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Preface 
 

 There are some areas of mathematics that require us to cast aside practicality and 

allow ourselves the luxury of enjoying the pure aesthetic beauty without any need for 

further justification. Indeed, there must be an avenue where the free flowing lines of the 

art world find a crossroads with the analytical worlds of equation and computation. At 

that crossroads, we are transported to a world that is at once purely logical in function yet 

purely beautiful in form.  Such a crossroads in geometry is the multitude of forms and 

shapes found in the plane algebraic and transcendental curves.  With the advent of 

dynamic geometry software, such as Geometer’s Sketchpad (GSP)*, this beauty can be 

visualized much more readily and in a variety of interesting ways.   

 

This book, Playing With Dynamic Geometry, is essentially a summary of the 

classic plane curves of historical mathematics and, in this regard, it is no different from 

many other texts that have been produced in the past.  What makes Playing With 

Dynamic Geometry unique is that for each curve treated in the text, many different GSP 

constructions are also given that will allow the reader to reconstruct the curve and watch 

it being drawn on the computer screen in all of its breathtaking wonder. 

 

 The book assumes that the reader has mastered analytic geometry as well as the 

differential and integral calculus.  Further, it is also assumed that the reader is or will 

become familiar with the operation of Geometer’s Sketchpad and can therefore reproduce 

each construction as it is encountered in the text.  Such ability contributes significantly to 

one’s understanding of the curve and, at the same time, is a great deal of fun. 

 

 With the exception of the first chapter, which contains review material, each 

chapter is devoted to one of the classic curves.  The order of the chapters has been 

dictated by the author’s interest in the curve and is therefore purely arbitrary.  The 

dynamic geometry constructions are given in tabular form as a series of steps to perform.  

To my knowledge, no previous survey of the classic curves has ever included geometric 

constructions. 

 

Also included in each chapter are:  

 The equations of the curve and formulas for the curve’s derivatives 

 The equation of the curve’s tangent 

 Metric considerations such as the radial distance to the curve and the distance 

from the origin to the curve’s tangent, associated areas, arc lengths, and/or surface 

area and volume of associated solids of revolution 

 Formulas for the tangential-radial angle, the radial angle, the radius of curvature, 

and the coordinates for the curve’s center of curvature.   

 

All of the formulas presented, with the exception of areas, arc lengths, and volumes, 

have been verified by a method that is explained in the Appendix.  This verification 

process (also unique to Playing With Dynamic Geometry) does not necessarily prove that 

the formula is correct, but the nature of the process is such that it gives a very high degree 
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of confidence that the stated formula is correct.  Interestingly enough, the verification 

process also makes use of GSP to validate the formula under consideration.  Readers who 

are interested should refer to the Appendix for an explanation of this verification process 

and an example of the way it works.  

 

 Each chapter (again, with the exception of the first chapter) begins and ends with 

a colorful image, usually depicting a three-dimensional version of the curve that is the 

subject of that chapter.  The caption on these figures explains what the image represents. 

 

 A brief word about how these three-dimensional images were produced:  They 

were created with a wonderful piece of free software called Persistence of Vision 

Raytracer (POV-Ray)†, which is a ray tracing application that, in the hands of an expert, 

can produce magnificent computer art.  This author’s capability with POV-Ray is very 

rudimentary but—with the aid of many of the background scenes that are supplied as part 

of the freeware—I have been able to pull off the desired effect (or at least come close to 

it).  That effect is a surrealistic view of the curve, such as floating over an infinite 

checkered plane or suspended in a cloud flecked sky.  In my opinion, such surrealism 

adds to the mystery and majesty of the curve. 

 

 I hope that Playing With Dynamic Geometry helps many readers appreciate and 

enjoy the aesthetic, visual aspect of these famous curves—a blend of science, art, beauty, 

and balance! 

 

Finally, I dedicate this book to Jo, my friend, my companion, my lover, and my 

wife.  It would not have seen the light of day without her invaluable assistance.  

 

 

 

Don Cole 

October 3, 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 
*Geometer’s Sketchpad™ is a product of Key Curriculum Press.  A free trial version can be downloaded 

from their website at www.keypress.com. 

† Persistence of Vision Raytracer (POV-Ray) can be downloaded free at the website www.povray.org.
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Chapter 1 – Background 
 

This book is essentially a reference book for the classic plane curves of 

mathematics.  With the exception of this chapter, each ensuing chapter is devoted to one 

of the classic curves.  This chapter, however, reviews the methodologies used to develop 

the material contained in subsequent chapters, while the format of this chapter sets the 

pattern for the format of all the subsequent chapters. 

1.1 Introduction   

The first section of each chapter will contain an introduction to the specific curve 

under consideration.  This introduction may contain any interesting history of the curve, 

mathematicians and/or men of science who first worked with the curve, and any other 

tidbits of information about the curve that your author thinks worthy of note. 

1.2 Equations and Graph 

 The second section of each chapter will contain the equations and graph of the 

curve under consideration.  In order to derive or delineate equations, coordinate systems 

for representing plane curves need to be discussed.  Of the various coordinate systems for 

representing plane curves, six are addressed here; however, any representation of a given 

curve in a subsequent chapter will not necessarily be given in all of these coordinate 

systems.  The six are:  Parametric, Cartesian, Polar, Pedal, Bipolar, and Intrinsic. 

 

 The first three (i.e., Parametric, Cartesian, and Polar) are very well known and 

therefore require very little discussion.  Coordinate axes for the Cartesian and Parametric 

systems are a pair of mutually perpendicular lines usually drawn horizontally and 

vertically, where the horizontal line is called the x-axis and the vertical line is called the 

y-axis and the point where these two axes intersect is known as the origin.  Further, the 

distance along the x-axis to the point under consideration is referred to as the abscissa 

and the distance along the y-axis to the point under consideration is referred to as the 

ordinate.  Thus, a point of the curve is determined by a measure of the abscissa and 

ordinate of that point, usually notated by (x, y).  The Polar coordinate system consists of a 

point (the pole) and a ray from this point (the axis) to the curve and here, a point of the 

curve is determined by the angle between the horizontal and the axis and the distance 

along the axis from the pole to the point of the curve, usually notated by (r, ).  The 

Cartesian and Polar coordinate systems are basically point concepts; given any point, P, 

of the curve, there is one and only one set of coordinates (x, y) or (r, ) for P.  In the 

Parametric system, coordinates of a curve are expressed independently as a function of a 

single variable, say t, such as x = f (t) and y = g (t).  There may be (and usually are) many 

different and useful parametric representations. 

 

 In the Pedal coordinate system, coordinates are basically dependent on the curve, 

and a point of the curve, P, may have many different Pedal coordinates, usually denoted 

by (r, p), depending on the specific curve.  Refer to Figure 1-1.  Let O be a fixed point 
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(the pedal point, or pole) lying at the origin, and let C be a differentiable curve (i.e., its 

tangent exists).  At a point P (the point of the curve whose pedal coordinates are desired), 

 

 

Figure 1-1: The Pedal Coordinate System 

construct the tangent line L to C.  Then, the Pedal coordinates of P with respect to C and 

O are the radial distance r from O to P and the perpendicular distance p from O to L.  

Note that for a different curve, say C1, through point P, r is, of course, the same, but p 

may very well be different.  Also note that if C does not have a tangent at point P, that is, 

if P is an isolated point or cusp, then the Pedal coordinates of P do not exist. 

 

 Now consider the bipolar coordinate system by referring to Figure 1-2.  Let O1 

and O2 be two fixed points (the poles) that are a distance 2c apart.  The line segment 

L = O1O2 is termed the base line, and the bisector of L is known as the center.  The 

 

 

Figure 1-2: The Bipolar Coordinate System 

Bipolar coordinates of a point P on a curve C are the distances r1 and r2 from O1 and O2, 

respectively, to point P.  Note that points O1, O2, and P form a triangle, therefore r1, r2, 

and c must satisfy the inequalities r1 + r2 ≥ c and r1 – r2 ≤ c.  Further, since r1, r2, and c 

are all assumed to be positive, any equation in Bipolar coordinates describes a locus that 

is symmetric about line L; conversely, a locus that is not symmetric about some line 

cannot have a bipolar equation. 
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The choice of which coordinate system to use to represent a specific curve is 

usually dictated by the curve’s physical characteristics or by the particular information 

desired from the curve’s properties.  Thus, a system of rectangular coordinates (i.e., 

Cartesian) will be selected for curves in which slope is of primary importance.  Curves 

which exhibit a central property (physical or geometrical) with respect to a point will be 

expressed in a polar system with the central point as the pole.  (This is well illustrated in 

situations involving action under a central force; the path of the earth about the sun, for 

example.)  Again, if an outstanding feature is the distance from a fixed point to the 

curve’s tangent (as in the general problem of Caustics), a system of Pedal coordinates is 

most convenient.   

 

The equations of curves in each of these systems, however, are for the most part 

"local" in character and are altered by certain transformations.  Let a transformation 

(within a particular system or from system to system) be such that the measures of length 

and angle are preserved.  Then area, arc length, curvature, number of singular points, etc., 

will be invariant.  If a curve can be properly defined in terms of these invariants, its 

equation would be intrinsic in character and would express qualities of the curve which 

would not change from one system to another.  In other words, an intrinsic property is 

one that depends only on the figure in question, and not its relation to a coordinate system 

or other external frame of reference.  (For example, the fact that a rectangle has four 

equal angles is intrinsic to the rectangle, but the fact that a particular rectangle has two 

vertical sides is not, because an external frame of reference is required to determine 

which direction is vertical.)  William Whewell
1
 introduced a system involving arc length 

s and tangential angle, while Ernesto Cesáro
2
 gave a system involving arc length s and 

radius of curvature .  Since ds =   d, by definition, it is evident that these two systems 

are related.  They are known as intrinsic coordinate systems. 

 

 Not only may equations of the curve for the various coordinate systems discussed 

above be delineated in this section, but the equation of the tangent line will also be 

included.  It will always be derived using the following methodology, assuming a 

parametric representation for the curve, that is, x = f (t) and y = g (t).  The reader may 

recall the point-intercept equation for a straight line, namely, y = mx + b, where m is the 

slope of the line and b is the point where the line intercepts the y-axis.  That is, if we use 

the "dot" notation to stand for derivatives with respect to the parameter t, we have 

 

 
 
 

  bqf
qf

qg
qg 




. 

 

Hence, solving for b, we have 

 

 
 
 

 qf
qf

qg
qgb




 . 

                                                 
1
 William Whewell (1794-1866) was one of the most important philosophers in nineteenth-century Britain.  

Whewell is most known today for his massive works on the history and philosophy of science.   
2
 Italian mathematician (1859-1906) who made important contributions to Intrinsic Geometry.  
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Therefore, the Cartesian equation of the tangent line to the curve under consideration at 

the point t = q will always be 

 

           qgqfqgqfxqgyqf        Equation 1-1 

1.3 Analytical and Physical Properties 

The third section of each chapter will contain subsections that deal with the 

analytical and physical properties of the curve under consideration. 

1.3.1 Derivatives of the Curve 

Given that the curve has a parametric representation, the first and second 

derivatives of the curve will be delineated using this parametric form.  That is, if the 

parametric representation is x = f (t) and y = g (t), then the derivatives will include  
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 

f
dt
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1.3.2 Metric Properties of the Curve 

For some of the curves, the following quantities may be calculated:  arc length, 

plane area, volume of the solid of revolution of the curve, surface area of the solid of 

revolution, distance from the origin to the curve, and distance from the origin to the 

curve’s tangent. 

 

 Three different expressions for arc length may be used in the calculation of the 

length of a given curve.  The three expressions are, respectively, for Cartesian, 

Parametric, and Polar representations of the curve.  They are: 
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 Equation 1-2 

      

Three different expressions for the calculation of the plane area bounded by a 

given curve will be used and they each correspond to the Cartesian, Parametric, and Polar 

representations.  They are: 

 

   

















drA

dttftgA

dxyA

t

t

b

a

2

2
1

2

1

      Equation 1-3 

When a plane curve is revolved about one of the coordinate axes, the resulting 

figure is called a solid of revolution.  For some curves, the volume and/or the surface area 

of this solid of revolution can be calculated. When this is possible in subsequent chapters, 

the following formulas will be used for the volume calculation depending upon whether 

the curve is represented by the Cartesian or Parametric systems, respectively.  The 

notation, Vx, indicates the revolution takes place about the x-axis. 

 

    

















2

1

2

2

t

t

b

a

x

dttftg

dxy

V




    Equation 1-4 

Similarly, the following formulas will be used for the surface area calculation, 

again depending upon whether the curve is represented by the Cartesian or Parametric 

systems, respectively.  The notation Ax not only indicates the axis about which the 

revolution takes place (in this case, the x-axis), but the mere presence of the subscript 

also distinguishes the calculation from the calculation of plane area.  Note that when 

subsequent chapters include any of these four metrics (i.e., arc length, plane area, 

volume, or surface area), not only will the results of the calculation be given, but the 

integrals used in those calculations will be shown with some indication of how to perform 

the integration.  
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     Equation 1-5 

 Two distance calculations make up the final two metric properties for the given 

curve.  They are the radial distance (i.e., the distance from the origin to the curve) and the 

tangential distance (i.e., the distance form the origin to the tangent).  The formulas are: 

 

22 yxr       Equation 1-6 

22 gf

gfgf
p








      Equation 1-7 

1.3.3 Curvature 

This section will contain two calculations, that is, the radius of curvature of the 

curve and the coordinates for the center of curvature.  For the radius of curvature  we 

have 
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      Equation 1-8 

If (,) is the notation used to represent the coordinates of the center of curvature, then 
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     Equation 1-9 

Alternately, the coordinates of the center of curvature may also be calculated using 
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     Equation 1-10 

1.3.4 Angles 

 Three angles are of consequence: the slope angle, , the radial angle, , and the 

tangential-radial angle, .  The slope angle  of a line is defined as the angle formed by 

that line and any horizontal line, such as the x-axis (see Figure 1-3), that intersects the 

given line; if the given line is parallel to the x-axis, then the slope angle is assumed to be 



 

Chapter 1: Background 1-7 Playing With Dynamic Geometry 

zero.  The radial angle  is the angle between the radial line that connects the origin and 

point P, a point of the curve, and the x-axis (taken clockwise from the radial line).  

Finally, the tangential-radial angle  is defined as the angle between the radial line and 

the line L, again taken clockwise but this time from L.  Note that all three angles are in 

the semi-closed interval [0,). 

 

 

Figure 1-3: The Slope, Radial, and Tangential-Radial Angles 

 A formula for the tangent of the slope angle  has already been given in the 

delineation of the derivatives in section 1.3.1, namely, y.  The radial angle  is, of 

course, one of the coordinate variables in the Polar coordinate system and its tangent is 

given as tan = y/x. Finally, the tangential-radial angle  is related to the other two angles 

by  =  –.  However, another relationship exists for the tangential-radial angle that 

may be more useful, namely 
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yyx


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tan   Equation 1-11 

1.4 Geometric Properties 

 Ten different geometrical properties may be addressed in this fourth section.  

They are any asymptotes that the curve may possess, possible branches that the curve 

may have, critical points on the curve, if the curve includes any discontinuities, any 

envelopes to the curve, intercepts with the coordinate axes, the extent or range of the 

curve, loops that the curve may undergo, any singularities the curve may have, and 

finally any symmetries exhibited by the curve. 

1.5 Types of Derived Curves 

 Once a curve has been defined, it is possible to use some of its properties together 

with auxiliary points, lines, and/or other curves, to obtain a new curve.  Although, the 
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subsequent chapters of this text do not make a point of addressing the derived curves for 

the curve covered by that specific chapter, sometimes a derived curve is mentioned or 

plays a role in one of the dynamic geometry constructions.  For this reason, a short 

exposition of derived curves is included here. 

1.5.1 Evolute 

 The idea of evolutes purportedly originated with Christian Huygens in 1673 in 

connection with his studies on light.  However, the concept can actually be traced back to 

Apollonius (circa 200 BC) where it appears in the fifth book of his Conic Sections.  

Simply put, the evolute of a curve, C, is merely the locus of its center of curvature.  As 

such, one can use Equation 1-9, the expressions for the coordinates of the center of 

curvature, for the parametric equation for the evolute.  It can be shown that all tangents to 

an evolute are normals to the given curve.  Hence, an alternate definition of the evolute is 

as the envelope of normals to the given curve. 

1.5.2 Involute 

 Twenty years after Huygens addressed the evolute, he discussed and utilized the 

involute of a circle (circa 1693) in connection with his study of clocks without pendulums 

for service on ships at sea.  An involute of a curve, C, is the trace of a selected point on a 

line that rolls as a tangent upon the given curve C.  Obviously, since the selected point is 

an arbitrary point on the tangent line, there can be many different involutes to the given 

curve C; however, they are all parallel.  It can be shown that if C1 is an evolute of C2, 

then C2 is an involute of C1.  If n is the distance from the tracing point to the point of 

tangency, then the equations of the involute for the curve C in parametric form are given 

by 
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     Equation 1-12 

1.5.3 Parallel Curves 

 Leibnitz was the first to consider parallel curves in the years 1692 to 1694.  He 

was prompted, no doubt, by the involutes of Huygens.  Let P be a variable point on a 

given curve C.  The locus of point Q1 and Q2 located  n units distance from P as 

measured along the normal through P to C is defined to be the parallel curve; obviously, 

there are two branches.  For some values on n, a parallel curve may not be unlike the 

given curve in appearance, but for other values of n it may be totally different.  Note that 

since parallel curves have common normals, they have a common evolute.  Equation 1-13 

gives the parametric equations for the parallels in parametric form; note the similarity to 

the equations for the involute. 
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     Equation 1-13 

1.5.4 Inversion 

Inversion in geometry is a transformation.  Let P be a given point and let C be a 

circle centered at point O with a radius of r.  The inverse of the point P with respect to C 

is a point Q on the radial line OP such that the distance OP multiplied by the distance OQ 

is equal to r
2
.  From this definition, two properties are readily evident.  First, the point Q 

is an inverse of the point P if and only if P is an inverse of Q.  Second, points inside the 

circle are mapped to the outside and vice-versa.  Points on the circumference of the circle 

are, of course, fixed; that is, the inversion of any point on the inversion circle is mapped 

to itself.  As P moves farther away from O, its image Q moves closer to O.  From this 

observation, we may then define the inverse of the center of the inversion circle to be a 

point at infinity, and vice-versa.  With such a definition, we have obtained a 

transformation on a plane that has a point at infinity, an important concept used in 

stereographic projection.  It basically shows that such a plane is topologically equivalent 

to a sphere.  Further, inversion can also be regarded as a generalization of reflection, 

where a normal reflection is simply an inversion where the inversion circle has an 

infinitely large radius.  With this concept of the inversion of a point, the inversion of a 

curve is simply the inversion of every point on the curve and can be construed as a way to 

derive a new curve from the given curve.  If curve A is the inverse of curve B, then curve 

B is the inverse of curve A with respect to the same inversion circle.  The center of the 

inversion circle is sometimes referred to as the pole point.  One property that is readily 

obvious from this definition of inversion is that the radius of the inversion circle affects 

the scale of the inverted curve, but does not affect its shape.  Curves that invert into 

themselves are called anallagmatic curves.  Circles, lines, and Cassinian ovals are all 

anallagmatic curves.  Asymptotes to a curve C invert into a curve that is tangent to the 

inverse of C. 

