

2. Let C be any random point not on line AB 9. Draw circle EE' with center at E and passing through point E'
3. Let D be the midpoint of line segment AB 10. Let H and | be the two intersections of circle EE' and P,

4. Let E be a random point on line segment AB 11. Draw the two line segments EH and EI

5. Draw circle DC with center at D and passing through point C 12. Trace line segments EH and El and change their color

6. Construct P, L to line segment AB through point D 13. Animate point E along line segment AB

7. Let E' be the image when E is translated by vector D — B

11.5.6 Three Deltoids Inside an Astroid
Here is an interesting configuration of the Deltoid and the Astroid.

Table 11-7: Three Deltoids and an Astroid

1. Draw horizontal line AB 15. Construct the locus of H while point D traverses circle AC
2. Let C be a random point on line AB 16. Let | be a random point on the circumference of circle GF
3. Construct P, L to line AB through point A 17. Construct Ps L to line segment EF through point |

4. Draw circle AC with center at A and passing through point C 18. Let I' be the image when | is rotated about point G by 120°
5. Let D be a random point on the circumference of circle AC 19. Let point J be the intersection of line segment EF and Ps
6. Construct P, L to line AB through point D 20. Construct Ps L to line segment EF through point I'

7. Construct P; L to P, through point D 21. Let I" be the image when I' is rotated about point G by 120°
8. Let E be the intersection of line AB and perpendicular P, 22. Construct the locus of J while point D traverses circle AC
9. Let point F be the intersection of perpendiculars P, and Ps 23. Let point K be the intersection of line segment EF and Pg
10. Draw line segment EF 24. Construct P; L to line segment EF through point I"

11. Construct P, L to line segment EF through point D 25. Construct the locus of K while point D traverses circle AC
12. Let G be the midpoint of line segment EF 26. Let point L be the intersection of line segment EF and P;
13. Let point H be the intersection of line segment EF and P, 27. Construct the locus of L while point D traverses circle AC
14. Draw circle GF with center at G and passing through point F 28. Animate point | around circle GF

11.5.7 Two Astroids for the Price of One

The evolute of all Epicycloids and Hypocycloids is another curve of the same
type. In other words, the evolute of the Astroid is another Astroid. Therefore, as we
have learned previously, the trace of the center of curvature of an Astroid should be its
evolute, another Astroid. Similarly, the evolute can be drawn as the envelope of the
Astroid’s normals. These two ideas are incorporated into the construction that is listed
below in Table 11-8 and portrayed in Figure 11-4.

Table 11-8: Two Astroids for the Price of One

1. Draw circle AB with center at A and passing through point B 10. Let D be the unlabeled intersection of line A,C, and circle A,C
2. Let C be a random point on the circumference of circle AB 11. Draw line AD

3. Let A; be the image when point A is dilated about C by ¥4 12. Draw line CC,4

4. Draw circle A,C with center at A; and passing through C 13. Let point E be the intersection of line CC, and line AD

5. Let C, be the image when C is rotated about A; hy ZCAB 14. Draw circle EC, with center at E and passing through C,

6. Let C, be the image when C; is rotated about A; by ZCAB 15. Draw line segment EC,

7. Let C; be the image when C, is rotated about A, by Z/CAB 16. Trace line segment EC,4 and change its color

8. Let C,4 be the image when C; is rotated about A, by ZCAB 17. Animate point C around circle AB

9. Draw line A,C4

In this construction, the trace of point C, will produce the Astroid for which we
then construct its evolute. One can see this as the envelope of the C4-end of line segment
EC4, which produces the inner Astroid as seen in Figure 11-4. Point E is, of course, the
center of curvature for this Astroid, circle ECy is its osculating circle, and line CCy is its
normal. Note that the evolute (the outer Astroid) is shifted 45° relative to the inner
Astroid. Note also the relative size of the two Astroids. The evolute’s area is twice that
of the original Astroid.
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Figure 11-4: Two Astroids for the Price of One

11.5.8 An Astroid, a Deltoid, and a Common Tangent

The construction below illustrates a coupling between an Astroid and a Deltoid.
Additionally, a common tangent to both curves is included (see Table 11-9).

Table 11-9: An Astroid, a Deltoid, and a Common Tangent

1. Draw circle AB with center at A and passing through point B 14. Let A be the image when A is rotated about A, by Z/BAE
2. Let A; be the image when A is dilated about point B by 4 15. Let C; be the image when C; is rotated about A; by /DAB
3. Let A, be the image when point A is dilated about B by 3 16. Let C,4 be the image when C; is rotated about A, by ZEA,B
4. Draw circle A;B with center at A; and passing through B 17. Let Cs be the image when C; is rotated about A; by Z/DAB
5. Draw circle A,B with center at A, and passing through B 18. Let C; be the image when C, is rotated about A, by ZEA,B
6. Let C be a random point on the circumference of circle AB 19. Let C, be the image when Cs is rotated about As by /DA:B
7. Let D be a random point on the circumference of circle A;B 20. Let Cg be the image when Cg is rotated about A, by ZEA,B
8. Let E be a random point on the circumference of circle A,B 21. Let Cq be the image when C; is rotated about A; by /DA,B
9. Draw line segment CB 22. Draw circle A4E with center at A, and passing through E

10. Construct P; L to line segment CB through point C 23. Draw circle AsD with center at A; and passing through D

11. Let A; be the image when A is rotated about A; by Z/BA,D 24. Construct the locus of Cg while point E traverses circle A;B

12. Let C, be the image when C is rotated about A; by Z/BA;D 25. Construct the locus of point Cy while D traverses circle A;B

13. Let C; be the image when C is rotated about A; by ZBAE 26. Animate point C around circle AB

With this construction, one can also simultaneously animate point C around circle
AB, point D around circle A;B, and point E around circle A,B. Points C; through Cqy
then execute some interesting curves which can be seen by tracing them, although it is
best to trace only one at a time, otherwise they overwrite one another and are difficult to
distinguish.
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11.5.9 The Astroid as an Envelope of Ellipses

The Astroid can also be generated as an envelope of co-axial ellipses wherein the
sum of the major and minor axes is constant. A construction that gives verification of
this property can be created with GSP as shown below in Table 11-10.

Table 11-10: The Astroid as an Envelope of Ellipses

. Draw horizontal line AB

10. Draw line segment EF

. Construct P, L to line AB through point A

11. Let G be a random point on line segment EF

Let C be a random point on line AB

12. Construct P4 L to line segment EF through point D

. Draw circle AC with center at A and passing through point C

13. Construct the locus of G while point D traverses circle AC

Let D be a random point on the circumference of circle AC

14. Let point H be the intersection of line segment EF and P,

. Construct P, L to line AB through point D

15. Construct the locus of H while point D traverses circle AC

. Construct P; to L P, through point D

16. Trace the locus and change its color

. Let point E be the intersection pf perpendiculars P, and Ps

17. Animate point G along line segment EF

. Let point F be the intersection of line AB and P,

11.5.10 The Astroid and a Four-Cusped Epicycloid

Here we show an interconnection between the Astroid (i.e., the four-cusped
Hypocycloid) and the four-cusped Epicycloid. Table 11-11 contains this construction,
while Figure 11-5 presents a snapshot of the animation.

Table 11-11: The Astroid and a Four-Cusped Epicycloid

. Draw circle AB with center at point A and passing through B

8. Let C, be the image when C, is rotated about A' by ZCAB

. Let C be a random point on the circumference of circle AB

9. Let C; be the image when C; is rotated about A' by Z/CAB

. Let A" be the image when point A is dilated about C by ¥4

10. Let C,4 be the image when C; is rotated about A' by ZCAB

. Draw circle A'C with center at A" and passing through point C

11. Let Cs be the image when C, is reflected in perpendicular P,

. Draw line segment AC

12. Draw circle CCs with center at C and passing through Cs

. Construct P; L to line segment AC through point C

13. Trace circle CCs and change its color

~N(o|g|~lw| N

. Let C, be the image when C is rotated about A' by ZCAB

14. Animate point C around circle AB

Figure 11-5: An Astroid Enveloped by a Four-Cusped Epicycloid
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11.5.11 The Astroid as an Envelope of Lines

In section 11.5.3 we have a construction of the Astroid as an envelope of line
segments. Table 11-12 presents an alternate construction that uses lines, not line
segments.

Table 11-12: The Astroid as an Envelope of Lines

1. Draw circle AB with center at A and passing through point B 9. Construct P; L to P, through point A

2. Draw line AB 10. Let point C" be the image when point C' is reflected across P
3. Let C be a random point on the circumference of circle AB 11. Let E and F be two random points on perpendicular Py

4. Construct L P, to line AB through point C 12. Let point E' be the image when point E is reflected across P,
5. Let point D be on circle AB diametrically opposed to point B 13. Let point F' be the image when point F is reflected across P,
6. Draw line CD 14. Draw line E'F

7. Let C' be the image when point C is reflected across line AB 15. Trace line E'F' and change its color

8. Construct P, L to line CD through point C' 16. Animate point C around circle AB

11.5.12 The Astroid as a Hypocycloid — Revisited

We learned in section 11.5.1 that the Astroid is generated as the trace of a point
on the circumference of a circle of radius a/4 rolling around the inside of a stationary
circle of radius a. However, the Astroid can also be generated if the radius of the rolling
circle is 3a/4, as can be seen in Table 11-13 (i.e., the Double Generation theorem of
Bernoulli strikes again).

Table 11-13: The Astroid as a Hypocycloid — Revisited

1. Draw circle AB with center at A and passing through point B 7. Let C,4 be the image when C; is rotated about A; by Z/CAB
2. Let C be a random point on the circumference of circle AB 8. Let A, be the image when A is translated by vector A; — C4
3. Let point A; be the image when A is dilated about C by ¥4 9. Draw circle A,C, with center at A, and passing through C4
4. Let C, be the image when C is rotated about A; by Z/CAB 10. Trace point C4 and change its color

5. Let C; be the image when C, is rotated about A, by Z/CAB 11. Animate point C around circle AB

6. Let C; be the image when C, is rotated about A; by ZCAB

It may not be obvious that circle A,C,4 has a radius that is three fourths of the
stationary circle (circle AB). However, with GSP this is very easy to check out. Simply
measure the two radii of the respective circles and then form the ratio of the radius of
circle A,C, to that of the radius of circle AB. One will find that the result is 0.75.

11.5.13 A Compass-Only Construction for the Astroid

Here is another spectacular compass-only (GSP version thereof) construction
from which it is relatively easy to also construct the Astroid’s osculating circle (also
compass-only). Refer to Table 11-14.
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Table 11-14: A Compass-Only Astroid

. Draw circle AB with center at A and passing through point B

14. Draw circle FC with center at F and passing through point C

. Let C be a random point on the circumference of circle AB

15. Draw circle CF with center at C and passing through point F

. Draw line segment AB

16. Let G and H be the two intersections of circles CF and FC

. Let C' be the image as C is reflected across line segment AB

17. Draw circle GH with center at G and passing through point H

. Draw circle BC with center at B and passing through point C

18. Let | be the unlabeled intersection of circle GH and circle FC

. Draw circle C'C with center at C' and passing through point C

19. Draw circle IC with center at | and passing through point C

. Draw line segment AC'

20. Let J and K be the two intersections of circles IC and CC"

O|N[o|Ug| (W[N] -

. Let C" be the image as C is reflected across line segment AC'

21. Draw circle JC with center at J and passing through point C

9. Draw circle CC" with center at C and passing through C"

22. Draw circle KC with center at K and passing through point C

10. Draw circle C"C with center at C" and passing through C

23. Let point L be the unlabeled intersection of circles KC and JC

11. Let D and E be the two intersections of circles CC" and C"C

24. Trace point L and change its color

12. Draw circle ED with center at E and passing through point D

25. Animate point C around circle AB

13. Let F be the unlabeled intersection of circles ED and C"C

For the Astroid’s osculating circle, change step 24 to "Construct the locus of point
L as point C traverses circle AB," and add the following steps.

Table 11-14 (Continued): A Compass-Only Astroid

26. Draw circle CL with center at C and passing through point L

31. Draw circle OC with center at O and passing through point C

27. Draw circle LC with center at L and passing through point C

32. Let P and Q be the two intersections of circles OC and CL

28. Let M and N be the two intersections of circles CL and LC

33. Draw circle PQ with center at P and passing through point Q

29. Draw circle MN with center at M and passing through N

34. Let R be the unlabeled intersection of circles PQ and OC

30. Let O be the unlabeled intersection of circles MN and CL

35. Draw circle RL with center at R and passing through point L

Now make circle RL, which is the osculating circle, thick and of a different color

and rerun the animation. Wow!

11.5.14 The Osculating Circle of the Astroid

In the previous subsection (A Compass-Only Astroid), we have added the
compass-only steps to produce the Astroid’s osculating circle. What follows in Table 11-
15 is an alternate construction for the Astroid’s osculating circle. It is not a compass-only
construction as the previous construction was. Why do we include it since we already
have a construction for the Astroid’s osculating circle? Because it is an interesting
construction, although rather complex. Further, we use a construction for the Astroid
itself that has not been used up to this point. In addition, we also construct the Astroid’s
tangent line along the way. So this construction embodies three goodies: the Astroid, the
tangent line, and the osculating circle all wrapped up in one nice, neat package. A good

way to end this chapter!
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Table 11-15: The Astroid, Its Tangent, and Its Osculating Circle

1. Draw horizontal line AB 28. Draw line AK

2. Draw circle AB centered at A and passing through point B 29. Construct Py, L to line AK through point H

3. Let C be a random point on the circumference of circle AB 30. Make P, thick and change its color

4. Draw line AC 31. Let point K' be the image when K is rotated about A by 90°
5. Construct P; 1 to line AB through point A 32. Let point I, be the image when point | is dilated about A by 6
6. Construct P, L to line AB through point C 33. Let point L be the intersection of line AB with P,

7. Let D be the intersection of line AB and perpendicular P, 34. Let point L' be the image when L is dilated about A by 3

8. Construct P; L to line AC through point D 35. Draw line segment AL'

9. Let E be the intersection of line AC and perpendicular P; 36. Let M be the midpoint of line segment AL’

10. Construct P4 L to line AB through point E 37. Let M' be the image when M is translated by vector I, — M
11. Construct Ps L to P4 through point C 38. Let A' be the image when A is translated by vector M' — A
12. Let point F be the intersection of perpendiculars P, and Ps 39. Construct P13 L to line AB through point A'

13. Construct Pg L to line AC through point F 40. Let J, be the image when J is dilated about A by 6

14. Let point G be the intersection of line AC and Ps 41. Let point N be the intersection of perpendiculars P; and P,
15. Construct P; L to P, through point G 42. Let point N' be the image when N is dilated about A by 3

16.

Let point H be the intersection of perpendiculars P, and P;

43.

Let J; be the image when J; is translated by vector N'— J;

17.

Construct the locus of point H as point C traverses circle AB

44.

Construct P4 L to P, through point Jg

18.

Make the locus thick and change its color

45.

Let point O be the intersection of perpendiculars P;5 and P14

19. Construct Pg L to line AB through point G 46. Construct Pys L to line AK through point O

20. Let point | be the intersection of line AB and Pg 47. Draw line segment KK'

21. Let point I; be the image when | is dilated about point A by 3 | 48. Construct Py L to line segment KK’ through point K'

22. Construct Pg L to line AB through point Iy 49. Let point P be the intersection of line AK and Ps

23. Construct Py, L to Py through point E 50. Let H' be the image when H is translated by vector P — A
24. Let point J be the intersection of perpendiculars P, and P;o 51. Draw circle H'H centered at H' and passing through point H

25.

Let point J; be the image when J is dilated about point A by 3

52.

Make circle H'H thick and change its color

26.

Construct Py, L to P, through point J;

53.

Animate point C around circle AB

217.