1.5.5 Pedal Curves 

 The idea of Pedal curves first occurred to Colin Maclaurin in 1718.  Given a curve 

C and an arbitrary point P on C, construct the tangent to C through P.  Then from a fixed 

point O (the pole point) located anywhere in the plane, drop a perpendicular to the 

tangent.  Let the intersection of the perpendicular and the tangent be point S.  The locus 

of point S as P moves along C is defined to be the first positive pedal curve of C with 

respect to the point O.  If C is represented in parametric form and if (x0, y0) are the 

coordinates of the pole point, then the equations of the first positive pedal are 
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     Equation 1-14 

1.5.6 Conchoid 

Let point O be fixed and let line L be a line through point O intersecting the given 

curve, curve C, at point Q.  The locus of points P1 and P2 on L such that P1Q = QP2 = a,  

 

 

Figure 1-4: Conchoid 

where a is a given constant is called a Conchoid of curve C with respect to point O (the 

pole point).  Refer to Figure 1-4.  In general, the locus of the point P1 does not connect 

with the locus of P2 and therefore the conchoid has two branches.  If (x0, y0) are the 

coordinates of the pole point, then the parametric equations of the conchoid are given by 
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      Equation 1-15 

1.5.7 Strophoid 

 Given a curve C and two fixed points, O and A, as shown in Figure 1-5.  Now let 

there be a line L through point O intersecting the curve C in point Q.  Further, let P1 and 

P2 be two points on line L such that P1Q = QP2 = QA.  The locus of P1 and P2 as Q varies 

over C is the Strophoid of C with respect to points O and A. 
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Figure 1-5: Strophoid 

 If the coordinates of points O and A are (x0, y0) and (x1, y1) respectively, and if C 

is represented in parametric form, then the parametric representation of the strophoid is 

given by 
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     Equation 1-16 

1.5.8 Cissoid 

 Let C1 and C2 be two curves and let O be a fixed point.  Let the line L through 

point O intersect the two curves C1 and C2 in points Q1 and Q2 respectively.  Further, let 

P be a point on line L such that OP = OQ2 – OQ1 = Q2Q1.  The locus of points P on all 

such lines L is called the Cissoid of C1 and C2 with respect to point O.  See Figure 1-6. 

 

 

Figure 1-6: Cissoid 
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1.5.9 Roulette and Glissette 

If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point 

P attached to C1 describes a Roulette.  The term is also sometimes applied to the 

envelope of a fixed line attached to C1.  A curve similar to the Roulette is the Glissette, 

which is defined to be the locus of a point carried by a curve C as it slides between two 

given curves C1 and C2, or slides tangent to a given curve C1 at a point.  It can be shown 

that any Glissette may also be defined as a Roulette. 

1.5.10 Isoptic and Orthoptic 

 The locus of the intersection point of tangents to a curve C meeting at a constant 

angle  is an Isoptic; if  =  / 2, the Isoptic is termed an Orthoptic. 

1.5.11 Caustic 

A Caustic of a given curve C is the envelope of light rays emitted from a point 

source S after reflection or refraction at C.  If the light rays are reflected, the curve is 

called a Catacaustic; if the light rays are refracted, the curve is called Diacaustic. 

1.6 Special Considerations 

This section will contain any other interesting problems, facts, or associated 

discussion relating to the curve under consideration that your author deems worthy of 

including. 

1.7 Dynamic Geometry Construction 

This section will, of course, contain the main motive for this text—namely the 

dynamic geometry constructions.  The number per curve will vary; many different 

constructions exist for some curves while only a few are known for other curves.  

Regardless of the number, they will be in a tabular form with easy-to-follow steps so that 

the reader can reproduce the construction, execute the animation, and see the result 

unfold in all of its beauty.  Some of the constructions will be illustrated with a snapshot 

of what the final construction should look like.  

 

 



 

Chapter 2:  The Cissoid of Diocles 2-1 Playing With Dynamic Geometry 

Chapter 2 – The Cissoid of Diocles 
 

 

Figure 2-1: A Three-Dimensional Version of the Cissoid of Diocles 

 

The Cissoid of Diocles is rendered as a three-dimensional object.  It has been extruded 

into the third dimension, i.e., normal to the plane of the paper, and then truncated along 

its asymptote.  The surface of the object has been given a golden-metallic appearance.  

The background has been made to appear as though the object is floating in a bluish-

purple sky with white clouds randomly scattered.  Lighting has been placed so as to put 

the cusp of the object and a portion of the upper branch in shadow. 
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2.1 Introduction 

Supposedly, in 430 BC, the Athenians were suffering from a terrible plague that 

was causing much death and misery.  In order to appease the gods and stop the plague, 

the oracle of the god Apollo at Delos was consulted.  The Athenians were instructed by 

the oracle to double the size of their altar, which at the time, was a cube.  They then 

proceeded to double every edge, but, of course, the ravages of the plague increased.  

After some thought, they came to the observation that the problem consists of 

constructing a length that is the cube root of 2 times the length of an edge of the original 

altar.  As a result, the problem of duplicating the cube using only compass and 

straightedge became known as the Delian problem.  As it turns out, one can never find a 

solution requiring only the straightedge and compass, as was proven some centuries later.  

However, the Greeks obtained many solutions using a variety of clever techniques.  

Special curves were invented and investigated for this purpose, which themselves could 

not be constructed by using only a straightedge and compass.  One such curve 

investigated by Diocles (circa 180 BC) in connection with this Delian problem is a curve 

that is today called the Cissoid of Diocles; cissoid means ivy-shaped. 

 

 

Figure 2-2: The Cissoid of Diocles as a Locus of Points 

Refer to Figure 2-2, which depicts an origin O, a circle of radius a passing 

through the origin, and a tangent to the circle at the point (2a, 0).  Let any line, L, passing 

through the origin intersect the circle in the point P1 and intersect the tangent line in P2.  

Let the point Q be a point on L such that the distance from the origin to Q equals the 

distance between points P1 and P2.  The Cissoid of Diocles is then defined as the locus of 

point Q for all possible lines L through the origin which intersect the circle and tangent as 
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shown.  In section 2.5, it will be shown how this curve can be used to solve the Delian 

problem.  First, however, let us derive the equations of this curve. 

2.2 Equations and Graph of the Cissoid of Diocles 

It is relatively straightforward to derive the polar equation for the Cissoid from 

the geometric relationships depicted in Figure 2-2.  From elementary geometry, ∆AOP1 is 

a right triangle since one side is the diameter of a circle and the opposite vertex lies on 

the circle’s circumference.  Therefore, the cos = OP1 / 2a, or OP1 = 2acos.  Similarly, 

AOP2 is also a right triangle because the line x = 2a is tangent to the circle at point A.  

Therefore, cos = 2a / OP2 or OP2 = 2a / cos.  Now, since OQ = r = OP2 – OP1, we 

have 
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Hence, 

 tansin2ar      Equation 2-1 

From this polar representation, it is a simple matter to derive the Cartesian form of the 

Cissoid by substituting the familiar polar-to-rectangular coordinate transformations, i.e.,  

x = rcos, y = rsin, and r = (x
2
 + y

2
)
 ½

.  Making that substitution in Equation 2-1, we get 
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Clearing the fractions and rearranging, we obtain 
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     Equation 2-2 

From the Cartesian form of the equation, we can derive a parametric form by considering 

the line y = tx.  Making this substitution in Equation 2-2 and solving for x, one obtains 
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Similarly, eliminating x, and solving for y, 
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Hence, a parametric representation of the Cissoid of Diocles is 
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     Equation 2-3 

An alternative and useful parametric representation of the Cissoid of Diocles can 

be obtained by setting tan θ = t in Equation 2-1.  A little algebraic manipulation will then 

yield the following alternative parametric representation 

 

    22     ,tan,1sin2, 2   tttayx      Equation 2-4 

Intrinsic equations can also be derived for the Cissoid of Diocles.  The Whewell and 

Cesáro equations are, respectively 

 

 1sec3  as      Equation 2-5 

    32228
9729  asaas      Equation 2-6 

Graphing the Cissoid of Diocles, we get the curve shown in Figure 2-3.  As can be 

seen from this plot, the vertical line x = 2a is an asymptote, and the derivative at the 

origin, i.e., (0, 0), does not exist although the curve is continuous at that point. 

 

 

Figure 2-3: Graph of the Cissoid of Diocles 

The equation of the tangent at the point t = q is 

 

  .tan2cos21sectan2 322 qaxqqqy       Equation 2-7 
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2.3 Analytical and Physical Properties of the Cissoid of Diocles 

Using the parametric representation of the Cissoid of Diocles given in Equation 2-

4, i.e., x = 2asin
2
t and y = 2atantsin

2
t, the following paragraphs delineate the relevant 

analytical and physical properties of the Cissoid of Diocles. 

2.3.1 Derivatives of the Cissoid of Diocles 
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2.3.2 Metric Properties of the Cissoid of Diocles 

If A is the area between the Cissoid of Diocles and its asymptote, then .3 2aA   

This result is easily obtained using the Cartesian form of the Cissoid and the appropriate 

equation for plane area which yields the following integral for the area under 

consideration 
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This integral is most easily evaluated by making the substitution x = 2a sin
2.  Under this 

substitution, we have 

 
2

0

42 .sin16



 daA  

This resulting integral can be evaluated by elementary methods using the trigonometric 

identity sin
2 = ½ - ½  cos2, so that we finally get the result indicated above, that is, 

A = 3πa
2
. 

 

If V is the volume of the solid of revolution about the asymptote, then .2 32aV   

This result may be obtained by considering an incremental cylindrical shell.  The volume 

of this incremental element is the circumference of its circular portion times its height 

times its thickness, i.e., dV = 2(2a – x)  2y  dx.  By integrating between x = 0 and x = 

2a we can calculate the total volume, that is,  
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Again, the substitution of x = 2asin
2 yields the following integral which can be 

evaluated in a manner similar to that used in the previous area calculation. 
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That is, writing each of the two portions of the integrand in terms of the cos2, expanding 

the resulting binomials, evaluating the simple integrals that result, and continuing this 

process until all remaining integrals can be calculated, we get the result indicated above 

of .2 32aV   

 

If r is the distance from the origin to the curve, then 
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If p is the distance from the origin to the tangent, then 
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2.3.3 Curvature of the Cissoid of Diocles 

If ρ represents the radius of curvature of the Cissoid of Diocles, then 
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If (α, β) are the coordinates of the center of curvature, then 
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2.3.4 Angles for the Cissoid of Diocles 

If  is the slope angle, then 
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 If  denotes the radial angle, then 

 

 = t. 

 

If ψ is the angle between the tangent and the radius vector at the point of 

tangency, then 
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2.4 Geometric Properties of the Cissoid of Diocles 

 Intercepts:  (0, 0). 

 

 Extrema:  (0, 0), x-minimum. 

 

 Extent:  0 ≤ x < 2a;  –  < y < + . 

 

 Symmetry: y = 0. 

 

 Asymptote:  x = 2a. 

 

 Cusp:  (0, 0). 

2.5 Doubling the Cube 

In order to double a cube of volume V whose side is s, one must be able to construct 

the side of a second cube with length 3 2 s.  Given a segment s = CB, one can use the 

Cissoid of Diocles to construct a segment CM such that CM
3
 = 2CB

3
.  It is done in the 

following manner (refer to Figure 2-4). 

 

 

Figure 2-4: Doubling the Cube 

1. Given two points C and B, construct a circle with center at point C and passing 

through point B. 

2. Construct points O and A such that OA is perpendicular to CB. 

3. Construct the tangent to the circle at point A. 

4. Construct the Cissoid with origin at point O. 
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5. Construct point D such that point B is the midpoint of segment CD. 

6. Construct the line AD. 

7. Let the intersection of line AD and the Cissoid be point Q.
3
 

8. Construct the line OQ. 

9. Let the intersection of lines CD and OQ be the point M. 

 

If one follows the steps outlined above, upon completion of step 9, the cube of segment 

CM will equal twice the cube of segment CB, i.e., CM
3
 = 2CB

3
. 

2.6 Dynamic Geometry of the Cissoid of Diocles 

Dynamic geometry applications, such as the Geometer’s Sketchpad (GSP), can be 

used to generate the Cissoid of Diocles in a variety of entertaining ways, as the next 

eleven subsections illustrate. 

2.6.1 A Construction Based on the Definition of the Cissoid of Diocles 

This construction, which can be found in Table 2-1, follows directly from the 

definition of the Cissoid of Diocles as addressed in Section 2-1. 

Table 2-1: The Cissoid of Diocles by Definition 

1.  Draw horizontal line AB (with point B to the right of point A) 7.  Let point E be the intersection of line CD and P1. 

2.  Draw circle AB with center at A and passing through B 8.  Draw line segment DE  

3.  Let point C be on the circumference opposite point B 9.  Construct a circle centered at C with radius = segment DE 

4.  Construct P1  to line AB through point B 10. Let point F be the intersection of line CD and the 2nd circle 

5.  Let D be a random point on circle AB (on the circumference) 11. Trace point F and change its color 

6.  Draw line CD 12. Animate point D around circle AB 

 

As point D moves around circle AB, point F will trace the Cissoid of Diocles.  

Note that the distances DE and FC remain equal to each other even though the values 

change due to the movement of point D.  Also note that in step 7, where point E becomes 

the intersection of P1 and line CD, if CD does not appear to intersect P1 in your particular 

GSP construction, simply drag point D around circle AB until the desired intersection 

becomes evident.  Further, note also that in step 10 of the construction, the 2
nd

 circle and 

the line CD actually intersect in two points; either point will trace the Cissoid of Diocles, 

however, the second point (call it point G) will generate a curve that opens in the 

opposite direction from that of point F, although both will have cusps at point C. 

2.6.2 Diocles’ Method 

By some modern accounts, Diocles constructed his Cissoid using a methodology 

similar to that delineated below in Table 2-2. 

Table 2-2: Diocles' Method 

1.  Draw horizontal line AB 7.  Let point F be the reflection of F across line CD 

2.  Draw circle AB centered at point A and through point B 8.  Draw line EF 

3.  Construct P1   to line AB through point A 9.  Construct P2  to line AB through point F 

4.  Let points C and D be the intersections of circle AB and P1. 10. Let point G be the intersection of line EF and P2 

5.  Let point E be on circle AB opposite from point B. 11. Trace point G and change its color 

6.  Let F be a random point on circle AB (on the circumference) 12. Animate point F around circle AB 

 

                                                 
3
 This intersection point cannot be found with a straightedge and compass only. 
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As point F moves around circle AB in the construction above, point G will trace 

the Cissoid of Diocles.  If one also constructs a perpendicular line to AB through point B 

and then lets point H be the intersection of line EF' and this new perpendicular, it can be 

shown that although distances F'H and EG do not remain constant as point F travels 

around circle AB, they do however remain equal. 

2.6.3 Newton’s Method 

Newton also had a method of generating the Cissoid of Diocles.  He used two line 

segments of equal length at right angles to each other.  If they are moved so that one line 

segment always passes through a fixed point and the end of the other segment slides 

along a straight line, then the midpoint of the sliding segment traces out the Cissoid.  This 

method is often referred to as the Carpenter Square (T-square) method of construction.  

See Figure 2-5.  

  

 

Figure 2-5: The Carpenter Square Method 

With a right angle at Q, the fixed point A of the T-square moves along CA while 

the other edge of the T-square passes through B, a fixed point on the line BC 

perpendicular to AC.  The path of P, a fixed point on AQ describes the curve.  Two items 

are of interest here:  (1) Let AP = OB = b, and BC = AQ = 2a, with O the origin of 

coordinates.  Then AB = 2asec θ and r = 2asec θ – 2bcos θ.  The point Q describes a 

Strophoid (see Chapter 3).  (2) Point A has the direction of the line CA while the point of 

the T-square at B moves in the direction BQ.  Normals to AC and BQ at A and B 

respectively meet in H the center of rotation.  HP is thus normal to the path of P.  A 

perpendicular to that normal through P will thus be a tangent.  Table 2-3 contains the 

construction steps for Newton’s method. 
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Table 2-3: Newton's Method 

1.  Draw horizontal line segment AB With A to the right of B 8.  Draw line segment AF 

2.  Construct P1 to line segment AB passing through point A 9.  Construct circle C2 centered at B and radius = segment AF 

3.  To the right of P1, draw circle CD centered at C through D 10. Let points G and H be the intersection of circles C1 and C2 

4.  Let E be a random point on the circumference of circle CD 11. Draw line segments FG and FH 

5.  Draw ray CE starting at point C and passing through point E 12. Let I and J be the midpoints of segments FG and FH, resp. 

6.  Let point F be the intersection of ray CE and perpendicular P1 13. Trace points I and J and change their color 

7.  Construct circle C1 centered at F and radius = segment AB 14. Animate point E around circle CD 

 

Note that this construction (if using GSP) traces not only the Cissoid, but also a 

straight line that intersects the Cissoid at its cusp; the two traced points share in the 

production of the straight line.  The straight line is not part of the Cissoid.  If, in step 6, 

ray CE does not intersect P1, simply drag point E around circle CD until the intersection 

occurs. 

2.6.4 A Construction Based on Dividing a Circle’s Diameter 

The Cissoid of Diocles can also be generated by measuring the ratio into which a 

point divides the diameter of a circle.  This construction is delineated below in Table 2-4.  

In this construction, the ratio that is calculated of course changes as point F moves around 

circle CD.  However, an examination of another ratio, namely that of segment F'G to 

segment FG, will always be equal to that of segment EG to segment DG. 

Table 2-4: Construction by Dividing a Diameter 

1.  Draw horizontal line AB 10. Let point G be the intersection of P1 and the parallel line 

2.  Let C be a random point not on line AB 11. Draw line segment EG 

3.  Rotate line AB around point C by 180º 12. Measure the length of line segment EG 

4.  Construct  P1  to line AB through point C 13. Draw line segment DG 

5.  Let point D be the intersection of P1 and the rotated line 14. Measure the length of line segment DG 

6.  Let point E be the intersection of line AB and P1 15. Calculate the ratio of segment EG to segment DG 

7.  Draw circle CD with center at C and passing through point D 16. Let F' be the image when F is dilated about G by the ratio 

8.  Let F be a random point on circle CD 17. Trace point F' and change its color 

9.  Construct the parallel line to line AB through point F 18. Animate point F around circle CD 

 

2.6.5 A Construction Based on Three Lines 

This construction for the Cissoid of Diocles opens up or down depending on how 

you draw the vertical line asked for in the first step of the construction.  If you draw the 

vertical line with point A above point B, the curve opens down.  If you draw the vertical 

line with point A below point B, the curve opens upward.  Table 2-5 contains the steps 

for this construction which, if you don’t count the perpendiculars, requires only three 

straight lines. 

 

 

Table 2-5: Construction Based on Three Lines 

1.  Draw vertical line AB 7.  Construct P2  to line AC through point C 

2.  Draw circle AB centered at A and passing through point B 8.  Draw line BD 

3.  Let C be a random point on circle AB (on the circumference) 9.  Let point E be the intersection of line BD and P2. 

4.  Construct P1  to line AB passing through point B 10. Trace point E and change its color. 

5.  Draw line AC 11. Animate point C around circle AB. 

6.  Let point D be on Circle AB diametrically opposite point C  
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2.6.6 The Cissoid of Diocles as the Inversion of a Parabola 

In Chapter 1, we learned how inversion can be used to derive a new curve from a 

given curve.  This concept of inversion of a curve forms the basis for the construction 

shown here.  It turns out that if the vertex of a parabola is used as the center of inversion, 

then the parabola will invert into the Cissoid of Diocles.  Table 2-6 contains this 

construction. 

Table 2-6: The Cissoid of Diocles as the Inversion of a Parabola 

1.  Draw horizontal line AB 15. Trace point J and change its color 

2.  Let C be a random point on line AB 16. Let K be the midpoint of line segment CD 

3.  Construct P1  to line AB through point C. 17. Draw line JK 

4.  Let D be a random point on perpendicular P1. 18. Measure distance JK 

5.  Draw line segment CD and hide perpendicular P1. 19. Draw a circle centered at point K of any radius, say KL 

6.  Draw circle EF anywhere below line AB (centered at E). 20. Measure distance KL 

7.  Let G be a random point on the circumference of circle EF 21. Calculate KL2 / JK 

8.  Draw line EG 22. Mark the distance calculated in the previous step 

9.  Let point H be the intersection of lines AB and EG 23. Let K be the image as point K is translated by KL2 / JK 

10. Draw line segment DH 24. Draw circle KK centered at K and passing through K 

11. Let I be the midpoint of line segment DH 25. Let point M an intersection of line JK and circle KK 

12. Construct P2  to line segment DH through point I. 26. Trace point M and change its color 

13. Construct P3  to line AB through point H. 27. Animate point G around circle EF 

14. Let point J be the intersection of perpendiculars P2 and P3  

 

Note that line JK obviously intersects circle KK' in two points (i.e., step 25 

instructs one to label the intersection point M).  The trace of point M is that of a Cissoid 

of Diocles which has a cusp at point K; if the other point of intersection is chosen instead, 

it will also trace a Cissoid of Diocles with a cusp at point K but it will open in the 

opposite direction.   

 

Obviously, the inversion process, in general, requires three steps.  First, the curve 

which is to be inverted must be constructed—in this case, the Parabola which is done in 

steps 1 to 15.  Second, the pole point (or inversion point) must be located—in this case, 

the vertex of the Parabola.  This is the midpoint of line segment CD and is identified in 

step 16.  Third and finally, the inversion process must be executed—in this case, steps 17 

to 27. 

2.6.7 The Cissoid of Diocles as the Pedal Curve of a Parabola 

In Chapter 1 we learned that if C is a curve and O is a point (referred to as the 

pedal point), the locus of the foot of the perpendicular from point O to a variable tangent 

to C is called the pedal curve of C with respect to the pedal point O.  It so happens that 

the pedal curve of a parabola when the pedal point is on the vertex of the parabola is a 

Cissoid of Diocles, as can be seen from the following construction (Table 2-7). 
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Table 2-7: The Cissoid of Diocles as the Pedal of a Parabola 

1.  Draw horizontal line AB 11. Let I be the midpoint of line segment DH 

2.  Let C be a random point on line AB 12. Construct P2  to line segment DH through point I 

3.  Construct P1  to line AB through point C. 13. Construct P3  to line AB through point H. 

4.  Let D be a random point on perpendicular P1. 14. Let point J be the intersection of perpendiculars P2 and P3 

5.  Draw line segment CD and hide perpendicular P1. 15. Trace point J and change its color 

6.  Draw circle EF anywhere below line AB (centered at E). 16. Let K be the midpoint of line segment CD 

7.  Let G be a random point on the circumference of circle EF 17. Construct P4  to P2 through point K 

8.  Draw line EG 18. Let point L be the intersection of perpendiculars P2 and P4. 

9.  Let point H be the intersection of lines EG and AB 19. Trace point L and change its color 

10. Draw line segment DH 20. Animate point G around circle EF 

 

The construction used here for the Parabola is the same as that used in the 

previous section (i.e., section 2.6.6), that is, steps 1 to 15.  Step 16 is, of course, the 

identification of the vertex of the Parabola and the remaining steps are the execution of 

the Parabola’s Pedal using the vertex as the pole point.  Perpendicular P2 is the tangent to 

the Parabola traced by point J.  P4 is perpendicular to this tangent and passes through 

point K, the vertex of the Parabola.  Therefore, the intersection of these two 

perpendiculars (point L) is, by definition, a point on the pedal curve when the vertex is 

used as the pedal (or pole) point.  Notice how the Cissoid’s cusp and the Parabola’s 

vertex coincide.  Fascinating! 

2.6.8 The Tangent to the Cissoid of Diocles 

One of the geometric elements that it is always desirable to construct to a curve is 

its tangent.  Here is a "sweet" little construction for the tangent to the Cissoid of Diocles 

(Table 2-8). 

Table 2-8: The Cissoid of Diocles and Its Tangent 

1.  Create x-y coordinate axes with origin A and unit point B 11. Construct P4  to line AC through point E 

2.  Draw circle AB centered at A and passing through point B 12. Construct P5  to P3 through point D. 

3.  Let C be a random point on circle AB’s circumference 13. Let point F be the intersection of perpendiculars P4 and P5 

4.  Draw line AC 14. Let point G be the intersection of perpendiculars P2 and P4 

5.  Construct P1  to line AC through point A 15. Draw line segment FG 

6.  Construct P2  to P1 through point B 16. Let H be the midpoint of line segment FG 

7.  Let point D be the intersection of perpendiculars P1 and P2 17. Let point H' be the image of H translated by vector E → H 

8.  Construct P3  to the x-axis through point D 18. Draw line AH' 

9.  Let point E be the intersection of line AC and P3 19. Construct  P6 (the tangent)  to line AH' through point E 

10. Construct the locus of point E as point C traverses circle AB 20. Animate point C around circle AB 

 

Dynamic geometry applications often support the capability of making certain 

geometric elements of the construction stand out by using thicker lines and different 

colors.  GSP supports such a capability.  In the construction above, if one thickens and 

colors (say blue) perpendicular P6 (the tangent) and thickens and colors (say red) the 

locus (step 10), when the animation is run, it is easier to focus on the elements one is 

interested in observing. 

2.6.9 The Osculating Circle of the Cissoid of Diocles 

As mentioned above, a curve’s tangent is desirable; so too is the curve’s 

osculating circle.  The osculating circle is simply the circle with center point coincident 

with the curve’s center of curvature and tangent to the curve.  In order to construct this 

circle, one must construct the curve’s center of curvature (usually not an easy task).  But 

it’s like a "five-in-one" deal.  Once accomplished, one has a construction that gives not 
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only the osculating circle, the radius of curvature, and the center of curvature, but also the 

curve’s evolute and the curve’s normal.  Table 2-9 gives such a construction (albeit a 

very complex one) for the Cissoid of Diocles. 

 

Drawing line segment E3E gives, of course, the radius of curvature for the Cissoid 

of Diocles.  Drawing line E3E gives the normal to the Cissoid of Diocles, point E3 is the 

center of curvature, and finally, if one traces point E3 and reruns the animation, point E3 

will trace the evolute to the Cissoid of Diocles. 

2.6.10 The Generalized Concept of the Cissoid 

In Chapter 1 we learned that a concept termed the Cissoid can be used to derive 

other curves, and in point-of-fact, we learned that what was required were two curves, 

which we called C1 and C2 and a fixed point O.  Let the line L through point O intersect 

the two curves in Q1 and Q2 respectively.  Further, let P be a point on line L, such that  

Table 2-9: The Osculating Circle for the Cissoid of Diocles 

1.  Create x-y coordinate axes with origin A and unit point B 27. Draw line segment IJ 

2.  Draw circle AB with center at  A and passing through point B 28. Let K be the midpoint of line segment IJ 

3.  Let C be a random point on the circumference of circle AB 29. Let K' be the image when K is translated by vector A → K 

4.  Draw line AC 30. Draw line segment AE 

5.  Construct  P1  to line AC through point A 31. Let L be the midpoint of line segment AE 

6.  Construct P2  to P1 through point B 32. Let L' be the image when L is translated by vector K' → L 

7.  Let point D be the intersection of perpendiculars P1 and P2 33. Let A' be the image when A is translated by vector L' → A 

8.  Construct P3  to the x-axis through point D 34. Let point M be the intersection of the x-axis and P4 

9.  Let point E be the intersection of P3 and line AC 35. Construct P9  to the x-axis through point M 

10. Construct the locus of point E as point C traverses circle AB 36. Let point N be the intersection of P9 and line AC. 

11. Construct P4  to line AC through point E 37. Let N' be the image when N is translated by vector A → N 

12. Construct P5  to P3 through point D 38. Draw line segment A'N' 

13. Let point F be the intersection of perpendiculars P2 and P4 39. Let O be the midpoint of line segment A'N' 

14. Let point G be the intersection of perpendiculars P4 and P5 40. Let O' be the image when O is translated by vector A → O 

15. Draw line segment FG 41. Construct P10  to line AC through point O' 

16. Let H be the midpoint of line segment FG 42. Let point P be the intersection of perpendiculars P6 and P10 

17. Let H1 be the image when H is translated by vector E → H 43. Construct P11  to line segment AH2 through point A 

18. Let H2 be the image when H1 is rotated about point A by 90° 44. Construct P12  to P11 through point P 

19. Draw line segment AH2 45. Let point Q be the intersection of perpendiculars P11 and P12 

20. Let E1 be the image when E is translated by vector H1 → E 46. Draw line segment H2Q 

21. Let E2 be the image when E1 is translated by vector E → E1 47. Construct P13  to line segment H2Q through point H2 

22. Construct perpendicular P6 to P4 through point E2 48. Let point R be the intersection of perpendiculars P11 and P13 

23. Construct P7  to P6 through point B 49. Let E3 be the image when E is translated by vector R → A 

24. Construct P8  to the x-axis through point B 50. Draw circle E3E with center at E3 and passing through point E 

25. Let point I be the intersection of line AC and P7 51. Make circle E3E thick and change its color 

26. Let point J be the intersection of P8 and line AC 52. Animate point C around circle AB 

 

OP = OQ2 – OQ1 = Q2Q1.  The locus of points P on all such lines L is called the Cissoid 

of C1 and C2 with respect to the point O (see Figure 1-6).  We can therefore generalize 

the concept of the Cissoid wherein the Cissoid of Diocles becomes a specific case of the 

generalized Cissoid.  In Figure 2-2, where we defined the Cissoid of Diocles, if we 

replace the circle by any curve, C1, and replace the tangent line by any other curve, C2, 

then the resulting locus of Q as P1 moves on C1 is called the Cissoid of C1 and C2 with 

respect to the pole, O.  Note that there are two points on L such that the distances OQ and 

P1P2 are equal (the one shown and a similar point below the x-axis).  The two points are 

symmetric around point O on L, so that either one can be used to generate the (same) 

Cissoid.  As alluded to above, if C1 is a circle and C2 is a line tangent to C1 at point A and 

point O is the point on C1 opposite point A, then the Cissoid of C1, C2, and the pole O is 
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called the Cissoid of Diocles.  If O is an arbitrary point on the circle, the curve is termed 

an Oblique Cissoid.  A GSP construction for an Oblique Cissoid is given in Table 2-10, 

below. 

Table 2-10: The Oblique Cissoid 

1.  Draw vertical line AB 6.  Draw line CD 

2.  Draw circle AB centered at A and passing through point B 7.  Let point E be the intersection of line CD and P1. 

3.  Construct P1  to line AB through point B 8.  Let C be the image when C is translated by vector D  E 

4.  Let C be a random point on the circumference of circle AB 9.  Trace point C and change its color 

5.  Let D be a 2nd random point on the circumference of circle AB 10. Animate point D around circle AB 

 

If the line passes through the center of the circle (as opposed to being tangent to 

the circle), and the pole is on the circle’s circumference, then the resulting curve is called 

a Strophoid; if the pole is a point on the circumference and farthest from the line, the 

curve is a special case of the Strophoid, namely a Right Strophoid (see Chapter 3).  The 

Cissoid of a line and a circle, with pole at the center of the circle, is any member of the 

family known as the Conchoid of Nicomedes (see Chapter 5).  It can be shown that when 

a Cissoid is based on curves C1, C2, and pole point O, where C1 and C2 intersect at point 

P, then the line OP will be tangent to the Cissoid at point O.  Note that if random point C 

in the construction shown above is moved to be diametrically opposite point B, then the 

Oblique Cissoid becomes the Cissoid of Diocles. 

2.6.11 An Alternate Construction for the Osculating Circle 

 At the risk of being redundant, here is an alternate construction for the osculating 

circle of the Cissoid of Diocles.  This shows that even the very complex constructions 

often have many distinct constructions.  Refer to Table 2-11. 

Table 2-11: An Alternate Construction of the Osculating Circle for the Cissoid of Diocles 

1.  Draw horizontal line AB 18. Let point J be the intersection of perpendiculars P4 and P6 

2.  Draw circle AB with center at A and passing through point B 19. Construct P7  to P5 through point A 

3.  Let C be a random point on the circumference of circle AB 20. Let point K be the intersection of perpendiculars P2 and P7 

4.  Let D be the point diametrically opposite point B 21. Construct the locus of point K as point C traverses circle AB 

5.  Draw line AC 22. Draw line segment AG 

6.  Construct P1  to line AB through point D 23. Let L be the midpoint of line segment AG 

7.  Let E be the intersection of line AC and perpendicular P1 24. Draw line KL 

8.  Draw line segment BE 25. Let point M be the intersection of line KL with P4 

9.  Let F be the midpoint of line segment BE 26. Construct P8  to line KL through point M 

10. Construct P2  to line segment BE through point F 27. Let point N be the intersection of perpendiculars P7 and P8 

11. Construct P3  to P1 through point E 28. Draw line segment AJ 

12. Let point G be the intersection of perpendiculars P2 and P3 29. Let O be the midpoint of line segment AJ 

13. Construct P4  to P2 through point G 30. Draw line NO 

14. Let point H be the intersection of line AB and P4 31. Let point P be the intersection of lines KL and NO 

15. Construct P5  to P4 through point H 32. Draw circle PK centered at P and passing through point K 

16. Let point I be the intersection of perpendiculars P3 and P5 33. Make circle PK thick and change its color 

17. Construct P6  to P3 through point I 34. Animate point C around circle AB 

 

 If you trace point G, you will see point G sweep out a parabola; if you draw circle 

JG (i.e., the circle centered at point J and passing through point G) and rerun the 

animation, you will find that circle JG is the osculating circle to that parabola.  A very 

nice construction!  
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Figure 2-6: The Solid of Revolution Formed from the Cissoid of Diocles 

 

This image was created by truncating the Cissoid of Diocles along its asymptote and then 

taking that result and rotating it around the x-axis.  The solid of revolution was then 

placed over the infinite checkered plane which meets a cloudy sky at the horizon.  The 

solid of revolution was then given a silvery-metallic surface so as to reflect its immediate 

environment, and one can see that it reflects the plane in its lower half and reflects the 

clouds in its upper half.  A light source was placed so as to cast the solid’s shadow onto 

the checkered plane. 
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Chapter 3 – The Strophoid 
 

 

Figure 3-1: The Solid of Revolution Formed from the Right Strophoid 

 

The Right Strophoid has been truncated along its asymptote and then revolved about the 

x-axis.  The result is the solid of revolution seen in Figure 3-1.  The knob protruding from 

the cusp is simply the loop portion of the Right Strophoid after revolution.  The solid has 

been given a bronze-metallic surface texture and the entire figure has been placed in a 

cloud-flecked sky.  Notice the lighting—it casts a partial glare on the knob and a portion 

of the cusp and the knob creates a shadow that shows up on the surface of the object 

itself. 
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3.1 Introduction 

The Strophoid first appears in work by the English mathematician Isaac Barrow in 

1670.  (Barrow, incidentally, was Isaac Newton’s teacher.)  However, Torricelli actually 

describes the curve in his letters prior to Barrow’s work—around 1645—and Roberval
4
 

found it as the locus of the focus of the conic obtained when the plane cutting the cone 

rotates about the tangent at its vertex.  The name Strophoid, meaning a "belt with a  

twist, " was proposed by Montucci in 1846.  The general Strophoid is a family of curves 

represented by the equation in polar coordinates 

 

     secsincosar      Equation 3-1 

Each value of the parameter  gives another member of the family.  Figure 3-2 shows the 

graph of Equation 3-1 for some selected values of the parameter , i.e.,  =  0,  / 6,  / 

4, and  / 3. 

 

 

Figure 3-2: Members of the Family of Strophoids 

                                                 
4
 Gilles Roberval (French mathematician, 1602-1675) developed powerful methods in the early study of 

integration, writing Traité des indivisibles. He computed the definite integral of sin x, worked on the 

cycloid, and computed the arc length of a spiral. Roberval is important for his discoveries on plane curves 

and for his method for drawing the tangent to a curve, already suggested by Torricelli.  This method of 

drawing tangents makes Roberval essentially the founder of kinematic geometry. 
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3.2 Equations and Graph of the Right Strophoid 

When the parameter  is zero, i.e.,  = 0, Equation 3-1 reduces to 

  tansec  ar      Equation 3-2 

a member of the family known as the Right Strophoid.  The standard substitutions of x = 

r cos θ and y = r sin θ into Equation 3-2 will yield the Cartesian equation for the Right 

Strophoid, that is,  

   xayaxx  222
. 

 

However, the more accepted form of the Right Strophoid has the point where the curve 

crosses itself at the origin and the other point on the x-axis at (-a, 0).  This is, of course, 

just a translation to the left along the x-axis of a distance a.  Hence, the Cartesian 

equation for the Right Strophoid becomes 

   xaxxay  22
     Equation 3-3 

If we now transform this back to polar form, we have 

 

  cos2sec  ar      Equation 3-4 

This last equation may be easily transformed to parametric form by substituting the value 

of r into the equations x = r cos θ and y = r sin θ, and letting θ = t.  This gives 

 

     22  ,tan,1cos21, 2   tttayx   Equation 3-5 

The equation of the tangent line at the point t = q is 

    qqaxqqyqq 2222 sec2cos212sin4seccossin4  .     Equation 3-6 

Figure 3-3 displays the graph of the Right Strophoid. 

 

 

Figure 3-3: Graph of the Right Strophoid 
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3.3 Analytical and Physical Properties of the Right Strophoid 

Using the parametric representation of the Right Strophoid given in Equation 3-5, 

the following paragraphs delineate the relevant properties of the Right Strophoid. 