Let point K be the intersection of perpendiculars Py and Py,
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Figure 11-6: A Three-Dimensional Version of the Astroid

The Astroid is extruded into the third dimension and placed in a watery setting with a
newly rising sun. Light sources are placed not only so as to cast the object’s shadow
onto the water, but also to reflect the object in the water.
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Chapter 12 — The Hypocycloid

Figure 12-1: A Six-Cusped Hypocycloid in Three Dimensions

The cross-section of the object in the above figure is a six-cusped Hypocycloid. It is
floating over a blue and gold checkered plane. The extruded object has been given a
shiny light-purple finish. Light sources are placed so as to partially shadow the plane
and to reflect off the interior sides of the extruded figure, thereby creating the dark and
bright spots. The plane meets a bright-blue sky at the horizon.
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12.1 Introduction

Chapter 10 briefly alluded to the concept of the Hypocycloid, which was defined
to be the trace of a point on the circumference of a circle that is rolling (without slipping)
around the inside of a second, fixed circle. Further, it stated that when the ratio of the
radii of the fixed circle to the rolling circle is 3 to 1, the resulting traced curve is called a
Deltoid. Then, Chapter 11 stated that when the ratio is 4 to 1, the resulting trace is called
an Astroid. We now take up the Hypocycloid in general.

Although Cycloidal curves were first conceived by Roemer in 1674 while he was
studying the best form for gear teeth, both Galileo and Mersenne had already discovered
the ordinary Cycloid 75 years earlier, in 1599. As already mentioned, the beautiful
Double Generation theorem of these curves was first noticed by Daniel Bernoulli in 1725.
Astronomers find forms of the Cycloidal curves in various coronas. They also occur as
Caustics. Rectification was first given by Newton in his Principia.

12.2 Equations and Graph of the Hypocycloid

Just as we derived the equations for the Deltoid in Chapter 10, if we let the radius
of the fixed circle be a and the radius of the rolling circle be b, we find that the
parametric equations for the general Hypocycloid are

(x,y)=[(a—b)cost +bcos(22t),(a—b)sint —bsin(32t)] -z <t<z Equation12-1

As a slight digression, consider the special case when the fixed circle has twice
the radius of the rolling one, a/2 = b and we find from Equation 12-1 that x = a-cos t and
y = 0 and the Hypocycloid degenerates into the diameter of the fixed circle, described
back and forth. The interesting feature of this digression is that it provides a mechanical
solution to the problem of drawing a straight line by using purely circular motions.
Enough digression! Back to the Hypocycloid!

If the pedal point is situated at the center of the hypocycloid, then the pedal
equation is

(r2 — a2) Equation 12-2

The Whewell equation is
s=asinbp, b>1 Equation 12-3

An n-cusped, non-self-intersecting Hypocycloid has a/b =n. As we have already
alluded to, a two-cusped Hypocycloid is a line segment, a three-cusped Hypocycloid is
called a Deltoid or Tricuspoid, and a four-cusped Hypocycloid is called an Astroid. If
a/b is rational, the curve closes on itself and has b cusps. If a/b is irrational, the curve
never closes and fills the entire interior of the fixed circle. Figure 12-2 portrays the graph
of four different hypocycloids, namely three-, four-, five-, and six-cusped Hypocycloids
in red, green, blue, and violet, respectively. Figures 12-3 through 12-6 depict a variety of
different Hypocycloids for various selected values of the two radii of the associated
circles (the fixed circle with radius a and the rolling circle with radius b).
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The equation of the tangent line at the pointt =q is

y-(sin22q+sing)=(cos&2q—cosq)-x+2(a—2b)sin?23  Equation 12-4

3-cusped Hypocycloid y 4-cusped Hypocycloid
(a,b)=(3, 1) (a,b) = (4, 1)

v

6-cusped Hypocycloid i
(a,b) = (6, 1) 5-cusped Hypocycloid
(a,b)=(5, 1)

x=(a—b)ost +bcos(“T_bt)
y=(a—b)sint —bsin(%;21)

v

Figure 12-2: Graph of Four Different Hypocycloids

x =3cost + 2cos %t
y =3sint —2sin 31

v

Figure 12-3: Hypocycloid witha=5and b =2
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x=3cost + 4cos%t

— 3ai 3
Y =3sinf —4sin 3 \

T

X
Figure 12-4: Hypocycloid witha=7and b =4
x =3cos? + 5cos %t
D S-S |
Y =3sinf —5sin !
€ X >

Figure 12-5: Hypocycloid witha=8and b =5
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x = cos’+12cos é
€

y =sinf —12sin 5

v

A

v

Figure 12-6: Hypocycloid with a =13 and b = 12

12.3 Analytical and Physical Properties of the Hypocycloid

Based on the Hypocycloid’s parametric representation found in Equation 12-1,
that is, x =(a—b)cost+bcosztand y = (a—b)sint —bsin 22t , the following
subsections contain an analysis of the general Hypocycloid.

12.3.1 Derivatives of the Hypocycloid
> x=—(a—b)sint+sinabt).
o a-b _
> K= —T[bcost +(a—b)cos 2:21].

> y=(a—b)cost—cosabt).

> =—aT_b[bsint —(a—b)sinz2t].

_ Cos >t —cost

> Y'—.H)—.-
sin2bt +sint

, 2(2b—a)sin® &
> y'= — —
b(b—a)sin &bt +sint)
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12.3.2 Metric Properties of the Hypocycloid
To calculate the length of the Hypocycloid, we first calculate dx/dt and dy/dt, i.e.,

%:—a—b sint+sin&2t| and ﬂ: a—b)cost —cos &=Lt |.
dt b dt b
Then,
2
(%) =(a—b)’[sin®t+2sintsin 2t +sin at|
and

2
ay) a—b)?*|cos?t —2costcos 2Lt +cos? a2t |.
dt b b

Therefore, the sum of these last two expressions is
dx )’ (dy)’ 2
— | +|—=| =2(a—b)|1—cos&
(%] 4[] 2fa-brb-cost]

However,

t — 2qjn? at
1-coss =2sin” £

\/(%JZ +(3_¥J2 ~2(a-b)sin 2.

To obtain the length of a single cusp, we then integrate this last expression from 0 to
2nb/a. Thatis,

Hence, we have

s R
Length of single cusp = 2(a—b)_[ sin2tdt = —%_b) I d(cosat)= 8b(2_ b).
0 0

As alluded to earlier, if a/b = n is rational, then the curve closes on itself without
intersection after n cusps. Therefore eliminating b in the expression for the length of a
single cusp we arrive at the length of a single cusp in terms of the radius of the fixed
circle, i.e.,

8a(n—1)
n?

Finally, multiplying this expression by the number of cusps, namely n, we derive the total
length, s, of the n-cusped hypocycloid as,

8a(n-1) |
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To calculate the area of the Hypocycloid, we first calculate x-dy/dt and then
y-dx/dt, that is,

x% = (a—b)2 c052t+(3ab—2b2 —az)costcosaijH(bz —ab)cosz ey
and

y% =—(a—b)*sin®t+(3ab—2b? —a? Jsintsin 22t + (ab—b? Jsin? 22t
Now, subtracting these two expressions to form x-dy/dt — y-dx/dt, we have after much
manipulation the following expression

dy dx 2 .2
X———y—=|3ab—-2b" —a“ fcos& -1).
dat Yt : Jeos 1)
But, the area of one cusp is
A 2y
1 dy dx 1 s 2
A== X——y— |[dt== |(3ab—2b° —a“ \cos & —1)dt.
2!( dt ydtj 2£( Jeos 3 -1

This expression integrates as

_on2 a2 _on2 a2
:3ab 22b a jcos%tdt—3ab 22b a _[dt.

0 0

The first integral is zero and the second integral has the value

A

2
(n—l)(:g—z);za ,wherea=b - n.

Now, if n is rational, after n cusps, the area is

(n-1Yn—2)m’ .

A= "

If p represents the distance from the origin to the tangent of the Hypocycloid, then
p=(2b—a)sin2.

If r denotes the distance from the origin to the curve, then

r=/(a—b)? +b? +2b(a—b)cos 2t .

12.3.3 Curvature of the Hypocycloid
If p is the radius of curvature of the Hypocycloid, then
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If (o, ) are the coordinates of the center of curvature for the Hypocycloid, then

__a _ _bcos 2t __a inab _b)si
a_a_Zb[(a b)cost—bcos22t] and g a—2b[bsm bt 4+ (a—b)sint].

12.3.4 Angles for the Hypocycloid
If v is the tangential-radial angle of the Hypocycloid, then

2b—a 1-cos¥
tany = — .
a sin &

If ¢ denotes the tangential angle for the Hypocycloid, then

cos 22t —cost

tang = :
? sin@t+sint

If &denotes the radial angle for the Hypocycloid, then

(a—b)sint —bsin 2>t

tand = :
(a—b)cost +cos bt

12.4 Geometry of the Hypocycloid

There are 22 + 1 cusps if 22 is an integer. The curve is symmetric about the x-
axis, and is symmetric about the y-axis if 22 is an odd integer. The curve is completely
contained within a circle defined by| r | <a.

12.5 Dynamic Geometry of the Hypocycloid
The next few subsections contain constructions concerning the Hypocycloid.

12.5.1 A Five-Cusped Hypocycloid

The construction below in Table 12-1 is for a five-cusped Hypocycloid. After
presenting the construction, we will show how to modify the construction to make it for
an n-cusped Hypocycloid, where n is any integer.

Table 12-1: A Five-Cusped Hypocycloid

. Draw circle AB with center at A and passing through point B 7. Let C; be the image when C; is rotated about A" by ~CAB

. Let C be a random point on the circumference of circle AB 8. Let C,4 be the image when Cj is rotated about A' by ~CAB

. Let A" be the image when A is dilated about point Cby 1/5 9. Let Cs be the image when C, is rotated about A' by ZCAB

. Draw circle A'C with center at A" and passing through point C | 10. Trace point Cs and change its color

. Let C, be the image when C is rotated about A' by Z/CAB 11. Animate point C around circle AB

OO W[IN| -

. Let C;, be the image when C; is rotated about A' by ~CAB
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To modify this construction for that of an n-cusped Hypocycloid, change step 3 to
read

Let point A" be the image when point A is dilated about point C by a factor of 1/n.

Then, replace steps 6 through 9 with the steps that result from executing the following
pseudo-language loop:
begin loop
fori=2ton
4 +i. Let C; be the image when point C;; is rotated about point A" by
ZCAB.
end loop
Finally, change what is now step 10 (and will be step 5 + n) to read

Trace point C,, and change its color.

12.5.2 An Adjustable Hypocycloid

Using the graphing capability of GSP, one can create a Hypocycloid which can be
adjusted to trace any number of cusps. This is not a true geometric construction, but
nevertheless it is interesting. Refer to Table 12-2.

Table 12-2: An Adjustable Hypocycloid

1. Create x-y axes with origin A and unit point B = (1, 0) 9. Calculate the y-coordinate of point E and relabel it as a

2. Draw circle BC centered at B and passing through point C 10. Calculate the y-coordinate of point F and relabel it as b
3. Let D be a random point on the circumference of circle BC 11. Calculate (a—b) /b

4. Draw line segment BD 12. Calculate x = (a — b)cost + bcos((a — b)/b)t

5. Measure ZCBD (in radians) 13. Calculate y = (a — b)sint — bsin((a — b)/b)t

6. Relabel the measure of ZCBD ast 14. Let point G be the result of plotting x and y, i.e., G(x, y)
7. Let E and F be two random points on the y-axis 15. Trace point G and change its color

8. Measure the coordinates of point E 16. Animate point D around circle AB

Well, this is quite a remarkable and interesting construction. By dragging point E
or point F (or both) up and down the y-axis, one can adjust the value of the quantity
(a—b) /b. Adjusting it to be an integer, say n, gives us closed Hypocycloids where the
number of cusps is, as we have stated earlier, equal to n + 1. Making its value the integer
1 gives us a straight line as discussed in the digression at the beginning of this chapter;
making its value 2 gives us a three-cusped Hypocycloid, or the Deltoid; making its value
3 gives us a four-cusped, or the Astroid; etc. If you have trouble adjusting it to be an
integer, try changing the precision of the angle and distance measurements to "tenths" in
the object preference window of GSP. Finally, by keeping point A above the x-axis (i.e.,
on the positive y-axis), dragging point B below the x-axis (i.e., on the negative y-axis),
and re-adjusting to continue having the quantity (a — b) / b as an integer, one can obtain
the sister curves to the Hypocycloids, namely, the Epicycloids.

12.5.3 Hypocycloid Gears

Maybe if Roemer had had a Geometer’s Sketchpad to aid in his study of gears, his
job would have been much easier. Table 12-3 contains this construction.
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Table 12-3: Hypocycloid Gears

Draw circle AB with center at A and passing through point B

14.

Let D, be the image when Dj is rotated about A; by Z/DAB

Let B, be the image of point B rotated about point A by 180°

15.

Let D5 be the image when D, is rotated about A by Z/BAB,

1.

2.

3. Draw circle B;B with center at B; and passing through point B | 16. Construct the locus of Ds while point D traverses circle AB
4. Let C be a random point on the circumference of circle B,B 17. Let E; be the image when E is rotated about B; by Z/EB;C
5. Let D be a random point on the circumference of circle AB 18. Let E;, be the image when E; is rotated about B; by ZEB;C
6. Let A; be the image when A is dilated about point D by % 19. Let E; be the image when E; is rotated about B; by ZEB;C
7. Let E be a random point on the circumference of circle B,B 20. Let E, be the image when E; is rotated about B; by ZEB;C
8. Let B, be the image when B is rotated about A by #BB,C 21. Let Es be the image when E, is rotated about B; by ZEB,C
9. Let B; be the image when B; is dilated about point E by ' 22. Let Eg be the image when Es is rotated about B; by ZEB;C
10. Let B, be the image when B, is rotated about A be /BB,C 23. Let E; be the image when Eg is rotated about B; by ZEB,C
11. Let D, be the image when D is rotated about A; by Z/DAB 24. Let Eg be the image when E; is rotated about B; by ZEB,C
12. Let D, be the image when D; is rotated about A; by ZDAB 25. Construct the locus of Eg while point E traverses circle B,B
13. Let D; be the image when Dy, is rotated about A; by Z/DAB 26. Animate point C around circle B;B

12.5.4 A Five-Pointed Star

This Hypocycloid is one that crosses itself before closing and repeating its trace.

Check it out in Table 12-4.

Table 12-4: A Five-Pointed Star

1. Draw circle AB with center at A and passing through point B 13. Let C; be the image when C; is rotated about A; by ZC;AB
2. Let C be a random point on the circumference of circle AB 14. Trace point C; and change its color

3. Let C; be the image when C is rotated about A by Z/BAC 15. Let Cg be the image when C is rotated about A by —120°
4. Let C, be the image when C; is rotated about A by Z/BAC 16. Let Cy be the image when Cg is rotated about A, by +120°
5. Let A; be the image when A is dilated about point C, by 2/5 17. Let Cy0 be the image when C, is rotated about A by —120°
6. Let C; be the image when C is rotated about point A by —~120° | 18. Let Cy; be the image when Cy, is rotated about As by +120°
7. Let C, be the image when C, is rotated about A by Z/BAC 19. Draw line segment C;Co

8. Draw circle A;C, with center at A; and passing through C; 20. Draw line segment CoCyy

9. Let A, be the image when A, is rotated about A by —120° 21. Draw line segment C;Cy;

10. Let Cs be the image when C; is rotated about A by —120° 22. Construct polygon C7CoCy1

11. Let Cq be the image when C, is rotated about A by /BAC 23. Animate point C around circle AB

12. Let A; be the image when A, is rotated about A by —120°

We not only have this marvelous Hypocycloid, but we have an equilateral triangle
that has each of its vertices on the Hypocycloid and each vertex traces the curve and the
equilateral triangle’s sides stay constant. Fascinating!
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Figure 12-7: The Solid of Revolution Formed from an Eight-Cusped Hypocycloid

The object in the figure above is the solid of revolution that is formed when the curve
represented by the parametric equations x = 7cost + cos7t and y = 7sint —sin7t is
revolved about the y-axis. The resulting solid has then been placed so as to appear to be
floating over snow covered mountains in the background. The solid has been given a
bluish, crackled finish. Light sources have been located so as to cast a shadow of the
uppermost cusp upon the solid itself.
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Chapter 13 — The Hypotrochoid