3.3.1 Derivatives of the Right Strophoid 

 ttax cossin4  

 

  ttax 22 sincos4   

 

  2sin4sec 22  ttay  

 

  ttttay cossin4sectan2 2   

 

 
tt

tt
y

cossin4

2sin4sec 22 
  

 

 
tta

t
y

33

2

cossin16

1tan3 
  

3.3.2 Metric Properties of the Right Strophoid 

If A is the area of the Right Strophoid’s loop, then 

 

.
2

42







 
 aA  

This result is easily obtained using the Cartesian form of the Right Strophoid which 

yields the following integral for the area under consideration 

 

  




a a

dx
xa

xa
xydxA

0 0

. 

This integral can best be evaluated by making the substitution  

 

xa

xa




2tan . 

 

Under this substitution and much algebraic manipulation, the area integral becomes 

 
4

0

4

0

4222 .sin8sin4

 

 dadaA  

 

Using the identity sin
2 = ½ - ½cos2, the first integral becomes 
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Using the same identity, the second integral becomes 
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Hence, the area of the loop above the x-axis is 

 

.
4

4
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83
8

8
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4 222








 
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
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


 








 
 aaaA  

 

The total loop area is therefore, by symmetry, twice this value or as is indicated above, 

 

.
2

42







 
 aA  

In a similar manner, the area between the curve and its asymptote can also be 

calculated.  This calculation is not shown; however, it is done using the same substitution 

as was used for the area of the loop.  When all integrals have been evaluated, the area 

between the Right Strophoid and its asymptote will turn out to be 

 








 


2

42 
aA . 

 

Hence, totaling this area with that of the loop we get the very beautiful result that the total 

area of the Right Strophoid between the asymptote (at x = + a) and its tangent (at x = - a) 

is 4a
2
. 

 

Just as the area of the Right Strophoid’s loop was calculated above, one can also 

calculate the volume of the solid of revolution that is formed when that loop area is 

revolved about the x-axis.  The total volume of the revolved loop will be 

 

 
   







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a a a

dx
xa

xax
dx

xa

xax
dxyV

0 0 0

322
2 .  

This integral is most easily evaluated by simply performing the indicated division, that is, 

dividing the numerator of the integrand by a + x, i.e., 

 

     





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






a a a a a
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dx
adxadxxxdxadx
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a
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322
3

22 222
2

22 . 

Hence, 
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Therefore, 

 22ln3
3

2 3





a

V . 

If r is the distance from the origin to the curve, then 

 

  ttar seccos21 2 . 

 

If p is the distance from the origin to the tangent, then 

 

 
tt

ta
p

42

22

cos4cos41

cos21




 . 

3.3.3 Curvature of the Right Strophoid 

If ρ represents the radius of curvature of the Right Strophoid, then 

 

 
 

.
sin21cos4

cos4cos41
24

42 2
3

tt
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


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If (α, β) are the coordinates of the center of curvature, then 

 

 
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sin21cos4

3sin6sin12sin8




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 
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2
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ta


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3.3.4 Angles for the Right Strophoid 

If ψ is the angle between the tangent and the radius vector at the point of 

tangency, then 

 

.
cos21

cos21
cottan

2

2

t

t
t




  

 

 If  denotes the tangential angle, i.e., the angle between the tangent to the Right 

Strophoid and the horizontal, then 

 

tt

tt

cossin4

2sin4sec
tan

22 
 . 

 

 If  denotes the radial angle, i.e., the angle between the radius vector to the Right 

Strophoid and the horizontal, then 

 

 = t. 
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3.4 Geometric Properties of the Right Strophoid 

 Intercepts:  (–a, 0) and (0, 0). 

 

 Extrema:  x-minimum at (–a, 0); x-maximum at (a, ) 

o y-minimum at (a, –); y-maximum at (a, +). 

 

 Extent: –a ≤ x < a, –  < y < + . 

 

 Symmetry:  symmetric about the x-axis. 

 

 Asymptote:  x = a. 

 

 Loop:  –a ≤ x < 0. 

3.5 Dynamic Geometry of the Strophoid 

 Dynamic geometry applications, such as GSP, can be used to generate the Right 

Strophoid in a variety of entertaining ways.  In fact, six different constructions for the 

Right Strophoid and two constructions for the general Strophoid follow. 

3.5.1 A Construction for the General Strophoid 

 As alluded to in Chapter 2, if, in the construction of a Cissoid generated by a 

circle and a straight line, we let the pole point be anywhere on the circumference of the 

circle and we require the straight line to pass through the center of the circle, the resulting 

curve is the Strophoid.  This is illustrated by the GSP construction delineated below in 

Table 3-1. 

Table 3-1: The General Strophoid 

1.  Draw circle AB centered at A and passing through point B 8.  Draw line segment DE 

2.  Let C be a random point not on circle AB 9.  Construct circle C2 centered at point F with radius = DE 

3.  Draw line AC. 10. Drag point D until circle C2 surrounds circle AB* 

4.  Let D be a random point on the circumference of circle AB 11. Let point G be the intersection of circle C2 and line DE* 

5.  Let E be a 2nd random point on the circumference of circle AB 12. Trace point G and change its color 

6.  Draw line DE 13. Animate point E around circle AB 

7.  Let point F be the intersection of lines AC and DE  

*See discussion below 

 

 The reason for step 10 is simply to ensure that when executing step 11, the correct 

intersection point is selected; there are two of them and one will trace the Strophoid and 

the other will not.  The one that should be selected is the intersection point such that point 

D will lie between points E and G.  Note also that each different position of point D on 

circle AB will cause the point G to trace a different member of the Strophoid family.  

When point D is at the position on circle AB that is the maximum distance from line AC 

(i.e., on a perpendicular to AC through the point A), then the Strophoid is a Right 

Strophoid. 

3.5.2 The General Strophoid as the Pedal of a Parabola 

 Delineated below, in Table 3-2, is an alternate construction for the general 

Strophoid.  The general Strophoid can be generated as the pedal curve of an ordinary 
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parabola when the pedal point is selected as any random point on the directrix of the 

parabola. 

Table 3-2: The General Strophoid as the Pedal of a Parabola 

1.  Draw horizontal line AB 9.  Construct P1  to line AB through point G. 

2.  Let C be a random point above line AB 10. Let I be the midpoint of line segment CG 

3.  Draw circle DE (below line AB) with center at point D 11. Construct P2  to line segment CG through point I 

4.  Let F be a random point on the circumference of circle DE 12. Construct P3  to P2 through point H 

5.  Draw line DF 13. Let point J be the intersection of perpendiculars P2 and P3 

6.  Let point G be the intersection of lines AB and DF 14. Trace point J and change its color 

7.  Let H be a random point on line AB 15. Animate point F around circle DE 

8.  Draw line segment CG  

 

 Note that if the construction for the general Strophoid shown above is continued 

as follows, 
16.  Construct point K, the intersection perpendiculars P1 and P2. 
17.  Trace point K and change its color. 

 

then, as point F travels around circle DE, point K traces the parabola whose pedal curve 

was constructed.  Its focus is at point C and it is tangent to the Strophoid.  Additionally, if 

we continue the construction further, 

 
18.  Construct line segment KH. 

19.  Construct point L, the midpoint of line segment KH. 

20.  Draw line segment JL. 

21.  Construct perpendicular P4 to line segment JL through point J. 

 

Perpendicular P4 that is drawn in step 21 is tangent to the Strophoid, and remains tangent 

as it moves with the animation of point F around circle DE.  Quite spectacular!  Also note 

that if the pedal point is on the directrix directly below the vertex of the parabola, then the 

Strophoid is a Right Strophoid. 

3.5.3 A Construction Based on the Definition of a Right Strophoid 

 The Right Strophoid can be defined in the following way (refer to Figure 3-4): Let 

AB and AC be the sides of an angle of arbitrary, fixed measure, i.e., angle BAC.  Let D 

be a random point lying on line AB, but on the opposite side of A from B.  Let L be a 

straight line passing through point D intersecting line AC in point E.  We now locate on L 

two points, P1 and P2, symmetrical to point E such that the lengths of the segments EP1 = 

EP2 = EA.  When line L rotates around the point D, the points P1 and P2 describe a Right 

Strophoid.  A GSP construction based on this definition is delineated below in Table 3-3. 

Table 3-3: The Right Strophoid by Definition 

1.  Draw horizontal line AB 7.  Let point G be the intersection of lines AC and DF 

2.  Draw line AC, where C is any point not on line AB 8.  Draw circle GA centered at G and passing trough A 

3.  Let D be a point on line AB on the opposite side of A from B 9.  Let points H & I be the intersections of circle GA and line DF 

4.  Draw circle DE centered at D with radius > AD 10. Trace points H and I and change their color 

5.  Let F be a random point on the circumference of circle DE 11. Animate point F around circle DE. 

6.  Draw line DF  

 



 

Chapter 3: The Strophoid  Playing With Dynamic Geometry 3-9 

 

Figure 3-4: Defining the Right Strophoid 

3.5.4 Newton’s Carpenter Square Construction of the Right Strophoid 

 As alluded to in Chapter 2, Newton’s Carpenter Square method of constructing a 

Cissoid can also be used to generate a Right Strophoid.  That GSP construction is 

repeated here (Table 3-4) with the appropriate modifications required to produce the 

Right Strophoid. 

Table 3-4: Newton's Construction of the Right Strophoid 

1.  Draw horizontal line segment AB with A to the right of B 7. Construct circle C1 centered at F with radius = segment AB  

2.  Construct P1  to segment AB through point A 8.  Draw line segment AF 

3.  Draw circle CD to the right of segment AB 9.  Construct circle C2 centered at B with radius = segment AF 

4.  Let E be a random point on the circumference of circle CD 10. Let points G and H be the intersections of circles C1 and C2 

5.  Draw line EC 11. Trace points G and H and change their color 

6.  Let point F be the intersection of line EC and P1 12. Animate point E around circle CD 

 

 Again note that if GSP is being used, the trace of points G and H not only produce 

the Right Strophoid, but also produce a straight line that is tangent to the Right Strophoid.  

This straight line is not part of the Right Strophoid, but is a result of the way in which 

GSP switches points G and H at the point of tangency. 

3.5.5 The Right Strophoid as an Envelope of Circles 

 A particularly beautiful construction for the Right Strophoid is given in Table 3-5.  

In fact, this construction is really a slight variation of the construction for the Strophoid 

given in section 3.5.2 where the general Strophoid was generated as the pedal curve of a 

Parabola with the pedal point as an arbitrary point on the Parabola’s directrix.  In this 

case, point J traces the Parabola and is the center of the circles whose envelope defines 

the Right Strophoid.  Execute this construction, perform the animation, and watch as the 

Right Strophoid unfolds.  It is a thing of beauty! 
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Table 3-5: The Right Strophoid as an Envelope of Circles 

1.  Construct vertical line AB 10. Construct P2  to line AB through point G 

2.  Let C be a random point not on line AB 11. Draw line segment CG 

3.  Let D be a random pt. on the opposite side of line AB from C 12. Let I be the midpoint of line segment CG 

4.  Draw circle DE centered at D and passing through point E 13. Construct P3  to line segment CG through point I 

5.  Construct P1  to line AB through point C 14. Let point J be the intersection of P2 and P3 

6.  Let F be a random point on the circumference of circle DE 15. Draw circle JH centered at J and passing through point H 

7.  Draw line DF 16. Trace circle JH and change its color 

8.  Let point G be the intersection of lines DF and AB 17. Animate point F around circle DE 

9.  Let point H be the intersection of line AB and P1  

3.5.6 The Right Strophoid as the Inverse of a Hyperbola 

If the point of inversion is taken as the vertex of a Rectangular Hyperbola, then 

the Hyperbola inverts to a Right Strophoid, as seen in the construction of Table 3-6. 

Table 3-6: The Right Strophoid as the Inverse of a Hyperbola 

1.  Draw circle AB centered at A and passing through point B 13. Let G be the image when G is translated by distance EG* 

2.  Let C be a random point on the circumference of circle AB 14. Draw line FG 

3.  Draw horizontal line AD such that AD > AB 15. Draw circle G'H centered at point G' and of any radius = G'H 

4.  Draw line segment CD 16. Measure distance G'F 

5.  Let E be the midpoint of line segment CD 17. Measure distance G'H 

6.  Construct P1  to line segment CD through point E 18. Calculate (G'H) 2 / G'F 

7.  Draw line AC 19. Let G'' be the image of translating G' by result of step 18* 

8.  Let point F be the intersection of line AC and P1 20. Draw circle G'G'' centered at G' and passing through point G'' 

9.  Trace point F and change its color 21. Let point I be one intersection of circle G'G'' and line G'F 

10. Draw line segment AD 22. Trace point I and change its color 

11. Let G be the midpoint of line segment AD 23. Animate point C around circle AB 

12. Measure distance EG  

*The translations in both steps 13 and 19 should be done along line AD, i.e., at 0 

 

 Steps 1 – 9 are the construction of the Rectangular Hyperbola.  Steps 10 – 13 are 

to locate the vertex of the Rectangular Hyperbola, which is then labeled G'.  Finally, steps 

14 – 21 are the construction of the inverse of the Hyperbola.  Note that step 15 is simply 

the creation of the inversion circle.  As we have learned it can be any size, affecting the 

scale of the inverted curve, but not the nature of the curve; that is why you can draw it 

with an arbitrary size radius.  In step 21, either intersection of the circle and line may be 

chosen; both will ultimately yield a Right Strophoid, however, they will open in opposite 

directions.  For that matter, either vertex can also be chosen, again yielding Right 

Strophoids that open in opposite directions. 

3.5.7 The Right Strophoid as an Inversion of Itself 

 Finally, if an inversion circle is centered at the point where the Right Strophoid 

crosses the x-axis and has radius the distance of that point to the origin, then the Right 

Strophoid is invariant under inversion in that circle.  When a curve inverts into itself, it is 

called anallagmatic with respect to the given point of inversion.  The following 

construction, delineated in Table 3-7, illustrates this invariant concept.  In the 

construction below, steps 18 – 25 are the inversion of the Right Strophoid which is 

constructed in steps 1 – 17.  This is quite a beautiful construction; note that the three 

perpendiculars of the construction are all concurrent. 
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Table 3-7: The Right Strophoid as an Inversion of Itself 

1.  Draw horizontal line AB 14. Draw line EL 

2.  Draw line CD such that line CD intersects line AB 15. Construct P3  to line EL through point I 

3.  Let E be a random point on neither lines AB nor CD 16. Let point M be the intersection of line EL and P3 

4.  Construct P1  to line CD through point E 17. Trace point M and change its color 

5.  Draw circle FG (any radius) below line AB 18. Draw circle EJ centered at E and passing through point J 

6.  Let H be a random point on the circumference of circle FG 19. Measure distance EM 

7.  Draw line FH 20. Measure distance EJ 

8.  Let point I be the intersection of lines FH and CD 21. Calculate (EJ)2 / EM 

9.  Let point J be the intersection of line CD and P1 22. Let E be the image when E is translated by (EJ)2 / EM 

10. Draw line segment EI 23. Draw circle EE centered at E and passing through point E 

11. Let K be the midpoint of line segment EI 24. Let N be one of the intersections of circle EE and line LE 

12. Construct P2  to line segment EI through point K 25. Trace point N and change its color 

13. Let point L be the intersection of line CD and P2 26. Animate point H around circle FG 

3.5.8 The Right Strophoid and Its Tangent 

 Table 3-8 contains a construction for the curve and its tangent. 

Table 3-8: The Right Strophoid and Tangent 

1.  Create x-y axes with origin as point A and unit point as B 12. Let F be the image when F is translated by vector A  C 

2.  Let C be a random point on the negative x-axis. 13. Construct the locus of point F as point D traverses circle AC 

3.  Draw circle AC centered at A and passing through point C 14. Let point E1 be the reflection of point E across line AD 

4.  Construct P1  to the x-axis through point C 15. Let E2 be the image when E1 is translated by vector F  E1 

5.  Let D be a random point on the circumference of circle AC 16. Let point G be the intersection of the x-axis and P2 

6.  Draw line AD 17. Let E3 be the image when E1 is translated by vector G  E1 

7.  Let point D be the reflection of point D across the x-axis 18. Let E4 be the image when E2 is translated by vector E3  E2 

8.  Draw line AD 19. Draw line segment AE4 

9.  Let point E be the intersection of line AD and P1 20. Construct P3  to line segment AE4 through point F 

10. Construct P2  to line AD through point E 21. Construct line L1 parallel to P3 through point F 

11. Let point F be the intersection of line AD and P2 22. Animate point D around circle AC 

 

 Make the locus of step 13 and line L1 of step 21 thick and colored and run the 

animation.  It’s a sight to behold! 

3.5.9 The Strophoid and Its Osculating Circle 

 Finally, as the last construction for this chapter, Table 3-9 contains a construction 

for the Strophoid’s osculating circle. 



 

Chapter 3: The Strophoid  Playing With Dynamic Geometry 3-12 

Table 3-9: The Strophoid's Osculating Circle 

1.  Draw horizontal line AB 19. Let K be a random point on line AB 

2.  Draw circle AB with center at A and passing through point B 20. Construct P7  to P2 through point K 

3.  Construct P1  to line AB through point B 21. Let point L be the intersection of perpendiculars P2 and P7 

4.  Let C be a random point on the circumference of circle AB 22. Construct the locus of point L as point C traverses circle AB 

5.  Draw line AC 23. Draw line segment JK 

6.  Let point D be the intersection of line AC and P1 24. Let M be the midpoint of line segment JK 

7.  Let E be diametrically opposite point B 25. Draw line segment GK 

8.  Draw line segment DE 26. Let N be the midpoint of line segment GK 

9.  Let F be the midpoint of line segment DE 27. Draw line LN 

10. Construct P2  to line segment DE through point F 28. Let point O be the intersection of P4 and line LN 

11. Construct P3  to P1 through point D 29. Construct P8  to line LN through point O 

12. Let point G be the intersection of perpendiculars P2 and P3 30. Let point P be the intersection of perpendiculars P7 and P8 

13. Construct P4  to P2 through point G 31. Draw line MP 

14. Let point H be the intersection of P4 and line AB 32. Let point Q be the intersection of line MP and line LN 

15. Construct P5  to P4 through point H 33. Draw circle QL 

16. Let point I be the intersection of perpendiculars P3 and P5 34. Make circle QL thick and change its color 

17. Construct P6  to P3 through point I 35. Animate point C around circle AB 

18. Let point J be the intersection of perpendiculars P4 and P6  

 

 First of all, note that the locus of point L should be a Strophoid.  If in your 

construction it is not, drag point K along line AB until the Strophoid forms.  Second, note 

that there are some hidden goodies in this construction.  If you construct the locus of 

point G as point C travels on circle AB you will find that the locus is a parabola.  Further, 

if you construct circle JG (i.e., the circle centered at point J and passing through point G) 

and then rerun the animation, you will find that circle JG is the osculating circle of the 

parabola.  Also note that the Strophoid is constructed as the parabola’s pedal curve, as we 

discussed in section 3.5.2. 
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Figure 3-5: The Right Strophoid in Three Dimensions 

 

To see the Right Strophoid, you look along the left edge of this figure.  In other words, the 

cross-section of this figure is a Right Strophoid.  To create it, the Right Strophoid was 

extruded into this third dimension and then the curve was truncated along its asymptote.  