Figure 13-1: A Hypotrochoid Solid of Revolution

The object in the figure above is the solid of revolution that is formed when the
Hypotrochoid represented by the parametric equations x = 14 cos (t) + 3- cos (7t) and
y = 14 sin (t) — 3sin (7t) is revolved about the y-axis. The resulting solid has then been
placed so as to appear to be floating over an infinite gray and white checkered plane
which meets a blue, cloudless sky and rainbow at the horizon. Light sources have been
placed so as to cast shadows on the plane and on the solid itself. The finish of the solid
simulates reflection of the rainbow.
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13.1 Introduction

A Hypotrochoid is defined as the roulette traced by a point, P, attached to a circle
rolling about the inside of a fixed circle. Of course, this sound very much like a
Hypocycloid; what’s the difference? In the case of a Hypocycloid, the point P is
restricted to the circumference of the rolling circle. This is not the case for a
Hypotrochoid; the point P may be interior to the rolling circle or it may be exterior to the
rolling circle (i.e., on an extended radius of the rolling circle). Since the point P can be
anywhere on the radius (or extended radius) of the rolling circle, Hypotrochoid really
refers to a family of curves as opposed to one specific curve. If the traced point is outside
the circumference of the rolling circle, the Hypotrochoid is sometimes referred to as a
Prolate Hypocycloid; on the other hand, if the traced point is inside the circumference of
the rolling circle, the Hypotrochoid is often referred to as a Curtate Hypocycloid.

Mathematicians first became fascinated with this curve in the early 16" century.
The initial interest seems to have stemmed from a paper written in 1501 by Charles
Bouvelles in an effort to solve the problem of squaring the circle. Giles Persone de
Roberval, who played an integral role in finding the area for these curves, is given credit
for the name "trochoid.” Blaise Pascal, who referred to these curves as "roulettes,"
actually offered cash prizes for anyone able to solve the problems of finding their area
and center of gravity. Galileo Galilei, who referred to these shaped as "cycloids," revered
these curves for their graceful beauty and their architectural potential. Ultimately, for
20™ century dwellers, it was Hasbro's release of the Spirograph (a child’s toy that was
very popular some years ago) that put the Hypotrochoid into mainstream awareness.

13.2 Equations and Graph of the Hypotrochoid

Now let us derive the parametric equations from this definition. Refer to Figures
13-2 and 13-3, which depict the initial position of the point P (i.e., at t = 0) and its
position after the rolling circle has carried point P through an angle t > 0. Let a be the
radius of the fixed circle while b is the radius of the rolling circle. Let h be the distance
of the point P from the center of the rolling circle and let t be the angle between the
horizontal and the line segment connecting the center of the fixed circle to the center of
the rolling circle. Finally, let 8 be the angle between the horizontal and the line segment
connecting the center of the rolling circle to the point P. Note that as the small circle
rolls around the circumference of the fixed circle, the center of the rolling circle travels
on the circumference of a circle centered at the origin with radius a — b.

Chapter 13: The Hypotrochoid 13-2 Playing With Dynamic Geometry



«— a—b —>

=/

_)

Figure 13-2: Initial Position of Rolling Circle and Point P

€ a

Figure 13-3: Position of Rolling Circle and Point P at Time t >0

Since the circle is rolling without slippage, the length of the arc traveled by the
smaller circle must be equal to the length of the arc traveled so far by the circle that is its

path (the circle of radius a - b). In other words,

(a—b)=bo,
or

Hza—_b.t
b

The coordinates of the center of the rolling circle are (a — b) -cos (t), (a —b) -sin (t).
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Now consider the origin to be the center of the rolling circle. With this new origin, the
coordinates of the point P are h -cos (—6), h -sin (—6). However,

cos(-0)=cos(@)=cos22t and sin(-0) =—sin(g) = —sin&Lt.
Therefore, from the original origin, we can combine the two sets of coordinates to find
the parametric equations of the Hypotrochoid, namely,
x=(a—b)cost+hcos22t and y=(a—b)sint—hsin&2t. Equation 13-1
The equation of the tangent to the Hypotrochoid at the pointt = q is

_hcos#Pq-bcosq b(a—b)—h?—h(a—2b)cos2q

= bsinq_i_hsinﬂq bSinq+hSinﬂq Equation 13-2
b b

Just as is the case with Epitrochoids, the triplet (a, b, h) completely specifies a
particular Hypotrochoid. Figure 13-4 shows the graph of two different Hypotrochoids.

x=(a—b)ost + hcos(aT‘bt)
y =(a—b)sint — hsin(221)

(a, b, h) = (6, 2, 3)

v

A

(a, b, h) = (16, 2, 3)

Figure 13-4: Graph of Two Distinct Hypotrochoids

13.3 Analytical and Physical Properties of the Hypotrochoid

Based on the Hypotrochoid’s parametric representation found in Equation 13-1,
that is, x=(a—b)cost +hcosz2tand y = (a—b)sint —hsin 22t the following
subsections contain an analysis of the Hypotrochoid.
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13.3.1 Derivatives of the Hypotrochoid

> X :B(bsint +hsina®t)
a

2
> X=—(a—b)cost— h(ab—z b) cos &bt

> y= (a—b)(cost —EcosaTbtj.

2
> ¥= h(ab—zb) sin2t—(a—b)sint.
N hcos 22t —bcost
~ bsint+hsin2t’
> Y= h’(a—b)-b°® —bh(a—2b)cos%t.

(a—b)bsint +hsin 22 t)’

13.3.2 Metric Properties of the Hypotrochoid
If p is the distance from the origin to the tangent of the Hypotrochoid, then

h? —b(a—b)+h(a—2b)cos 2t
Jb?+h?—2bhcosat

p:

If r denotes the distance from the origin to the Hypotrochoid, then

r=1/(a=b)? +h?+2h(a—b)cos2t .

13.3.3 Curvature of the Hypotrochoid
If p is the radius of curvature for the Hypotrochoid, then,

(a=b)b® +h? - 2bhcos2t)*
b® —h?(a—b)+bh(a—2b)cos 2t

p:

If (a, B) denotes the coordinates of the center of curvature for the Hypotrochoid,
then

ah|b(a—b)costcos 2t —h(a—b)cost +b? cos %2t —bhcos %2 t cos 2t

d
b° —hZ(a—b)+bh(a—2b)cos 2t an

o=
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ah|b(a—b)sintcos ¢t —h(a—b)sint —b?sin =t + bhsin =t cos 2]
b® —h?(a—b)+bh(a—2b)cos 2t

B=

13.3.4 Angles for the Hypotrochoid
If y is the tangential-radial angle for the Hypotrochoid, then

h? —b(a—b)+ h(a—2b)cos 2t
ahsin 2t '
If ¢ denotes the tangential angle of the Hypotrochoid, then

tany =

_ hcos 2>t —bcost
bsint+hsin2bt

tang

If &denotes the radial angle of the Hypotrochoid, then

(a—b)sint —hsin &>t
(a—b)cost+hcos bt

tand =

13.4 Geometric Properties of the Hypotrochoid

The Hypotrochoid consists of 1 + (a — b)/b outer loops if (a — b)/b is an integer.
The curve is symmetric about the y-axis if (a — b)/b is an odd integer. The curve is
completely contained within a circle defined by |r |<a—b +h.

13.5 Dynamic Geometry of the Hypotrochoid

The following seven subsections delineate constructions germane to the
Hypotrochoid.

13.5.1 An Adjustable Hypotrochoid

For the complex (but very interesting and elegant) construction found in Table 13-1,
assume that your computer screen is divided into four equal quadrants.
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Table 13-1: An Adjustable Hypotrochoid

1. Draw horizontal line segment AB across top of screen 22. In upper-right quadrant draw vertical line segment LM

2. Let C be a random point on line segment AB 23. Somewhere to the left of line segment LM, place point N

3. Draw line segment AC and hide line segment AB and point B | 24. Let N, be the image as N is reflected across line segment LM
4. Label line segment AC as b 25. Let C, be the circle centered at N with radius = b

5. Measure the length of line segment b 26. Let C,' be the reflection of circle C, across line segment LM
6. Draw horizontal line segment DE across top of screen below b | 27. Let C; be the circle centered at point N with radius = h

7. Let F be a random point on line segment DE 28. Let C,' be the reflection of circle C, across line segment LM
8. Draw line segment DF and hide line segment DE and point E 29. Let O be a random point on the circumference of circle C,

9. Label line segment DF as a 30. Let P be a random point on the circumference of circle C,

10.