The surface of the resulting figure was then given a sienna colored finish.  The figure was 

then placed as though floating in an azure-blue sky and a light source was situated so as 

to cast the shadow caused by the extruded loop portion of the curve.  The light source 

itself can be seen reflecting off the surface of the loop. 
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Chapter 4 – The Witch of Agnesi 
 

 

Figure 4-1: The Witch of Agnesi in Three Dimensions 

 

The "Witch of Agnesi" curve can be seen along the leading edge of the three-dimensional 

figure above.  To construct this figure, however, the curve was extruded into the third 

dimension, truncated along its asymptote, and then given a semi-reflective silver finish 

that reflects, to some extent, the clouds on the horizon.  The infinite blue and yellow 

checkered plane was then added to complete the figure.   
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4.1 Introduction 

 Maria Agnesi (1718 to 1799) was the author of a famous two-volume work on the 

methods of Calculus circa 1748.  This work by Agnesi is the first surviving mathematical 

work by a woman.  The book includes a discussion of the curve now known as the 

"Witch of Agnesi."  It is unfortunate that this curve has come down to us through the 

years with this name, for it is certainly not the name that Ms. Agnesi intended, or for that 

matter, the name which anybody else intended.  The curve was first discussed by Fermat 

and a construction for the curve was given by Grandi
5
 in 1703.  In 1718 Grandi gave the 

curve the Latin name versoria which means turning curve, so named because of its shape.  

Grandi also gave the Italian versiera for the Latin versoria and indeed Agnesi quite 

correctly states in her book that the curve was called la versiera.  However, an 

Englishman by the name of John Colson translated Agnesi’s book from Italian into 

English and Colson mistook la versiera for laversiera which means ungodly woman or 

she-devil.  Hence, today we know the curve as the Witch.  (Colson now has the 

distinction of being the first mathematical male chauvinist; however, in Colson’s favor is 

the fact that a chapter entitled "Turning Curve" is not anywhere near as romantic 

sounding as one entitled "The Witch of Agnesi.") 

 

 

 

Figure 4-2: Definition of the Witch of Agnesi 

 Refer to Figure 4-2, which depicts an origin O, a circle of diameter a tangent to 

the x-axis at the origin that passes through the point Q(0, a), and a line M which is 

                                                 
5
 Guido Grandi (1671 to 1742) was the author of a number of works on geometry.  In 1703 he studied the 

curve that is today known as the Witch of Agnesi; in fact, his work of 1703 was important in introducing 

Leibniz’s calculus into Italy. 
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parallel to the x-axis and also passes through Q.  Let any line, L, passing through the 

origin intersect the circle in point B and intersect the line M in point A.  Let the 

projection of point B on the x- and y-axis be points C and D, respectively.  Finally, let 

point P be the intersection of two perpendiculars, the first through point A and 

perpendicular to line M and the second through point B and perpendicular to the y-axis.  

The Witch of Agnesi is defined as the locus of point P for all possible lines L. 

4.2 Equations and Graph of the Witch of Agnesi 

 It is relatively straightforward to derive the Cartesian equation for the Witch from 

the geometric relationships depicted in Figure 4-2.  First note that BPA is similar to 

AQO.  Thus, AQ / BP = QO / PA.  However, AQ = x, QO = a, and PA = a – y.  

Therefore,  

 
a

yax

ya

ax 



 BPor          

BP
. 

Now, in OBC, we have OB
2
 = OC

2
 + BC

2
 = (x – BP)

 2
 + y

2
.  Substituting the value of 

BP from above, we have  
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Further, in QDB, we have BQ
2
 = QD

2
 + DB

2
 = (a – y)

 2
 + (x – BP)

 2
.  Again, 

substituting the value of BP, we have  

 

 
.BQ

2

2222
2

a

yxyaa 
  

 

Finally, in QOB, which incidentally is a right triangle because it is inscribed in a semi-

circle, we have, a
2
 = OB

2
 + BQ

2
.  Hence, adding the two previous results, equating it to 

a
2
, and simplifying, we get the Cartesian form of the Witch of Agnesi, i.e. 

 

22

3

ax

a
y


      Equation 4-1 

 There are at least two different, useful parametric representations of the Witch 

which offer a convenient form.  First let x = at.  Then, 

.
1 2222

3

t

a

ata

a
y





  

 

Hence, the first parametric representation is 

 

  









 t

t
tayx      ,

1

1
,,

2
     Equation 4-2 

For the second representation, let x = a tan t.  Then, 
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.cos
sectan1tan

2

22222

3

ta
t

a

t

a

taa

a
y 





  

 

Therefore, the second parametric representation is 

 

    22
2 -     ,cos,tan,   tttayx      Equation 4-3 

 Of course, substitution of the usual polar coordinate transformations of x = rcos θ 

and y = rsin θ gives the Witch’s polar form as  

 

  0sinsin 3223  aarrr       Equation 4-4 

 Finally, the equation of the tangent line at the point t = q is 

 

 .sin21coscossin2 223 qqaxqqy       Equation 4-5 

 The graph of the Witch of Agnesi is depicted in Figure 4-3. 

 

 

Figure 4-3: Graph of the Witch of Agnesi 

4.3 Analytical and Physical Properties of the Witch of Agnesi 

 Using the parametric representation given in Equation 4-3 (i.e., x = atan t and 

 y = acos
2
t), the following paragraphs delineate the relevant properties of the Witch of 

Agnesi. 
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4.3.1 Derivatives of the Witch of Agnesi 

 tax 2sec  

 

 ttax 3secsin2  

 

 tay 2sin  

 

 tay 2cos2  

 

 tty 3cossin2  

 

  tt
a

y 24 cos43cos
2

  

4.3.2 Metric Properties of the Witch of Agnesi 

 If A is the area between the Witch and its asymptote, then  

 










22

3

xa

dx
adxyA . 

 

This integral is recognizable as the inverse tangent form, i.e., 

 










 



























.

22
tan

1 2213

22

3 aa
a

x

a
a

xa

dx
a 


 

 

In other words, the area between the Witch of Agnesi and the x-axis is four times the area 

of the initial, defining circle pictured in Figure 4-2. 

 

 If V is the volume of the solid of revolution that is formed when the Witch is 

rotated about the x-axis, then 

 

  






 
 .

222

62

xa

dx
adxyV   

This integral is most easily evaluated by making the substitution x = atan.  Under this 

substitution, the integral is transformed to 

 

 
 





2

2

2

2

.cos
sec

sec 23

44

2
6













 da

a

da
aV  

 

Using the identity cos
2 = ½ + ½cos2, we have 
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












2

2

.
2

2cos
2

1

2

1 32
3








a
daV  

 If r represents the radial distance from the origin to the curve, then 

 

ttar 42 costan  . 

 

 If p is the distance from the origin to the tangent of the Witch, then 

 

 
ttt

ta
p

224

2

cossin4sec

sin21




 . 

4.3.3 Curvature of the Witch of Agnesi 

 If ρ represents the radius of curvature of the Witch of Agnesi, then 

 

 
  tt

tta
42

26

cos1sin42

sincos41
2

3




 . 

 If (α, β) are the coordinates of the center of curvature of the Witch, then 

 

 
 1sin4cos

sincos14
2

36






tt

tta
      and     

 
 1sin4cos2

cos12cos101
24

86






tt

tta
 . 

4.3.4 Angles for the Witch of Agnesi 

 If ψ is the angle between the tangent and the radius vector at the point of 

tangency, then 

 

 
  tt

tt

sin1cos2

cos1sin2
tan

6

32




 . 

 If  denotes the tangential angle, then 

 

.cossin2tan 3 tt  

 

 If  denotes the radial angle, then 

 

t

t

sin

cos
tan

3

 . 

4.4 Geometric Properties of the Witch of Agnesi 

 x-intercept:  x = 0. 

 

 y-intercept:  y = a. 
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 The minimum value of the curve occurs at (± ∞, 0). 

 

 The maximum value of the curve occurs at (0, a). 

 

 Points of inflection occur at .
8

3
,

6

3















aa
 

 

 Extent:  – ∞ < x < + ∞; 0   y  a. 

 

 Symmetry:  The curve is symmetric about the y-axis. 

 

 Asymptote:  The curve is asymptotic to the x-axis. 

4.5 Dynamic Geometry of the Witch of Agnesi 

 Five GSP dynamic geometry constructions involving the Witch of Agnesi follow. 

The first is based on the definition of the Witch, the second is for the Tangent line to the 

Witch, the third shows how to construct the pedal curve of the Witch, the fourth is an 

alternate construction of the Witch’s tangent, while the fifth is for the Osculating Circle. 

4.5.1 The Witch of Agnesi Based on the Definition 

 See Figure 4-2 and the accompanying write-up to understand how the Witch of 

Agnesi is defined as a locus of points.  The GSP construction shown in Table 4-1 follows 

from that definition. 

Table 4-1: The Witch of Agnesi from the Definition 

1.  Draw vertical line segment AB with point A below point B 8.  Let point E be the intersection of lines AD and L1 

2.  Construct P1  to line segment AB through point A. 9.  Construct P2  to L1 through point E 

3.  Construct line L1 parallel to P1 through point B. 10. Construct P3  to P2 through point D 

4.  Let C be the midpoint of line segment AB 11. Let point F be the intersection of perpendiculars P2 and P3 

5.  Draw circle CA centered at C and passing through point A 12. Trace point F and change its color 

6.  Let D be a random point on the circumference of circle CA 13. Animate point D around circle CA 

7.  Draw line AD  

4.5.2 The Tangent to the Witch of Agnesi 

 As the next construction we will show how to construct the tangent line to the 

Witch of Agnesi.  Of course, in order to construct the tangent to the Witch, one must first 

construct the Witch itself (herself?).  That is done below in Table 4-2 as it was done in 

section 4.5.1 with a few slight changes. 
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Table 4-2: The Witch of Agnesi and Tangent Line 

1.  Draw vertical line Segment AB with point A below point B 11. Let point F be the intersection of P2 and P3 

2.  Construct P1  to line segment AB through point A 12. Construct P4  to P1 through point E. 

3.  Construct P2  to line segment AB through point B 13. Draw line AF 

4.  Let C be the midpoint of line segment AB 14. Construct P5  to P4 through point D 

5.  Draw circle CA centered at C and passing through point A 15. Let point G be the intersection of circle CA and line AF 

6.  Let D be a random point on the circumference of circle CA 16. Let point H be the intersection of P4 and P5 

7.  Draw line AD 17. Draw line GH 

8.  Draw line segment CD 18. Change the color and thickness of line GH 

9.  Construct P3  line segment CD through point D 19. Construct the locus of point H as point D traverses circle CA 

10. Let point E be the intersection of line AD and P2 20. Animate point D around circle CA 

 

 The thickened line (line GH) is, of course, the tangent.  Note how almost all of the 

construction lines come together (i.e., merge) at point A and then again at point B as the 

animation is run. 

4.5.3 The Pedal Curves of the Witch of Agnesi 

 We learned in Chapter 1 that a Pedal curve is simply the locus of the intersection 

point of a given curve’s tangent and the perpendicular to that tangent from a given point, 

called the pedal point or pole.  Since we now know how to construct the tangent to the 

Witch (see previous construction), it is a simple matter to also construct the Witch’s 

Pedal Curves.  Table 4-3 below depicts such a construction. 

Table 4-3: The Witch of Agnesi's Pedal Curves 

1.  Draw vertical line segment AB with point A below point B 13. Draw line AF 

2.  Construct P1  to line segment AB through point A 14. Construct P5  to P4 through point D 

3.  Construct P2  to line segment AB through point B 15. Let point G be the intersection of circle CA and line AF 

4.  Let C be the midpoint of line segment AB 16. Let point H be the intersection of P4 and P5 

5.  Draw circle CA centered at C and passing through point A 17. Construct the locus of point H as D traverses circle CA 

6.  Let D be a random point on the circumference of circle CA 18. Draw line GH 

7.  Draw line AD 19. Change the color and thickness of line GH 

8.  Draw line segment CD 20. Let I be a random point anywhere in the plane 

9.  Construct P3  to line segment CD through point D 21. Construct P6  to line GH through point I 

10. Let point E be the intersection of line AD and P2 22. Let point J be the intersection of line GH and P6 

11. Let point F be the intersection of P2 and P3 23. Trace point J and change its color 

12. Construct P4  to P1 through point E 24. Animate point D around circle CA 

 

 No, that’s not a typo or grammatical error in using the plural in "Pedal Curves."  

Although the above construction will only display one of the Witch’s Pedal curves, you 

can drag the pedal point (point I) to another location in your GSP construction and rerun 

the animation.  For each different location of point I, one will get a different pedal curve.  

It is particularly interesting to drag point I onto line segment AB (or its extension) and 

rerun the animation.  A pedal curve symmetric about segment AB is obtained. 

4.5.4 An Alternate Construction for the Tangent to the Witch of Agnesi 

 Although the tangent line to a curve at a given point on the curve is unique, the 

method of constructing such a line is not.  Table 4-4 gives an alternate construction for 

the Witch’s tangent which is rather interesting (the construction for the curve is slightly 

different also). 



 

Chapter 4:  The Witch of Agnesi  Playing With Dynamic Geometry 4-9 

Table 4-4: The Witch's Tangent (Alternate Construction) 

1.  Create x-y axes with A as origin and B as the point (1, 0) 13. Construct P5  to the x-axis through point G 

2.  Draw circle AB centered at A and passing through point B 14. Let point H be the intersection of P3 and P5 

3.  Let C be a random point on the circumference of circle AB 15. Construct the locus of point H as Point C traverses circle AB 

4.  Draw line AC 16. Construct P6  to P1 through point G 

5.  Construct P1  to line AC through point A 17. Let point I be the intersection of P3 and the y-axis 

6.  Let D be the intersection of circle AB with the positive y-axis 18. Let F be the image when F is translated by vector I  F 

7.  Let E be the intersection of circle AB with the negative y-axis 19. Construct P7  to the x-axis through point F 

8.  Construct P2  to P1 through point D 20. Let point J be the intersection of P6 and P7 

9.  Let point F be the intersection of P1 and P2 21. Draw line AJ 

10. Construct P3  to the y-axis through point F 22. Construct P8  to line AJ through point H 

11. Construct P4  to the y-axis through point E 23. Animate point C around circle AB 

12. Let point G be the intersection of P1 and P4  

 

 Of course, perpendicular P8, constructed in step 22, is the tangent line.  Note how 

the tangent line coincides with the x-axis when the point that traces the curve (point H) 

approaches infinity—the curve is asymptotic to the x-axis. 

4.5.5 The Osculating Circle for the Witch of Agnesi 

Generally, the constructions associated with the Witch of Agnesi are relatively 

simple.  However, as Table 4-5 portrays, the construction for the Witch’s Osculating 

Circle is rather complex. 

Table 4-5: The Osculating Circle for the Witch of Agnesi 

1.  Draw circle AB with center at A and passing through point B 23. Construct P10  to P1 through point B'' 

2.  Draw line AB 24. Let point K be the intersection of perpendiculars P9 and P10 

3.  Let C be a random point on the circumference of circle AB 25. Draw line segment AK 

4.  Draw line AC 26. Construct P11  to line AB through point B' 

5.  Construct P1  to line AB through point A 27. Let point L be the intersection of line AB and P11 

6.  Construct P2  to line AC through point A 28. Let L' be the image when L is translated by vector A → L 

7.  Let D and E be the two intersections of circle AB with P1 29. Construct P12  to line AB through point L' 

8.  Construct P3  to P2 through point D 30. Let point M be the intersection of line AC with P9 

9.  Let F be the intersection of perpendiculars P2 and P3 31. Let M' be the image when M is translated by vector J → M 

10. Construct P4  to P1 through point F 32. Construct P13  to P1 through point M' 

11. Construct P5  to P1 through point E 33. Let point N be the intersection of perpendiculars P12 and P13 

12. Let point G be the intersection of perpendiculars P2 and P5 34. Let point N' be the image when N is rotated about A by – 90 

13. Construct P6  to line AB through point G 35. Construct P14  to segment AK through point A 

14. Let point H be the intersection of perpendiculars P4 and P6 36. Construct P15  to P14 through point N' 

15. Construct the locus of point H as point C traverses circle AB 37. Let point O be the intersection of perpendiculars P14 and P15 

16. Construct P7  to line AB through point B 38. Draw line segment KO 

17. Let point I be the intersection of line AC and P7 39. Construct P16  to line segment KO through point K 

18. Construct P8  to line AC through point I 40. Let point P be the intersection of perpendiculars P14 and P16 

19. Let point J be the intersection of line AB and P8 41. Let H' be the image when H is translated by vector P → A 

20. Construct P9  to line AB through point J 42. Draw circle H'H centered at point H' and passing through H 

21. Let B' be the image when B is reflected across line AC 43. Make circle H'H thick and change its color 

22. Let B'' be the image when point B' is reflected across line AB 44. Animate point C around circle AB 

 

 No less than 16 perpendiculars are required for this fantastic construction.  By the 

way, when the center of the osculating circle, i.e., the center of curvature, crosses the 

curve (in this case the Witch of Agnesi), the point or points where the crossing takes 

place is (are) the point(s) of inflection of the curve.  In other words, the intersection 

point(s) of the curve and its evolute is (are) the point(s) of inflection. 
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Figure 4-4: The Solid of Revolution Formed by the Witch of Agnesi 

 

This figure shows the solid formed when the Witch of Agnesi is revolved about the x-axis.  

The background has been made solid black to give the appearance that the solid is 

floating in space.  The surface of the solid has been given a weathered brass finish and 

the light source has been placed so as to illuminate the upper right portion of the solid 

and to partially shadow the rest of the object. 
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Chapter 5 – The Conchoid of Nicomedes 
 

 

Figure 5-1: The Solid of Revolution Formed from the Conchoid of Nicomedes 

 

The Conchoid of Nicomedes is a curve with two branches.  One branch has a loop in it 

for certain values of the curve’s parameters.  Figure 5-1 portrays the loop branch of the 

Conchoid of Nicomedes after it was truncated along its directrix and then rotated about 

the y-axis.  The surface of the solid so formed has been given a bright gold finish and 

then placed over an infinite green plane that meets a cloud-bedecked sky at the horizon.  

Two light sources have been configured so as to form the shadows seen on the green 

plane; one in the background and one directly under the solid of revolution. 
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5.1 Introduction 

 In Chapter 1, we learned about the concept of a Conchoid, namely, one method of 

deriving a new curve from a given curve.  That is, given a curve C and a fixed point O, 

points P1 and P2 are taken on a variable line through O at a distance ± a from the 

intersection of the line and the curve C.  Then, the locus of P1 and P2 is called the 

Conchoid of the given curve C with respect to the point O.  When the given curve C is 

itself a straight line, the Conchoid is called the Conchoid of Nicomedes. 