Measure the length of line segment a

31.

Let N, be the image when N is translated by h at /PNO

11

Calculatea—b

32.

Let N3 be the image as N, is reflected across line segment LM

12.

Draw horizontal line segment GH across screen top below a

33.

Draw line segments NN, and N;Ns;

13.

Let | be a random point on line segment GH

34.

Let Q be a point in the middle of the lower-left quadrant

14.

Draw line segment Gl and hide line segment GH and point H

35.

Let circle C; be centered at Q with radius = a

15.

Label line segment Gl as h

36.

Let C, be the circle centered at Q with radius=a—b

16.

Measure the length of line segment h

37.

Let R be a random point on the circumference of circle C4

17.

Draw horizontal line segment JK across screen top below h

38.

Translate line segment N;N; be vector N; —» R

18.

Let J' be the image when J is translated by a—b at £ 0°

39.

Let N4 be the image when N3 is translated by vector N; — R

19.

Draw line segment JJ' and hide line segment JK and point K

40.

Trace N4 and change its color

20.

Label line segment JJ'asa—b

41.

Translate circle C,' by vector N; - R

21

. Calculate (a—h)/ b

42.

Simultaneously animate O about circle C, and R about C,

By adjusting the length of line segments a, b, and/or h (that is, dragging points C,
F, and/or 1) one can generate different members of the Hypotrochoid family.
Specifically, try and adjust segments a and/or b so that the quantity (a — b) / b becomes
an integer. Then the generated Hypotrochoid will be a closed curve (at least within the
tolerances of GSP). Also, hide the construction that was placed in the upper-right
quadrant and now move the construction that was placed in the lower-left quadrant into
the middle of the screen. Doing this gives you more room to change the radii of the
circles. Finally, hide circle C4; doing so makes it clear that we have a circle of radius b
rolling around the inside of a circle of radius a and that the point being traced is on a line
segment radiating from the center of the rolling circle and is adjustable by manipulating
the line segment labeled h. Have fun!

13.5.2 Variable Gears

This remarkable construction allows one to adjust (within certain limits) the shape
of the gears. Refer to Table 13-2.
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Table 13-2: Variable Gears

1. Draw circle AB with center at A and passing through point B 19. Draw line A;D,

2. Let A; be the image when A is rotated about point B by 180° 20. Let E be a random point on line A,D,

3. Let C be a random point on the circumference of circle AB 21. Let E; be the image when E is rotated about A by ZBAC

4. Draw circle A;B with center at A; and passing through B 22. Draw line segment A,E

5. Let D be a random point on the circumference of circle AB 23. Let E, be the image when E; is rotated about A by #D;AB

6. Let D; be the image when D is rotated about A by /BAC 24. Construct the locus of E; while point D traverses circle AB
7. Let B, be the image when B is rotated about A; by /DAB 25. Measure the length of line segment AE

8. Let point A; be the image when A is dilated about D by %5 26. Measure the length of line segment A;D,

9. Let A; be the image when A; is rotated about A by Z/BAC 27. Calculate scaling factor SF= (length of A;E)/(length of A,Ds)
10. Let B, be the image when B; is rotated about A; by ZCAB 28. Let Bg be the image when Bs is dilated about B; by SF

11. Let B be the image when B; is dilated about point A; by 4/3 29. Let E; be the image when E; is rotated about A, by Z/BAD;

12. Let D, be the image when D is rotated about A; by Z/DAB 30. Let B; be the image when Bg is rotated about A; by Z/CAB

13. Let A4 be the image when Ag is rotated about A by Z/D;AB 31. Let E, be the image when E; is rotated about A, by /BAD;

14. Let B, be the image when B; is rotated about A, by ZCAB 32. Construct the locus of B7 while point D traverses circle AB

15. Let D; be the image when Dy, is rotated about A; by /DAB 33. Let Es be the image when E, is rotated about A, by /BAD;

16. Let D4 be the image when Dj is rotated about A; by /DAB 34. Draw line segment BEs

17. Draw line segment A;D, 35. Construct P, L to line segment BEs through point Es

18. Let Bs be the image when B; is rotated about Bs by #DA,D, | 36. Animate point C around circle AB

Well, what have we got here? First of all, note that point E is a random point on
line A;D4 (step 20). As such, it can be dragged along line A;D4, and as one does so, the
associated loci change shape. If one drags point E so that it stays between point A, and
point D4 (in other words remains on segment A,D,), the loci will remain as gears meshed
with one another. When point E coincides with point A, (meaning the numerator of the
scaling factor in step 27 is zero and of course the scaling factor itself is therefore zero),
the two loci become circles that are tangent at point Es. At the other extreme, that is
when point E coincides with point D, (the scaling factor is one), one locus becomes a
Deltoid and the other locus becomes a three-cusped Epicycloid. In between these two
extremes, we have a Hypotrochoid gear meshing with an Epitrochoid gear. Pretty neat!
Incidentally, perpendicular P is always tangent to the Hypotrochoid and when point E is
between points A, and Dy, it is also tangent to the Epitrochoid.

13.5.3 Another Adjustable Hypotrochoid

Just for variety’s sake, here is another construction in which the relevant
parameters can be adjusted to display other members of the Hypotrochoid family. In this
construction found in Table 13-3, dragging point G changes the distance between the
center of the rolling circle and the point being traced, i.e., the parameter that we have
called h in the Hypotrochoid equations. In other words, dragging point G changes the
radius of the rolling circle (b in the equations). For best results and a clear picture of
what is going on, hide the following construction elements: circles C,, Cs, Cy,
perpendiculars Py, Py, P3, P4, and ray CD.
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Table 13-3: Another Adjustable Hypotrochoid

. Draw horizontal line AB 17. Let point J be the intersection of perpendiculars P; and P,

. Let C be a random point on line AB 18. Let C, be the circle centered at J and passing through point |

. Let D be a second random point on line AB 19. Draw line segment JI

. Let circle C, be centered at point D and pass through point C 20. Let Cs be the circle centered at F with radius = segment JI

1
2
3
4
5. Draw ray CD starting at C and through D, then hide line AB 21. Let K be a random point on the circumference of circle C,
6
7
8

. Let E be a random point on ray CD 22. Let L be the intersection of circle C; and line segment FD

. Let F be a random point on the circumference of circle C, 23. Draw line segment JK

. Construct P; L to ray CD through point C 24. Let C, be the circle centered at L with radius = segment CE
9. Construct P, L to ray CD through point D 25. Let F' be the image when F is rotated about point L by ZKJI
10. Let G be a third random point on ray CD 26. Draw line segment LF
11. Draw line segment CE 27. Let Cs be the circle centered at L and passing through point F
12. Draw line segment FD 28. Draw ray LF ' starting at L and passing through point F'
13. Construct P; L to ray CD through point G 29. Rotate segment LF about point L by ZKJI
14. Let H be a random point on perpendicular P, 30. Let point M be the intersection of circle C,and ray LF'
15. Construct P4 L to P, through point H 31. Trace point M and change its color
16. Let point | be the intersection of perpendiculars P, and P4 32. Simultaneously animate K on circle C, and F on circle C,

Of course, if point G is dragged so that it coincides with point C, the animation
cannot be executed and further, if point G is dragged so that it either coincides with point
D or is on the opposite side of point D from point C, the tracing point vanishes and no
trace is drawn. To execute Hypotrochoids, point G must be confined to the space
between points C and D.

13.5.4 A Three-Cornered/Cusped/Looped Hypotrochoid

Table 13-4 presents still another adjustable Hypotrochoid; however, in this case
only the parameter h is adjustable. The quantity (a—b) / b is fixed at 2. This means that
when h is adjusted for a curtate configuration the constructed locus will have three
rounded corners; when h is adjusted equal to b, the locus will have three cusps (i.e., a
Deltoid); and finally, if h is adjusted for a prolate configuration the locus will have three
loops. Now maybe the title of this subsection makes a little bit more sense. Oh, by the
way, we will also create the tangent in this construction.

Table 13-4: A Three-Cornered/Cusped/Looped Hypotrochoid and Tangent

1. Draw circle AB with center at A and passing through point B 12. Draw line AC

2. Let C be a random point on the circumference of circle AB 13. Draw line AB'

3. Draw circle BC with center at B and passing through point C 14. Construct line L, parallel to line AB' through point D
4. Draw line segment AB 15. Construct line L, parallel to line AC through point D
5. Let C' be the image of C reflected across line segment AB 16. Let point E be the intersection of lines AB' and L,

6. Draw circle C'B with center at C' and passing through point B | 17. Let E' be the image as E is translated by vector A — E
7. Draw line segment AC' 18. Let point F be the intersection of lines AC and L,

8. Let B' be the image of B reflected across line segment AC' 19. Draw line segment E'F

9. Draw line B'C 20. Construct P L to line segment E'F through point D
10. Let D be a random point on line B'C 21. Animate point C around circle AB

11. Construct the locus of D as point C traverses circle AB

Drag point D along line B'C and watch the locus change configurations!

13.5.5 A Four-Cornered/Cusped/Looped Hypotrochoid with Tangent

Table 13-5 presents a construction analogous to the construction of the previous
subsection except this time the quantity (a — b) / b is fixed at 3, thereby giving an Astroid
when h = b. Again, drag point D, this time along line CC" and watch the locus change.
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Table 13-5: A Four-Cornered/Cusped/Looped Hypotrochoid with Tangent

1. Draw circle AB with center at A and passing through point B 12. Draw line AC

2. Let C be a random point on the circumference of circle AB 13. Draw line AC"

3. Draw circle BC centered at B and passing through point C 14. Construct line L, parallel to line AC through point D

4. Draw line segment AB 15. Construct line L, parallel to line AC" through point D

5. Let C' be the image of C reflected across line segment AB 16. Let point E be the intersection of lines AC" and L,

6. Draw circle C'C centered at C' and passing through point C 17. Let E' be the image when E is translated by vector A — E
7. Draw line segment AC' 18. Let E" be the image when E'is translated by vector E — E'
8. Let C" be the image of C reflected across line segment AC' 19. Let point F be the intersection of lines AC and L,

9. Draw line CC" 20. Draw line segment E"F

10. Let D be a random point on line CC" 21. Construct P; L to line segment E"F through point D

11. Construct the locus of point D as C traverses circle AB 22. Animate point C around circle AB

13.5.6 Two Rotating Circles for One Hypotrochoid

To demonstrate that the Double Generation theorem of Bernoulli holds for
Hypotrochoids, take a look at the construction in Table 13-6. We have even given spokes
to the rotating circles to make it easier to observe what is happening.

Table 13-6: Double Generation of a Hypotrochoid

1. Draw circle AB centered at A and passing through point B 18. Draw line CE

2. Let C be a random point on the circumference of circle AB 19. Let point F be the intersection of lines AA" and CE

3. Let A' be the image when point A is dilated about C by ' 20. Draw circle AF centered at point A and passing through F
4. Draw circle A'C centered at A" and passing through point C 21. Draw circle A"F centered at A" and passing through point F
5. Let D be a 2" random point on the circumference of circle AB | 22. Draw line A"E

6. Draw circle DC 23. Let H and G be the intersections of line A"E with circle A"F
7. Draw line segment AD 24. Draw line segment HG

8. Let C' be the image of C reflected across line segment AD 25. Rotate line segment HG about point A" by 60°

9. Draw circle C'D centered at point C' and passing through D 26. Rotate line segment HG about point A" by — 60°

10. Draw line segment AC' 27. Let | be the unlabeled intersection of line A'D" and circle A'C
11. Let D' be the image of D reflected across line segment AC' 28. Draw line segment ID"

12. Let point D" be the image of point D' dilated about C by %4 29. Rotate line segment ID" about point A' by 60°

13. Draw line A'D" 30. Rotate line segment ID" about point A' by — 60°

14. Let E be a random point on line A'D" 31. Draw line segment A'E

15. Construct the locus of E as point C traverses circle AB 32. Draw line segment A"E

16. Let A" be the image when A is translated by vector A' > E 33. Animate point C around circle AB

17. Draw line AA"

Well, this doesn’t really demonstrate that the Double Generation theorem holds
for all Hypotrochoids, but it does demonstrate that it holds for all Hypotrochoids that
have three corners/cusps/loops; the reader can extrapolate from here. It’s a nice
construction and one can see that the small circle, circle A'C rotates about circle AB
while the larger circle, circle A"F, rotates about circle AF. Further, each rotating circle’s
radius has been extended to intersect point E, the point tracing the Hypotrochoid. Drag
point E along line A'D" to change the shape of the Hypotrochoid.

13.5.7 The Osculating Circle for the Astroidal Type of Hypotrochoid

As a final construction for this chapter, consider the construction delineated in
Table 13-7. By way of explanation, Astroidal type means an adjustable Hypotrochoid
where the quantity (a—b) / b is fixed at 3, but the parameter h can take on any value, and
when h = b, we get an Astroid. A snapshot of the construction appears in Figure 13-5.
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Table 13-7: The Osculating Circle for the Astroidal Type of Hypotrochoid

1. Draw circle AB centered at A and passing through point B 10. Construct the locus of point D as point C traverses circle AB
2. Let C be a random point on the circumference of circle AB 11. Draw line CD

3. Let point A" be the image when A is dilated about C by % 12. Construct P; L to line CD through point C

4. Let C, be the image when C is rotated about A' by ZCAB 13. Let point E be the intersection of line A'C, and P,

5. Let C, be the image when C; is rotated about A' by ZCAB 14. Draw line AE

6. Let C; be the image when C, is rotated about A' by ZCAB 15. Let point F be the intersection of lines CD and AE

7. Let C, be the image when C; is rotated about A' by ZCAB 16. Draw circle FD centered at point F and passing through D
8. Draw line A'C4 17. Construct the interior of circle FD

9. Let D be a random point on line A'C,4 18. Animate point C around circle AB

[[Animate Point]

The Osculating Circle of an
Astroidal Type of Hypotrochoid

Figure 13-5: Osculating Circle for the Astroidal Type of Hypotrochoid
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Figure 13-6: A Three-Dimensional Version of a Hypotrochoid

The Hypotrochoid with parameters (a, b, h) = (6, 2, 3) has been extruded into the third
dimension to render the object in the figure above. It has been given a light sand colored
finish and placed over the orange and plum colored plane. Multiple light sources have
been used to illuminate the object, which causes the shadows to fall partially on the
object itself and create the strange configuration of shadows seen on the plane. (This
specific Hypotrochoid is used as the logo for the software Adobe Reader.)
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Chapter 14 — The Conic Sections

Figure 14-1: The Solid of Revolution Formed by an Ellipse

The ellipse with simple equation x°/16 + y? = 1 has been revolved around the y-axis to
form the object shown above. It has been given a mirrored reflective finish and placed
over a white and yellow checkered plane with a partially cloudy sky at the horizon. The
lower half of the object, of course, reflects the plane while the upper half reflects the sky.
Light sources have been placed so as to cast a shadow of the object on the plane (thereby
revealing its elliptical nature). Note how the object’s shadow is also reflected in the
finish.
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14.1 Introduction

Simply put, a conic section is merely the intersection of a plane and a right-
circular double cone (two single cones placed apex to apex). By changing the angle and
the location of the intersection, one can produce a circle, an ellipse, a parabola, or a
hyperbola. (Of course, if the plane intersects the cone and passes through the cone’s
vertex, a point, line, or two intersecting lines are produced; these are degenerate conic
sections and will not be considered here.) If the plane is perpendicular to the axis of the
cone, a circle is produced (see Figure 14-2). For a plane not perpendicular to the cone’s
axis, not parallel to the cone’s generator line, and intersecting only the upper cone (or
only the lower cone), an ellipse is produced. For a plane parallel to a generator line of the
cone, a parabola is produced. And finally, for a plane intersecting both upper and lower
cones, a hyperbola is produced.
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Figure 14-2: The Conic Sections

For an alternate and more rigorous definition of a conic section, consider a point
F (called the focus), a line L that does not contain F (called the directrix), and a positive
number e (called the eccentricity). A conic section is then defined as the locus of all
points whose distance to F equals e times their distance to L. For 0 < e <1 we obtain an
ellipse, for e = 1, we obtain a parabola, and for e > 1, we get a hyperbola. The case of a
circle needs special treatment; one takes e = 0 and imagines the directrix as infinitely
removed from the focus. The eccentricity of a conic section is therefore a measure of
how far it deviates from being circular.