 

 Nicomedes was born in Greece about 280 BC and died approximately 210 BC.  

Very little is known of Nicomedes’ life; even the birth and death dates are 

approximations.  However, Nicomedes is famous for his treatise On Conchoid Lines 

which contains his discovery of the curve that is today referred to as the Conchoid of 

Nicomedes.  According to modern accounts, the Conchoid of Nicomedes was first 

conceived by Nicomedes to solve the angle trisection problem (we will address this 

problem later in the chapter).  The name conchoid is derived from Greek and it means 

"shell," as in the word "conch"; the curve is also sometimes known as a cochloid.  In 

actuality, the Conchoid of Nicomedes describes a whole family of curves, a different 

curve for each value of the parameter a;  i.e., given a line L, a point O that is not on L, 

and a specified distance a, the Conchoid of Nicomedes is defined as follows (refer to 

Figure 5-2).  Draw a line K passing through point O and intersecting line L in point P.  

Locate points P1 and P2 on line K such that the distance PP1 = PP2 = a.  Then, the locus 

of points P1 and P2 for each point P on L gives the Conchoid of Nicomedes. 

 

 

Figure 5-2: The Definition of the Conchoid of Nicomedes 
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The point O is called the pole point and the given line, L, is called the conchoid’s 

directrix and is an asymptote to the curve. 

5.2 Equations and Graph of the Conchoid of Nicomedes 

 To arrive at a parametric representation for the Conchoid of Nicomedes, we could 

simply plug a parametric representation for a straight line into Equation 1-15 (given in 

Chapter 1) and be done with it.  However, it is more informative to derive the equations 

directly from the definition.  As a matter of fact, let’s do both, since there is something to 

be learned from performing both exercises.  To derive the Cartesian equation for this 

curve directly, first consider the point P2 to have coordinates x and y.  From Figure 5-2, 

one can see that 

22
cos

yx

x


 . 

Similarly, 

 

.sin
a

by 
  

 

Eliminating   by squaring and adding, we have 

 

 
1

2

2

22

2





 a

by

yx

x
. 

 

Now, clearing the fractions and rearranging, we see that the Cartesian form of the 

Conchoid of Nicomedes is 

 

    022222
 yayxby      Equation 5-1 

Note that we could just as easily have considered the point P1 to have coordinates x and y.  

In that case,  

.
sin

a

yb 
 , 

 

and when   is eliminated due to squaring and adding, the same final equation is derived. 

 

 For the polar form, substitute y = rsin and x = rcos.  Making these substitutions 

yields 

    0sinsin 22222
  rarbr . 

 

Expanding and simplifying, the polar form of the Conchoid of Nicomedes is 

 

  bar  sin      Equation 5-2 
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 A convenient parametric form can be obtained by letting y = x tan t, substituting 

this into Equation 5-1 and solving for x.  Thus, 

 

    .0tantantan 2222222
 txatxxbtx  

 

Simplifying and rearranging, we get 

 

.cos
tan

ta
t

b
x   

 

Similarly, solving for y, we obtain 

 

.sin2 taby   

Hence, a parametric representation for the Conchoid of Nicomedes is, 

 

  22
2      ),sin,cos

tan
(,   ttabta

t

b
yx      Equation 5-3 

 Now let us do the derivation by plugging the parametric equation for the line y = b 

into Equation 1-15.  Doing that yields 

 

2222
     and     

bt
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bt
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
 . 

 

If we now substitute t = b tan, we obtain 

 

   cos     and     costan abyabx  . 

 

Since  is just a dummy parameter, we can call it t (our usual notation) and we have an 

alternate parametric representation, that is, 

 

     2
3

2     ,1,tancos,   tttabyx      Equation 5-4 

Nevertheless, continuing with our second derivation, if we now square both x and y and 

add the results together, we have 

 

   2222 seccosabyx  . 

 

However, b + a cos = y and sec = a / (y – b).  Therefore, 

 
2

222













by

a
yyx . 
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Simplifying, we get Equation 5-1, as promised.  The value of this exercise was that we 

were able to obtain a convenient alternate parametric representation along the way, 

namely Equation 5-4. 

 

 If we graph the Conchoid of Nicomedes, we get the two-branched curve shown in 

Figure 5-3. 

 

 

Figure 5-3: Graph of the Conchoid of Nicomedes 

 Note that the graph of the curve shown in Figure 5-3 shows what the curve looks 

like if the parameter b < a.  If b = a, the loop becomes a cusp and if b > a, the bottom 

branch is smooth like the top branch shown in the figure. 

 

The equation of the tangent line at the point t = q is 

 

   223 coscossincos qabxqqayqab  .     Equation 5-5 

5.3 Analytical and Physical Properties of the Conchoid of Nicomedes 

 Using the parametric representation of the Conchoid of Nicomedes given in 

Equation 5-4, i.e., x = (b + a cos t) ∙ tan t and y = b + a cos t, the following are the 

relevant properties of the Conchoid of Nicomedes: 

5.3.1 Derivatives of the Conchoid of Nicomedes 

 tatbx cossec2   

 

 tattbx sinsecsin2 3   
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 tay sin  

 

 tay cos  
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 
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5.3.2 Metric Properties of the Conchoid of Nicomedes 

 As can be seen from the graph (Figure 5-3), the Conchoid of Nicomedes has the 

line y = b as an asymptote; however, unlike curves in previous chapters, the area between 

the curve (that is, either branch of the curve) and the asymptote is infinite.  Nevertheless, 

the area of the loop can be calculated.  Consider an incremental portion of the loop area 

of width 2x and height dy.  The area of this incremental portion is simply dA = 2x  dy.  

Hence, by integrating between a – b and 0, we can obtain the loop area, i.e.,  
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This integral is most easily evaluated by making the substitution u = y – b.  Under this 

substitution, we get 

 

 











b

a

b

a

du
u

ua
bduuaA .22

22
22  

 

The first integral has the value  
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The second integral has the value 
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Hence, adding these two values together gives the loop area of the Conchoid of 

Nicomedes, that is, 
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 The volume of the solid of revolution that is formed when the loop of the 

Conchoid of Nicomedes is rotated about the y-axis can also be calculated.  Consider an 

incremental disk of width dy.  Its volume is simply dV = πx
2
dy.  Therefore, by integrating 

from b – a to 0, we can calculate the total volume.  That is, 
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Making the substitution y - b = u yields the following readily integrable form 
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This now breaks into six different integrals, each of which is integrable as either a 

positive or negative power of u.  Performing the indicated integrations, evaluating the 

results between the two limits of integration, and then collecting like terms, we obtain a 

final form for the desired volume. 
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 If r is the radial distance from the origin to the curve, then 
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 If p is the distance from the origin to the tangent line, then  
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5.3.3 Curvature of the Conchoid of Nicomedes 

 If ρ denotes the radius of curvature of the Conchoid of Nicomedes, then, 
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 If (α, β) denote the coordinates of the center of curvature for the Conchoid of 

Nicomedes, then 
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5.3.4 Angles for the Conchoid of Nicomedes 

 If ψ is the angle between the tangent and the radius vector (i.e., the tangential-

radial angle), then 
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 If  denotes the radial angle, then 

 

 =  / 2 – t. 

 

If  denotes the tangential angle, then 
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5.4 Geometric Properties of the Conchoid of Nicomedes 

 Intercepts:  (0, b – a); (0, 0); and (0, a + b). 

 

 Maximum:  (0, a + b). 

 

 Extent:  - ∞ < x < + ∞; (b – a)  y  a + b. 

 

 Symmetry:  The curve is symmetric about the y-axis. 

 

 Asymptote:  The curve is asymptotic to the line y = b. 

5.5 Trisecting the Angle 

 As alluded to in the introductory section of this chapter, the Conchoid of 

Nicomedes can be used to solve the Greek angle trisection problem.  Given an acute 

AOB, we must construct an angle that is ⅓ of AOB.  (If the given angle is obtuse, 

then one simply performs the construction on its supplement.)  Refer to Figure 5-4. 

 

1. Draw a line J that is perpendicular to segment AO of AOB. 

2. Let point C be the intersection point of segment AO and line J. 

3. Let point D be the intersection point of line J and segment BO of AOB. 

4. Let a Conchoid of Nicomedes be constructed with pole at point O, 

directrix of line J, and distance of 2OD. 

5. Draw line K through point D and perpendicular to line J. 

6. Let E be the intersection of the curve (on the opposite side of the pole) and 

line K. 
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7. Draw line segment OE. 

8. Let point F be the intersection of line J and segment OE. 

9. Let point G be the midpoint of segment FE. 

10. Draw segment DG. 

 

 

Figure 5-4: The Trisection of an Angle Using the Conchoid of Nicomedes 

 Since triangles DEG, OGD, and GFD are all isosceles and since triangle FDE is a 

right triangle, it can easily be shown that AOE = OED = ⅓AOB.  The essential 

element that makes the trisection possible is the construction of the point E on line K such 

that the segment FE is equal to twice segment OD.  A slight modification of this 

construction can actually be used to generate the Conchoid of Nicomedes (i.e., essentially 

reversing the steps of the trisection process) and is presented as one of the dynamic 

geometry constructions in section 5.6. 

5.6 Dynamic Geometry Considerations 

 Dynamic geometry programs such as GSP can be used to generate the Conchoid 

of Nicomedes and demonstrate other properties of the curve.  A few such constructions 

follow. 

5.6.1 The Conchoid of Nicomedes Based on the Definition 

The construction presented below in Table 5-1 basically follows from the 

definition of the Conchoid of Nicomedes given in section 5.1.  Note that in this 

construction, by moving point I into different locations in the plane relative to points G 

and H, one can cause one branch of the curve to have a cusp, or a loop, or to be smooth 

(as briefly addressed in section 5.2). 
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Table 5-1: The Conchoid of Nicomedes Based on the Definition 

1.  Draw horizontal line AB 8.  Draw circle HI with center at H and passing through point I 

2.  Let C and D be two random points anywhere below line AB 9.  Let C1 be the image as circle HI is translated by vector H → F 

3.  Draw circle CD with center at C and passing through point D 10. Draw line GF 

4.  Let E be a random point on the circumference of circle CD 11. Let J and K be the intersections of line GF and circle C1 

5.  Draw line CE 12. Trace points J and K and change their color 

6.  Let point F be the intersection of lines AB and CE 13. Animate point E around circle CD 

7.  Let G, H, and I be random points anywhere above line AB  

5.6.2 The Trisection Construction 

 A rather complex but beautiful construction can be based on the trisection 

problem as discussed earlier.  It is presented below in Table 5-2. 

Table 5-2: The Trisection Construction 

1.  Draw horizontal line segment AB with B to the left of point A 16. Let point I be the intersection of line AB and P1 

2.  Let C be a random point above line segment AB 17. Draw circle IB with center at I and passing through point B 

3.  Draw line segment BC 18. Let point J be the intersection of ray BC' and P1 

4.  Draw a dashed line through points A and B 19. Construct P2  to P1 through point I 

5.  Draw a dashed line through points B and C 20. Draw line HB 

6.  Let m1 be the measure of CBA 21. Let m3 be the measure of distance BI 

7.  Let m2 = ⅓ · m1 22. Let m4 = 2m3 

8.  Let C' be the image when C is rotated about point B by m2 23. Let point K be the intersection of circle IB and ray BC' 

9.  Draw ray BC' from point B through point C' 24. Draw line segment KI 

10. Let D be a random point on line segment BC 25. Let H' be the image when point H is translated by distance m4 

11. Construct P1  to line CB through point D 26. Draw circle HH' centered at H and passing through point H' 

12. Draw circle EF centered at point E where EF is any radius 27. Let L and M be the intersections of circle HH' and line HB 

13. Let G be a random point on the circumference of circle EF 28. Trace points L and M and change their color 

14. Draw line EG 29. Animate point G around circle EF 

15. Let point H be the intersection of line EG and P1  

 

 In step 8 of the above construction, make sure that the angle units are set for 

directed degrees (i.e., select directed degrees in the object preferences box found under 

the preference entry of GSP’s display menu). 

5.6.3 The Generalized Conchoid 

 We learned in Chapter 1 and again at the beginning of this chapter that the 

Conchoid of Nicomedes can be thought of as a special case of a more general type of 

curve, namely, something that we call the generalized Conchoid or just Conchoid.  As an 

example of this more general concept, consider the dynamic geometry construction of the 

Conchoid of a circle with respect to a given pole and distance a. 

Table 5-3: The Generalized Conchoid 

1.  Draw line segment AB 6.  Construct circle C2 centered at point E with radius = AB 

2.  Draw circle CD with center at point C and CD = to any radius 7.  Let G and H be the intersections of circle C2 and line FE 

3.  Let E be a random point on the circumference of circle CD 8.  Trace points G and H and change their color 

4.  Let F be a random point not on circle CD 9.  Animate point E around circle CD 

5.  Draw line FE  

 

 In step 1, the length of line segment AB represents the distance a.  In step 2, circle 

CD represents the circle for which we desire to construct the Conchoid.  And, in step 4, 

point F represents the pole point.  Note that by dragging point A (or point B) in order to 

change the length of segment AB and thereby change the radius of circle C2, different 

members of the family for the Conchoid of a circle can be generated.  Dragging point F 

will also have this same effect. 
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5.6.4 The Tangent Lines of the Conchoid of Nicomedes 

Below, in Table 5-4, is a construction of the tangent lines to the Conchoid of 

Nicomedes, one tangent line for each branch. 

 

Table 5-4: Tangent Lines to the Conchoid of Nicomedes 

1.  Draw horizontal line AB 12. Let J and K be the two intersections of line GF and circle C2 

2.  Let C and D be two random points below line AB 13. Construct P2  to line GF through point G 

3.  Draw circle CD with center at C and passing through point D 14. Construct the locus of point J while E traverses circle CD 

4.  Let E be a random point on the circumference of circle CD 15. Construct the locus of point K while E traverses circle CD 

5.  Draw line CE 16. Let point L be the intersection of perpendiculars P1 and P2 

6.  Let point F be the intersection of lines AB and CE 17. Draw lines JL and KL 

7.  Let G, H, and I be three random points above line AB 18. Construct P3  to line JL through point J 

8.  Draw circle HI with center at H and passing through point I 19. Construct P4  to line KL through point K 

9.  Let C2 be the translation of circle HI by the vector H → F 20. Change the color of the two loci 

10. Draw line GF 21. Change the color and thickness of perpendiculars P3 and P4 

11. Construct P1  to line AB through point F 22. Animate point E around circle CD 

 

5.6.5 The Pedal Curves of the Conchoid of Nicomedes 

As we learned earlier, the pedal of a given curve is defined to be the locus of the 

intersection point of the tangent to the given curve and the perpendicular to that tangent 

from the pole or pedal point.  In the last section (section 5.6.4), we constructed the 

tangents to both branches (one tangent per branch) of the Conchoid of Nicomedes.  It 

should therefore be "duck soup" to construct the pedal curves to either branch of the 

Conchoid of Nicomedes.  Let’s do it!  The pedal curve construction is found below in 

Table 5-5. 

 

Table 5-5: Pedal Curves of the Conchoid of Nicomedes 

1.  Draw horizontal line AB 15. Let point L be the intersection of perpendiculars P1 and P2 

2.  Let C and D be two random points below line AB 16. Draw lines JL and KL 

3.  Draw circle CD with center at C and passing through point D 17. Construct P3  to line JL through point J 

4.  Let E be a random point on the circumference of circle CD 18. Construct P4  to line KL through point K 

5.  Draw line CE 19. Let M be a random point anywhere in the plane 

6.  Let point F be the intersection of lines AB and CE 20. Construct P5  to P3 through point M 

7.  Let G, H, and I be three random points above line AB 21. Let the intersection of P3 and P5 be point N 

8.  Draw circle HI with center at H and passing through point I 22. Trace point N and change its color 

9.  Let circle C2 be the translation of circle HI by vector H → F 23. Let point O be another random point anywhere in the plane 

10. Draw line GF 24. Construct P6  to P4 through point O 

11. Construct P1  to line AB through point F 25. Let point P be the intersection of perpendiculars P4 and P6 

12. Let J and K be the intersections of line GF and circle C2 26. Trace point P and change its color 

13. Trace points J and K and change their color 27. Animate point E around circle CD 

14. Construct P2  to GF through point G  

 

 

 Obviously, points M and O serve as the pole points in this construction.  Either 

point M or point O, or both, may be dragged to different positions and the animation then 

rerun.  Each different position of the pole point(s) yields a member of the pedal curve 

family.  Some very weird curves can be generated by playing around with this 

construction.  Have fun! 
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5.6.6 The Conchoid as the Cissoid of a Line and Circle 

 In Chapter 1, we learned of the concept of a Cissoid as a means of deriving a new 

curve from two given curves.  That is, given two curves C1 and C2, a fixed point O 

(called the pole point), and a line L that intersects the two curves in Q1 and Q2; if we now 

locate a point P on L such that OP = Q1Q2, then the locus of P for all lines L is called the 

Cissoid of C1 and C2 with respect to the point O.  Well guess what?  If the two curves are 

a circle and a straight line and if the pole point is the center of the circle, it turns out that 

the locus will be a Conchoid of Nicomedes.  You don’t believe it?  Well, take a look 

below in Table 5-6 where just such a construction should make a believer out of you. 

Table 5-6: The Conchoid of a Circle and a Straight Line 

1.  Draw circle AB with center at A and passing through point B 6.  Let G be the unlabeled intersection of circle AB and line AE 

2.  Draw a random line CD anywhere in the plane 7.  Let A' be the translation of point A by vector F → G 

3.  Let E be a random point on the circumference of circle AB 8.  Trace point A and change its color 

4.  Draw line AE 9.  Animate point E around circle AB 

5.  Let point F be the intersection of lines CD and AE  

 

 It probably doesn’t need to be said, but here goes:  circle AB is curve C1, line CD 

is curve C2, and point A is the pole point. 

5.6.7 One Tangent Line for Both Branches 

 In section 5.6.4 we geometrically constructed the tangent to the Conchoid of 

Nicomedes, one such tangent line for each branch of the curve.  We will now see a 

construction that uses only a single tangent line but moves during the animation so as to 

be tangent to both branches, one after the other.  Also note that the construction of the 

Conchoid of Nicomedes itself is different than what has been used previously.  Refer to 

Table 5-7. 

Table 5-7: One Tangent Line for Both Branches 

1.  Draw circle AB with center at A and passing through point B 11. Let E' be the image when E is translated by vector G → E 

2.  Let C be a random point on the circumference of circle AB 12. Construct the locus of point E' while C traverses circle AB 

3.  Draw line AC 13. Construct P2  to line AC through point D 

4.  Draw line AB 14. Let point H be the intersection of line AB andP2 

5.  Construct P1  to line AB through point B 15. Construct line L1 parallel to line AC through point H 

6.  Let point D be the intersection of P1 and line AC 16. Construct P3  to line L1 through point E' 

7.  Draw line segment AD 17. Let point I be the intersection of perpendicular P3 and line L1 

8.  Let E be the midpoint of line segment AD 18. Draw line AI 

9.  Draw circle AF centered at A such that radius AF > radius AB 19. Construct P4  to line AI through point E' 

10. Let point G be either intersection of circle AF and line AC 20. Animate point C around circle AB 

 

 Perpendicular P4 is, of course, the tangent.  Note that if the other intersection of 

line AC with circle AF is used, point E is translated to the other branch.  So, in either 

case, the locus of E' gives the same curve. 