Conic sections have some interesting reflective properties that have very

important real-world applications. Parabolic mirrors (mirrors made in the shape of
parabaloids, that is, surfaces formed from rotating parabolas about their central axis) are
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used in reflecting telescopes because parabolic mirrors reflect all rays that are parallel to
the mirror’s axis to the focal point of the mirror, thereby forming a sharp image at the
focus. Reverse this process (that is, put the light source at the focus) and all rays are
reflected from the mirror parallel to one another. This is how an automobile’s headlights
operate. Parabolas of revolution are also used as signal receptors—a satellite dish is a
good example of this property. If a mirror were in the form of an ellipsoid (an ellipse of
revolution—see Figure 14-1 at the beginning of this chapter), the rays emitted from one
focus are reflected toward the other focus. Therefore, in a room with an elliptical ceiling,
sound emitted from one focus can be clearly heard at the other focus. This is called the
whispering gallery effect, and a good example of this is found in Rome at St. Paul’s
Cathedral. Other applications of conic sections are found in planetary motion and more
recently in space craft trajectories or astronavigation. Johannes Kepler discovered that
the planetary orbits are ellipses with the sun at one of the foci. Newton was then able to
derive the shape of orbits mathematically, under the assumption that gravitational force
varies as the inverse square of distance. Depending on the energy of the orbiting body,
orbit shapes which are any of the four types of conic sections are possible. Conic
sections also play a role in projectile motion; a projectile will travel in the path of a
parabola (if we neglect air resistance), a fact that is used for many military purposes.

14.2 Equations of the Conic Sections

A conic section with directrix at x = 0 (i.e., the y-axis), focus at the point (p, 0),
and eccentricity e > 0 (see Figure 14-3) has, by definition, the Cartesian equation

Vx=p) +y* =ex

A
&

v

v

Figure 14-3: Distance to the Focus
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Squaring and rearranging terms, we have
y? +(1—e2)x2 —2px+p®>=0 Equation 14-1
The polar equation for a conic section is

ep

r=———— Equation 14-2
1+ecosé

In order to obtain a convenient form for the equation of a specific conic, equation
14-1 is usually subjected to a coordinate transformation. We will take up each of these
coordinate transformations in turn.

14.2.1 Equations and Graph of the Parabola

In the case of a parabola, i.e., e = 1, the coordinate transformation is
(X, y) = (u+ p/2,v). Substituting these values in Equation 14-1 for x and y yields

v:i—2pu=0.

Since the variables can be named whatever we want, u and v may be renamed and we can
revert to our usual x,y notation. Also, let p/2 = a and we have the more common form for
the Cartesian equation of a parabola. That is,

y> =4ax Equation 14-3

A parametric equation for the parabola may be derived by setting t = 2coté, where
@ has the usual meaning. Therefore,

2
t:200t6?=%= X l.
y 4da 2a

< [N

Hence, y = 2at, and x can easily be found by putting this value of y into Equation 14-3
and solving for x, that is, x = at?>. So we have a parametric form for the parabola,

(X, y) =at(t,2) —oo<t<+oo Equation 14-4

A polar form for the parabola can also be found. That is,
r’ =x*+y* =x*+4ax =r?cos” @+ 4ar cos 6.

Canceling r from both sides leaves r = rcos®@+ 4acos@. Transposing so that all of the
r-terms are on one side of the equation and then solving for r, we have
r=4acotécscd Equation 14-5
The equation of the tangent line to the parabola at the point t = q is
qy =X+ aq2 Equation 14-6

Figure 14-4 contains a graph of the parabola.
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Figure 14-4: Graph of the Parabola

14.2.2 Analytical and Physical Properties of the Parabola

Based on the parabola’s parametric representation found in Equation 14-4, that is,
x = at® and y = 2at, the following subsections contain an analysis of the parabola.

14.2.2.1 Derivatives of the Parabola
X = 2at

>

>

>

14.2.2.2 Metric Properties of the Parabola
If p is the distance from the origin to the tangent of the parabola, then
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If r denotes the distance from the origin to the parabola, then

r=atvt’+4.

14.2.2.3 Curvature of the Parabola
If p is the radius of curvature for the parabola, then,

p= —2a(1+t2)% .
If (o, p) are the coordinates of the center of curvature for the parabola, then
a=2a+3at> and f[=-2at’.

14.2.2.4 Angles for the Parabola
If @is the radial angle, then

cotezl.
2

If w is the tangential-radial angle for the parabola, then

tany =—

t24+2
If ¢ denotes the tangential angle, then
1
tang = .
14.2.3 Geometry of the Parabola
> Intercepts: (0, 0)
> Extrema: (0, 0)
> Extent: 0 <X <o0; —00<y<+o0
> Symmetries: Parabola y? = 4ax is symmetric about the x-axis.

14.2.4 Equations and Graph of the Ellipse
In the case of an ellipse, i.e., 0 < e <1, then the transformation of coordinates is

(x, y):(u+1 pe2 ,vj.

Substituting these values for x and y in Equation 14-1 yields
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As before, reverting to x, y notation, and letting a = ep / (1 — €?) and b? = a® (1 — &%) we
have the more common equation for an ellipse. That is,

+-=—=1 Equation 14-7
a’ b’ a
where F(—ae, 0) is the location of the focus and the directrix has equation x + a/e = 0.
Note, that by symmetry, (ae, 0) and x — a/e = 0 are also a focus and directrix. A
parametric representation may be derived by letting

x2 yz
a2

tantzgtané?:gl.
b b x

However, from Equation 14-7

y:g\/a2 —x%.

Therefore

tant = b.al-x?  [a?—x?
ant=—- = —.
X X

From this we can see that
2

seczt:tan2t+1:a—2.
X

Hence, x = a cos t and of course, substituting this expression back into Equation 14-7 we
can see that y = b sin t. So, our parametric representation for the ellipse is

(x,y)=(acost,bsint) —z<t<sz Equation 14-8

The polar equation for the ellipse is a direct result of plugging the common polar
transformations x = r cos #and y =r sin € into Equation 14-7, that is,

B ab
Ja?sin?@+b?cos? 0

The equation of the tangent line to the ellipse at the pointt = q is

r

Equation 14-9

a-y-+bcotqg-x=abcscq Equation 14-10

See Figure 14-5 for a graph of the ellipse.

14.2.5 Analytical and Physical Properties of the Ellipse

Based on the ellipse’s parametric representation found in Equation 14-8, that is,
x=acostandy = b sint, the following subsections contain an analysis of the ellipse.
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Figure 14-5: Graph of the Ellipse

14.2.5.1 Derivatives of the Ellipse

> X =-asint
> X =—acost
> y =bcost
y =-bsint
y’:—Ecott
a
> y":—%csc?’t
a

14.2.5.2 Metric Properties of the Ellipse

In order to calculate the area of the ellipse, consider an incremental rectangle of
height y and width dx in the first quadrant of the ellipse; its area is, of course, y-dx. If we
integrate that quantity from O to a, we obviously have the area of the portion of the ellipse
that lies in the first quadrant. If we then multiply that result by 4 (due to symmetry), we
have the total area of the ellipse. Hence,

A= 4_[: ydx.
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However, from Equation 14-7 we know that

y= Ex/az —-x2.
a
Therefore,

A_—j va® —x%dx.

This integral can easily be evaluated by making the substitution x = a sin u. Under this
transformation, the integral becomes

T, % %
i 4_bJ%a2 cos? U du — 4abIC0$2 u-du = 4abj‘(1+1'005 2ujdu :
a o 0 on2 2
Hence, A = mab.

In a similar manner, when the ellipse is rotated about the x-axis to form a solid of
revolution (i.e., an ellipsoid), its volume can be calculated. Consider an incremental
circular disk (in the first and fourth quadrants of the ellipse) whose radius is y and whose
thickness is dx; its volume is, of course, my*-dx. If we integrate that quantity from 0 to a,
we have half of the required volume. Multiplying that result by 2 (the symmetry
argument again), we have the total volume of the elli