5.6.8 The Osculating Circle of the Conchoid of Nicomedes 

In the construction of Table 5-8 below, the osculating circle of the Conchoid of 

Nicomedes is presented.  This construction shares the osculating circle with its two 

branches just as the previous construction shared the tangent line.  This construction is 

rather complex; however, geometric constructions of the center of curvature of most 

curves tend to be complex.  Execute this construction and watch with wonder as the 
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osculating circle grows to infinite radius and shrinks to fit inside the loop of the curve as 

the center of curvature traces the curve’s evolute. 

 

Table 5-8: The Osculating Circle of the Conchoid of Nicomedes 

1.  Draw circle AB centered at A and passing through point B 22. Construct P7  to line AB through point H 

2.  Draw line AB 23. Let point J be the intersection of P7 and line AC 

3.  Let C be a random point on the circumference of circle AB 24. Let J be the image when point J is translated by vector E  J 

4.  Draw line AC 25. Draw line segment AJ 

5.  Draw circle AD centered at A with radius AD > AB 26. Let K be the midpoint of line segment AJ 

6.  Construct P1  to line AB through point B 27. Let K be the image when K is translated by vector G  K 

7.  Let point E be the intersection of P1 and line AC 28. Construct P8  to line AC through point K 

8.  Let F be one of the intersections of circle AD and line AC 29. Let E be the image when E is translated by vector H  E 

9.  Draw line segment EF 30. Let E be the image when E is translated by vector E  E 

10. Let G be the midpoint of line segment EF 31. Construct P9  to P3 through point E 

11. Let G be the image when G is translated by vector A  G 32. Let point L be the intersection of P8 and P9 

12. Construct the locus of point G as point C traverses circle AB 33. Construct P10  to line AI through point L 

13. Construct P2  to line AB through point A 34. Let point M be the intersection of P10 and line AI 

14. Construct P3  to line AC through point E 35. Draw line segment IM 

15. Construct P4  to line AC through point G 36. Construct P11  to line segment IM through point I 

16. Let point H be the intersection of P3 and line AB 37. Let point N be the intersection of line AI and P11 

17. Construct P5  to P3 through point H 38. Let G be the image when G is translated by vector N  A 

18. Let point I be the intersection of P4 and P5 39. Draw circle GG centered at G and passing through G 

19. Let I be the image when point I is rotated about A by 90 40. Make circle GG thick and a different color 

20. Draw line AI 41. Animate point C around circle AB 

21. Construct P6  to line AI through point G  
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Figure 5-5: The Loop of the Conchoid of Nicomedes in Three Dimensions 

 

To create this figure, the loop branch of the Conchoid of Nicomedes was truncated along 

its asymptote and then extruded into the third dimension.  The resulting figure was then 

given a brown-agate finish and super-imposed over the arc of a rainbow.  Light sources 

were placed so as to cast shadows on the inside of the loop. 
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Chapter 6 – The Cardioid 
 

 

Figure 6-1: The Cardioid in Three Dimensions 

 

The cross-section of this pseudo-cylinder is the curve known as the Cardioid.  To create 

the object above, the Cardioid was extruded into the third dimension, given a lustrous tan 

finish, and placed above an infinite checkered plane which meets the wispy, clouded sky 

at the horizon.  Light sources were placed so as to cast the object’s shadow on the plane 

and to partially shade the inner surface of the object. 
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6.1 Introduction 

 The word cardioid is from the Greek root cardi, meaning heart; hence cardioid 

means heart-shaped.  We learned in Chapter 1 that a Roulette is the curve resulting as the 

trace of a fixed point on a curve C1 that rolls without slipping along another fixed curve, 

C2.  A special name is given to the Roulette when both C1 and C2 are circles and when the 

fixed point is on the circumference of the rolling circle; that name is Epicycloid and the 

Cardioid is a special instance of an Epicycloid.  Before we define the Cardioid, let us 

more precisely define an Epicycloid.  An Epicycloid is defined as the path of a point P 

fixed on the circumference of a circle of radius b, as it rolls at a uniform speed along the 

circumference and outside of a second circle of radius a.  Let the fixed circle be centered 

at the origin of the x-y plane.  Suppose the moving circle is rolling along the fixed one in 

such a way that its center has rotated about the origin to an angle t at time t (see Figure 6-

2). 

 

 

Figure 6-2: The Concept of an Epicycloid 

 We then find for the position at the time t of the point P = [x (t), y (t)], which at 

the time t = 0 is the point of contact (a, 0), the parametric equations 
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 This then defines an Epicycloid.  As alluded to above, a Cardioid is a special case 

of an Epicycloid; namely, when a = b (i.e., when the radius of the fixed circle is the same 

as the radius of the rolling circle), the curve traced is called a Cardioid. 

6.2 Equations and Graph of the Cardioid 

 Obtaining a parametric equation for the Cardioid is simply a matter of letting  

b = a in Equation 6-1.  Thus, 

 

tatay

tatax

2sinsin2

2coscos2




     – < t <      Equation 6-2 

 By eliminating the parameter t between the two components of Equation 6-2, one 

can derive the Cartesian equation, which is 

 

   222222 42 yxaaxyx       Equation 6-3 

 Similarly, one can derive the polar equation of the Cardioid by making the 

familiar substitutions of x = rcos, y = rsin, and r
2
 = x

2
 + y

2
.  That is, 

 

 cos12  ar      Equation 6-4 

 With the origin taken at the center of the fixed circle, the pedal equation of the 

Cardioid is 

 

  222 89 par       Equation 6-5 

 Further, the Whewell equation is 

 

3
cos8


as       Equation 6-6 

 And the Cesáro equation is 

 

222 649 as        Equation 6-7 

Finally, the equation of the tangent line to the Cardioid at the point t = q is 

 

  
 

 
 1cos2sin

1cos3

1cos2sin

cos21cos1











qq

qa
x

qq

qq
y      Equation 6-8 

 The graph of the Cardioid is shown in Figure 6-3.  Note that the vertex of the 

Cardioid is defined to be the point opposite the Cardioid’s cusp, and the diameter of the 

Cardioid is the segment between the cusp and the vertex. 
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Figure 6-3: Graph of the Cardioid 

6.3 Analytical and Physical Properties of the Cardioid 

 Using the parametric representation of the Cardioid given in Equation 6-2, i.e.,  

x = 2acost – acos2t and y = 2asint – asin2t, the following subparagraphs delineate further 

properties and characteristics of the Cardioid: 

6.3.1 Derivatives of the Cardioid 

  1cos2sin2  ttax . 

 

  2coscos42 2  ttax . 

 

   ttay cos21cos12  . 

 

  1cos4sin2  ttay . 

 

 
  

 1cos2sin

cos21cos1






tt

tt
y . 

 

 
 
 33 1cos2sin2

cos13






tta

t
y . 

6.3.2 Metric Properties of the Cardioid 

 In Chapter 1, we addressed the arc length of a curve in polar coordinates as 
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 









2

1

2

2






dr
d

dr
s . 

Therefore, ½ the length of the Cardioid would be its arc length between  = 0 and  = π.  

That is, 

   

 


0 0

2222 .cos122cos14sin4 dadaas  

 

Now, using the identity 

2
cos2cos1


  ,   

we have, 

 


















 


0 0

.8
2

sin8
2

sin8 aadas  

Since the Cardioid is symmetric about the x-axis, the total length of the Cardioid will be 

twice this value or s = 16a. 

 

 Chapter 1 also expresses the area in polar coordinates by considering the area of a 

small circular sector of incremental angle d.  The area of this incremental sector is 

simply dA = ½ r
2
d.  Therefore, the area of the Cardioid above the x-axis is 

 

     

   


0 0 0 0

222222 cos2cos42cos14
2

1
dadadadaA  

 

The contribution from the first integral is 2πa
2
, the contribution from the second integral 

is zero, and the contribution from the third integral is πa
2
.  Hence, the area above the x-

axis is 3πa
2
 and the total area, by symmetry, is 6πa

2
. 

 

 The surface area of the solid of revolution that is formed when the Cardioid is 

rotated about the x-axis can be calculated using the parametric form addressed in Chapter 

1.  That is,  

 


















2

1

22

2

t

t

dt
dt

dy

dt

dx
yS  , 

 

where x and y are the components from the parametric representation in Equation 6-2 and 

where t1 and t2 are 0 and π, respectively.  We know from section 6.3.1 that 

 

tata
dt

dx
sin22sin2       and     tata

dt

dy
2cos2cos2  . 

Therefore,  

ta
dt

dy

dt

dx
cos122

22


















, and 
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   




0

.cos1222sinsin22 dttatataS  

 

Breaking this up into two integrals, we have 

 

.cos12sin24cos1sin28
0

2

0

2 dtttadtttaS  



  

 

Both integrals can be evaluated by making the substitution u = 1 – cos t.  Under this 

substitution, du = sin tdt and when t = 0, u = 0 and when t = π, u = 2.  Therefore, the two 

integrals are transformed to the following 

 

  

2

0

2

2

0

2 2
1

2
1

122428 duuuaduuaS  . 

The first integral has the value 64πa
2
/3 and the second integral has the value -64πa

2
/15.  

Taking the difference of these two quantities therefore yields S, the total surface area of 

the surface of revolution formed when the Cardioid is rotated about the x-axis:  

 

5

128

15

64

3

64 222 aaa
S











 . 

 If p is the distance from the origin to the tangent of the Cardioid, then 

 

  2
1

cos1
2

23
t

a
p  . 

 If r is the radial distance from the origin to the Cardioid, then 

 

tar cos45 . 

6.3.3 Curvature of the Cardioid 

 If ρ represents the radius of curvature of the Cardioid, then 

 

  2
1

cos1
3

24
t

a
 . 

 If (α, β) are the coordinates of the center of curvature of the Cardioid, then 

 

 1cos2cos2
3

2  tt
a

      and      tt
a

cos1sin
3

2
 . 
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6.3.4 Angles for the Cardioid 

 If ψ is the angle between the tangent and the radius vector at the point of tangency 

to the Cardioid, then 

 
t

t

sin

cos13
tan


 . 

 

 If  denotes the radial angle of the Cardioid, then 

 

 
tt

tt

2coscos2

cos1sin2
tan




 . 

 

 If  denotes the tangential angle of the Cardioid, then 

 

  
 1cos2sin

cos21cos1
tan






tt

tt
 . 

6.4 Geometric Properties of the Cardioid 

 Intercepts:  (0, ± 2a); (4a, 0). 

 

 x-maximum:  (4a, 0).  

 

 x-minima:  







 aa 3

2

1
 , . 

 

 y-maximum:  













a

a

2

33
,

2

3
. 

 

 y-minimum:  













 a

a

2

33
,

2

3
. 

 

 Extent:  -a  x  4a and  .
2

33

2

33
aya   

 

 Symmetry:  The Cardioid is symmetric about the x-axis. 

 

 Cusp:  (0, 0). 

 

 Loop:  The entire Cardioid is one loop. 
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6.5 Dynamic Geometry of the Cardioid 

 The Cardioid has many interesting properties and can be generated in a variety of 

different ways.  The following subsections present a few of these properties as well as an 

assortment of the methods that can be used to generate the curve itself. 

6.5.1 The Cardioid as an Epicycloid 

 As alluded to in section 6.1, an Epicycloid is defined as the path of a fixed point, 

P, on the circumference of a circle of radius b, as it rolls at a uniform speed without 

slipping around the circumference and outside of a second stationary circle of radius a.  

The Cardioid occurs when the two radii are equal, i.e., when a = b.  The GSP 

construction delineated below in Table 6-1 is based on this relationship. 

Table 6-1: The Cardioid as an Epicycloid 

1.  Draw horizontal line AB 9.  Construct line L1 parallel to line AB through point A' 

2.  Let C be a random point on line AB 10. Let F be the intersection of L1 and translated circle 

3.  Draw circle AC centered at A and passing through point C 11. Let m1 be the measure of CAD 

4.  Let D be a random point on the circumference of circle AC 12. Let m2 = 2m1 

5.  Draw line AD 13. Let F' be the image when F is rotated about point A' by m2 

6.  Let point E be diametrically opposite to point D 14. Trace point F' and change its color 

7.  Translate circle AC by vector E → D 15. Animate point D around circle AC 

8.  Let A' be the image when A is translated by vector E → D  

 

 In the above construction, the circle created at step 3 (circle AC) plays the role of 

the fixed circle.  Steps 4 through 8 are then merely the methodology used to obtain 

another circle of equal radius tangent to the fixed circle.  Let us call this circle A'D 

because it is centered at point A' and passes through point D.  Ostensibly, circle A'D is 

supposed to be the rolling circle although this is somewhat of a misnomer.  When point D 

is animated around the fixed circle (in step 15), it looks like circle A'D is rolling around 

the fixed circle, but in actuality, it is not – it is sliding around the fixed circle, not rolling.  

If you need proof of this fact, simply trace any random point on the circumference of 

circle A'D and you will obtain the trace of another circle.  If circle A'D were truly rolling 

(without slipping), any random point on its circumference would trace a Cardioid.  Steps 

9 through 13 are then simply an artifice to construct a point that emulates that of a point 

on a rolling circle.  Note that we have created point F' by rotating point F about point A' 

by twice angle CAD.  Since GSP always maintains that relationship as points are moved, 

point F' moves around circle A'D as though it were truly on a rolling circle.   

 

 An interesting fact to note is that the diameter of the Cardioid generated in this 

manner is 4 times the radius of the fixed circle. 

6.5.2 The Cardioid as an Epicycloid Revisited 

 The previous construction is based upon a fixed circle and a circle of equal radius 

rotating without slipping around the outside of the fixed circle.  The construction shown 

below in Table 6-2 is similar except that the rotating circle is twice the radius of the fixed 

circle and it rotates in such a way that the fixed circle is inside of the rotating circle.  That 

a Cardioid may also be generated this way was discovered by Daniel Bernoulli in 1725 

and is known as the Double Generation theorem. 
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Table 6-2: The Cardioid as an Epicycloid Revisited 

1.  Draw horizontal line AB 6.  Let A'' be the image when A is translated by vector A' → C' 

2.  Draw circle AB with center at A and passing through point B 7.  Draw circle A''C' centered at A'' and passing through point C' 

3.  Let C be a random point on the circumference of circle AB 8.  Trace point C' and change its color 

4.  Let A' be the image when A is rotated about point C by 180º 9.  Animate point C around circle AB 

5.  Let C' be the image when C is rotated about A' by BAC  

6.5.3 Orthogonal Tangents to the Cardioid 

 The following simple, but elegant, construction demonstrates an interesting 

property of Cardioids.  That is, given a tangent to the Cardioid, one can always find 

another tangent that is perpendicular to the given tangent.  After completing this 

construction, note that segments CC2 and C1C4 are normals of the Cardioid.  Refer to 

Table 6-3. 

Table 6-3: Orthogonal Tangents to the Cardioid 

1.  Draw circle AB centered at A and passing through point B 9.  Let C3 be the image when C2 is rotated about point A by 180º 

2.  Let C be a random point on the circumference of circle AB 10. Draw line segment CC2 

3.  Let B' be the image when B is dilated about A by a factor of 3 11. Let C4 be the image when C3 is rotated about A'' by 180º 

4.  Draw circle AB' with center at A and passing through point B' 12. Construct P1  to line segment CC2 through point C2 

5.  Let point A' be the image when A is rotated about C by 180º 13. Draw line segment C1C4 

6.  Let C1 be the image when C is rotated about point A by 180º 14. Construct P2  to line segment C1C4 through point C4 

7.  Let C2 be the image when C is rotated about A' by BAC 15. Construct the locus of point C2 while C traverses circle AB 

8.  Let A'' be the image when A' is rotated about point A by 180º 16. Animate point C around circle AB 

 

 There are at least two items of interest with this construction and Cardioid 

property.  First, note that even though the main thrust here is to demonstrate this 

orthogonal tangent property, the construction contains a general method of constructing a 

tangent, something that was pointed out in previous chapters.  Second, we have two 

tangents meeting at a constant angle as the animation is executed; in Chapter 1 we 

learned that the locus of the intersection point of two tangents with that property is called 

an isoptic and, further, when the constant angle is 90, the locus is called an orthoptic.  In 

this case, the locus is a circle, specifically circle AB.  Therefore the orthoptic produced 

by the Cardioid’s orthogonal tangents is a circle. 

6.5.4 The Cardioid as the Conchoid of a Circle 

 In Chapter 1, we discussed the concept of a generalized Conchoid.  To review, let 

O be a fixed point (called the pole point) and let L be a line through O that intersects a 

curve C at a point Q.  The locus of points P1 and P2 on L such that P1Q = P2Q = a, where 

a is a constant, is a conchoid of the curve C with respect to point O.  Now, consider a 

circle of radius r.  The Conchoid of this circle with respect to a fixed point on the 

circumference of the circle where the constant a = 2r is a Cardioid.  See Table 6-4 below 

for the GSP construction of this Cardioid. 

Table 6-4: The Cardioid as the Conchoid of a Circle 

1.  Draw circle AB centered at A and passing through point B 6.  Construct circle C2 centered at C and radius = to segment BD 

2.  Draw line AB 7.  Draw line BC 

3.  Let C be a random point on the circumference of circle AB 8.  Let E and F be the two intersections of line BC and circle C2 

4.  Let D be the point diametrically opposed to point B 9.  Trace points E and F and change their color 

5.  Draw line segment BD 10. Animate point C around circle AB 
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 This construction, as can be seen, also appears to be a rolling circle of twice the 

radius of the fixed circle, and rotating in such a way that the fixed circle is inside of the 

rolling circle.  However, note that both points E and F need to be traced in order to 

generate the entire Cardioid.  Tracing only one of the points generates only a fraction of 

the curve.  This is due to the way GSP is designed.  (Other dynamic geometry programs 

do not necessarily have this limitation.) 

6.5.5 A Cardioid Sliding on Mutually Orthogonal Lines 

 This construction produces a Cardioid that slides on two mutually perpendicular 

lines.  This very beautiful construction is delineated below in Table 6-5. 

Table 6-5: A Cardioid on Mutually Orthogonal Lines 

1.  Draw horizontal line AB 14. Let H be the midpoint of line segment DF 

2.  Let C be a random point on line AB 15. Draw line segment GH 

3.  Draw circle AC centered at A and passing through point C 16. Let I be the midpoint of line segment GH 

4.  Let D be a random point on the circumference of circle AC 17. Draw circle ID centered at I and passing through point D 

5.  Construct P1  to line AB through point A 18. Let point G1 be the translation of point G by vector I → G 

6.  Construct P2  to line AB through point D 19. Draw circle G1G centered at G1 and passing through point G 

7.  Construct P3  to P2 through point D 20. Let J be a random point on the circumference of circle ID 

8.  Let point E be the intersection of perpendiculars P1 and P3 21. Let G2 be the image when G1 is rotated about point I by GIJ 

9.  Let F be the intersection of line AB and perpendicular P2 22. Let E1 be the image when E is rotated about point I by GIJ 

10. Draw line segment EF 23. Let E2 be the image when E1 is rotated about G2 by GIJ 

11. Draw line segment ED 24. Construct the locus of E2 while point J traverses circle ID 

12. Let G be the midpoint of line segment ED 25. Animate point D around circle AC 

13. Draw line segment DF  

 

 Note the following about this fascinating construction.  Lines AB and AE are the 

two mutually orthogonal lines upon which the Cardioid slides.  While running the 

animation, observe that point E performs simple harmonic motion along line AE while, 

simultaneously, point F performs simple harmonic motion along line AB and both of 

these points are points on the Cardioid.  Further, observe that the cusp of the Cardioid is 

confined to two of the constructs, namely, the circumference of circle ID and line 

segment EF. 

 

 If one constructs the two intersection points of line segment EF with circle ID and 

traces those two points, one obtains a curve called the Astroid, a curve addressed in 

Chapter 11.  In this case, the Astroid is produced with an inscribed circle.  However, both 

points must be traced to obtain the Astroid with inscribed circle; tracing only one of the 

points gives only half of the Astroid and half of the circle.  If one traces point E2, one 

obtains a curve called the Nephroid, also addressed in Chapter 7.  If one traces point E1, 

one obtains a curve called the Limacon of Pascal.  Finally, if one traces point G1 and/or 

circle G1G, one obtains an ellipse.  This construction is just full of goodies! 

6.5.6 The Cardioid as the Caustic of a Circle 

 In Chapter 1, we briefly addressed the concept of a caustic.  To review, the caustic 

of a given curve C is the envelope of light rays emitted from a point source after 

reflection or refraction at the curve C.  When the envelope is due to reflection, the caustic 

is referred to as a catacaustic, and if the envelope is due to refraction, the caustic is 

referred to as a diacaustic.  It turns out that the catacaustic of a circle when the light 

source is on the circumference of the circle is a Cardioid.  The Cardioid produced in this 
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manner is inside the circle and its vertex coincides with the light source.  Further, the 

Cardioid has a diameter that is 2/3 of the circle’s diameter.  See Table 6-6 below for this 

construction. 

Table 6-6: The Cardioid as the Caustic of a Circle 

1.  Draw circle AB centered at A and passing through point B 5.  Reflect line segment BC across line segment AC 

2.  Let C be a random point on the circumference of circle AB 6.  Let the reflected line segment intersect circle AB in point D 

3.  Draw line segment AC 7.  Trace line segment CD and change its color 

4.  Draw line segment BC 8.  Animate point C around circle AB 

 

 As can be seen from Figure 6-4, which is a snapshot of the executing animation, 

this construction makes for quite a spectacular looking trace.  For best effects, have the 

animation do only one revolution and do it at the highest animation speed, i.e., quickly. 

 

 

Figure 6-4: The Cardioid as the Caustic of a Circle 

6.5.7 The Cardioid as the Pedal Curve of a Circle 

 It just so happens that the pedal curve of a circle when the pedal point is on the 

circumference of the circle is a Cardioid, as can be seen from the construction below in 

Table 6-7.  In this case, the pedal point (point B) forms the cusp of the Cardioid and the 

diameter of the circle is the same as the diameter of the Cardioid. 

Table 6-7: The Cardioid as the Pedal of a Circle 

1.  Draw circle AB with center at A and passing through point B 5.  Construct P2  to P1 through point B 

2.  Let C be a random point on the circumference of circle AB 6.  Let point D be the intersection of perpendiculars P1 and P2 

3.  Draw line segment AC 7.  Trace point D and change its color 

4.  Construct P1  to line segment AC through point C 8.  Animate point C around circle AB 
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6.5.8 The Cardioid and Simple Harmonic Motion 

 Who would have thought that a rotating Cardioid could produce simple harmonic 

motion?  But it is a remarkable fact that it can, as can be seen from the construction 

delineated below in Table 6-8. 

Table 6-8: The Cardioid and Simple Harmonic Motion 

1.  Draw circle AB with center at A and passing through point B 11. Let C3 be the image when C is rotated about C1 by BAC 

2.  Let A1 be the image when A is dilated about B by a factor of 2 12. Construct P1  to line segment BA2 through point C2 

3.  Dilate circle AB about point B be a factor of 2 13. Let D2 be the image when D is rotated about D1 by BAD 

4.  Let A2 be the image when A1 is dilated about B by the factor 2 14. Draw line segment C2A1 

5.  Let C and D be two random points on circle AB 15. Let E be the intersection of line segment BA2 and P1 

6.  Draw line segment BA2 16. Let D3 be the image when D2 is rotated about B by C3BE 

7.  Let C1 be the image when C is dilated about A by a factor of 2 17. Draw line segment EC3 

8.  Let C2 be the image when C is dilated about B by a factor of 2 18. Draw line segment EA2 

9.  Let D1 be the image when D is dilated about A by a factor of 2 19. Construct the locus of point D3 as point D traverses circle AB 

10. Let B1 be the image when B is rotated about A1 by BA1C 20. Animate point C around circle AB 

 

 When running this animation, hide the following elements for aesthetic purposes 

and visual clarity:  points A, C, D, C1, D1, B1, C3, D2, D3, circle AB, segment BA2, 

segment EA2, and the perpendicular P1.  Additionally, trace point E.  Then it is very easy 

to see that as the Cardioid rotates about its cusp, point E which is a point on the Cardioid 

oscillates between points B and A2 tracing a straight line – simple harmonic motion.  In 

other words, if the Cardioid is pivoted at its cusp and rotated with a constant angular 

velocity, a pin constrained to a fixed straight line and bearing on the Cardioid will move 

with simple harmonic motion.  Recall, from Equation 6-4, that the polar equation of the 

Cardioid is, 

 cos12  ar . 

 

Thus, 

 

and     sin2
dt

d
a

dt

dr 
   
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


 








  

 

Now, if d / dt = k, a constant, we have 

 

   arkak
dt

rd 2cos2 22
2

2

  . 

 

Slightly rewriting this, we have the differential equation governing the motion of any 

point of the pin as, 

 

 
 ark

dt

ard


 2

2

2

.     Equation 6-9 
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6.5.9 The Cardioid as an Envelope of Circles 

 Similar to the pedal, an envelope can be thought of as a way of deriving a new 

curve based on a set of curves.  The envelope of a set of curves is a new curve C such that 

C is tangent to every member of the set.  It so happens that the Cardioid is the envelope 

of a specific set of circles as can be seen in the simple, but elegant, construction found in 

Table 6-9. 

Table 6-9: The Cardioid as an Envelope of Circles 

1.  Draw circle AB with center at A and passing through point B 4.  Trace circle CB and change its color 

2.  Let C be a random point on the circumference of circle AB 5.  Animate point C around circle AB 

3.  Draw circle CB with center at C and passing through point B  

 

 The Cardioid generated in this manner has a diameter of twice that of circle AB, 

as can be seen from the dotted circle shown in Figure 6-5 (the dotted circle is not part of 

the construction but has been added to make the diameter relationship clear). 

 

 

Figure 6-5: The Cardioid as an Envelope of Circles 

6.5.10 The Cuspidal Chords of the Cardioid 

 A chord of the Cardioid is merely any line segment whose endpoints lie on the 

circumference of the Cardioid.  A cuspidal chord is a chord that passes through the cusp.  

It is interesting to note that all cuspidal chords of a given Cardioid are equal and therefore 

equal the Cardioid’s diameter (since the diameter is a cuspidal chord).  This fact can be 

demonstrated with the construction found in Table 6-10. 

 

 As can be seen from this construction, the cuspidal chord, which is segment C2C4, 

is constant in length and equals 4 times the radius of the initial circle.  It is also 

interesting to note that the midpoint of the cuspidal chord, point D, always lies on the 
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initial circle (this can be verified by tracing point D).  Finally, if one traces the cuspidal 

chord itself, it will color in the Cardioid making quite a striking picture. 

Table 6-10: The Cuspidal Chords of the Cardioid 

1.  Draw circle AB with center at A and passing through point B 10. Construct the locus of point C2 as point C traverses circle AB 

2.  Let C be a random point on the circumference of circle AB 11. Let C3 be the image when C2 is rotated about point A by 180º 

3.  Let circle O2 be the image as circle AB is dilated about A by 3 12. Let C4 be the image when C3 is rotated about A2 by 180º 

4.  Let A1 be the image when A is rotated about point C by 180º 13. Draw line segment C2C4 and change its color 

5.  Let O3 be the image as circle AB is rotated about C by 180º 14. Measure the distance from point C2 to point C4 

6.  Let C1 be the image when C is rotated about point A by 180º 15. Let point D be the midpoint of line segment C2C4 

7.  Let C2 be the image when C is rotated about A1 by BAC 16. Calculate 4 times the radius of circle AB (, i.e., 4·AD) 

8.  Let O4 be the image when circle O3 is rotated about A by 180º 17. Animate point C around circle AB 

9.  Let A2 be the image when A1 is rotated about point A by 180º  

6.5.11 The Osculating Circle of the Cardioid 

 In previous chapters, we have at times, given constructions for the osculating 

circle of the curve under consideration.  Remember that the center of the osculating circle 

is the center of curvature for the curve and as such, its trace draws the curve’s evolute.  

This chapter is no exception; however, in this case, the evolute of the Cardioid is another 

Cardioid.  Hence, our point here is not so much to demonstrate a construction for the 

Cardioid’s osculating circle but to show that the Cardioid’s evolute is, indeed, another 

Cardioid.  Table 6-11 contains this construction. 

Table 6-11: The Osculating Circle of the Cardioid 

1.  Draw horizontal line AB 17. Draw line A'F and line EG 

2.  Draw circle AB centered at A and passing through point B 18. Let point H be the intersection of lines A'F and EG 

3.  Draw circle BA centered at B and passing through point A 19. Construct the locus of point H as point F traverses circle DA 

4.  Let C be the point of circle BA diametrically opposite point A 20. Let point I be the intersection of circle DE and line DF 

5.  Draw circle CB centered at C and passing through point B 21. Draw line HI 

6.  Let D be the point of circle CB diametrically opposite point B 22. Let point J be the intersection of lines A'D and HI 

7.  Draw circle DC centered at D and passing through point C 23. Let E' be the image when E is dilated about point D by ⅓ 

8.  Let E be the point of circle DC diametrically opposite point C 24. Draw circle DE' centered at D and passing through point E' 

9.  Hide all circles drawn (unnecessary, but it avoids clutter) 25. Let point K be the intersection of circle DE' and line AB 

10. Draw circle DA centered at D and passing through point A 26. Draw line segment DJ 

11. Draw circle DE centered at D but passing through point E 27. Let L be the intersection of circle DE' and line segment DJ 

12. Let F be a random point on the circumference of circle DA 28. Draw line LK 

13. Draw line DF 29. Let point M be the intersection of lines HI and LK 

14. Let A' be the image when point A is reflected across line DF 30. Trace point M and change its color 

15. Draw line A'D 31. Draw circle MH centered at M and passing through point H 

16. Let point G be the intersection of circle DE and line A'D 32. Animate point F around circle DA 

 

 If all of this complex construction is done correctly, the locus of point M while 

point F revolves around circle C1 is the evolute of the locus produced by point H and is 

another Cardioid ⅓ the size of the original.  And, of course, circle MH is the osculating 

circle of the large Cardioid. 

 

 Steps 1 through 9 are simply a method of obtaining three collinear points such 

that the distance AD = 3  DE.  That is why one can hide the circles (there is no longer 

any need for them).  A very bizarre fact is that this construction contains no 

perpendiculars! 
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6.5.12 The Cardioid as the Inverse of a Parabola 

The concept of inversion of a curve forms the basis for the construction shown 

below in Table 6-12.  The inversion of a parabola is a Cardioid when the center of the 

inversion circle is taken as the focus of the parabola.   

Table 6-12: The Cardioid as the Inversion of a Parabola 

1.  Construct horizontal line AB 14. Let point J be the intersection of perpendiculars P2 and P3 

2.  Let C be a random point on line AB 15. Construct the locus of point J as point G traverses circle EF 

3.  Construct P1  to line AB through point C 16. Draw line DJ 

4.  Let D be a random point on perpendicular P1 17. Measure distance DJ 

5.  Draw line segment CD and then hide perpendicular P1 18. Draw circle DK with center at D where DK is any radius 

6.  Draw circle EF centered at point E  passing through point F 19. Measure distance DK 

7.  Let G be a random point on the circumference of circle EF 20. Calculate (DK) 2 / DJ 

8.  Draw line EG 21. Let D' be the image when D is translated by (DK) 2 / DJ 

9.  Let point H be the intersection of line AB and line EG 22. Draw circle DD' with center at D and passing through D' 

10. Draw line segment DH 23. Let point L be the intersection of circle DD' and line DJ 

11. Let I be the midpoint of line segment DH 24. Trace point L and change its color 

12. Construct P2  to line segment DH through point I 25. Animate point G around circle EF 

13. Construct P3  to line AB through point H  

 

 In this construction, the focus of the parabola and the cusp of the Cardioid 

coincide (point D in the construction).  Circle DK is the inversion circle and distance DD' 

multiplied by distance DJ will always equal the square of the radius DK.  The locus of 

point L is, of course, the Cardioid.  Note that angles are preserved under inversion but 

with a reversed sense.  That is, if two curves intersect with angle α, their inverses will 

also intersect with angle α but in a counter-direction of sweeping. 

6.5.13 The Cardioid by Relative Velocity 

 This very unusual construction of the Cardioid is based on the idea of the two end 

points of a line segment traveling around a circle, but one traveling twice as fast as the 

other.  The envelope of the line segment then forms a Cardioid.  Refer to Table 6-13 for 

this construction. 

Table 6-13: The Cardioid by Relative Velocity 

1.  Draw circle AB with center at A and passing through point B 7.  Draw ray AE starting at point A and passing through point E 

2.  Draw line segment AB 8.  Let point F be the intersection of ray AE and circle AB 

3.  Let C be the midpoint of line segment AB 9.  Draw line segment FD 

4.  Draw circle AC with center at A and passing through point C 10. Trace line segment FD and change its color 

5.  Let D be a random point on the circumference of circle AB 11. Animate point D once around circle AB while  

6.  Let E be a random point on the circumference of circle AC       simultaneously animating point E around circle AC 

 

 Note that this entire construction is simply designed to result in two points on the 

larger circle with the characteristics that when animated to travel around that circle, one 

will travel twice as fast as the other.  Specifically, point F will travel twice as fast as point 

D.  It is also instructional to trace the midpoint of line segment FD.  For best results, both 

animations should be run as fast as possible. 

6.5.14 Three Parallel Tangents to the Cardioid 

 At any arbitrary point on the circumference of a Cardioid, construct the tangent to 

the Cardioid.  Then, no matter what point was chosen, there are two more tangents to the 

Cardioid that are parallel to the given tangent.  This property can be demonstrated using a 
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dynamic geometry program such as GSP, and the methodology for doing so is delineated 

below in Table 6-14. 

Table 6-14: Three Parallel Tangents to the Cardioid 

1.  Draw circle AB with center at A and passing through point B 15. Change the color of perpendicular P1 (say green) 

2.  Let C be a random point on the circumference of circle AB 16. Draw line segment C1C5 

3.  Let C1 be the image when C is rotated about point A by 120º 17. Construct P2  to line segment C1C5 through point C5 

4.  Let A1 be the image when A is rotated about point C by 180º 18. Change the color of perpendicular P2 (say green) 

5.  Let C2 be the image when C is rotated about A1 by BAC 19. Draw line segment C3C7 

6.  Let A2 be the image when A1 is rotated about point A by 120º 20. Construct P3  to line segment C3C7 through point C7 

7.  Let C3 be the image when C1 is rotated about point A by 120º 21. Change the color of perpendicular P3 (say green) 

8.  Let C4 be the image when C2 is rotated about point A by 120º 22. Construct the interior of triangle (polygon) C2C5C7 

9.  Let A3 be the image when A2 is rotated about point A by 120º 23. Change color of the polygon interior C2C5C7 (say light green) 

10. Let C5 be the image when C4 is rotated about A2 by 120º 24. Measure the area of polygon C2C5C7 

11. Let C6 be the image when C5 is rotated about point A by 120º 25. Construct the locus of point C2 as C traverses the circle AB 

12. Let C7 be the image when C6 is rotated about A3 by 120º 26. Change the color of the locus (say yellow) 

13. Draw line segment CC2 27. Animate point C around circle AB 

14. Construct P1  to line segment CC2 through point C2  

 

There are at least three things worthy (and interesting) to note about the Cardioid 

that can easily be investigated with this GSP construction.  First, as point C revolves 

about circle AB, the area of the triangle (that is, triangle C2C5C7) is constant; however, 

the lengths of the sides of the triangle change.  Second, the perpendiculars that were 

constructed in steps 14, 17, and 20 (e.g., P1, P2, and P3) are all tangent to the Cardioid at 

points C2, C5, and C7 respectively, and they remain tangent as point C revolves.  Further, 

they are always parallel to one another (this is, of course, what we set out to 

demonstrate).  Finally, if the line segments from the points of tangency to the cusp of the 

Cardioid are all drawn, the three angles so formed, that is C2BC5, C7BC2, and 

C5BC7, are always equal to 120.  This last property is depicted in Figure 6-6, but is not 

included as part of the construction above. 

 

 

Figure 6-6: Three Parallel Tangents to the Cardioid 
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6.5.15 A Cardioid Derived from a Compass-Only Construction 

 GSP has (at least in the version used by your author) a minor flaw in its design.  It 

does not always handle the intersection of two circles correctly when the center of one of 

the circles is on the circumference of the other circle.  If you are using GSP, you can 

prove this to yourself by performing a little experiment.  Draw circle AB, place a point C 

on its circumference, and then draw circle CB.  Let the unlabeled intersection of the two 

circles be point D.  Now drag point C one full revolution around circle AB.  If you drag 

point C counterclockwise, you will find that when point D coincides with point B, point 

D stops even though point C is still being dragged.  Point D will remain coincident with 

point B until point C is dragged past point B.  Then, and only then, will point D continue 

around circle AB.  This is not correct; Point D should not pause in its motion.  (If you 

drag clockwise, point D pauses when it is diametrically opposite point B; this is not 

correct either.)  Because of this flaw, GSP does not handle a compass-only construction 

correctly.  However, there is a way around this dilemma, as the construction in Table 6-

15 illustrates. 

Table 6-15: A Cardioid Derived from a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 7.  Let D and E be the intersections of circle CB and circle B'C 

2.  Let C be a random point on the circumference of circle AB 8.  Draw circle DE with center at D and passing through point E 

3.  Draw circle CB with center at C and passing through point B 9.  Let point F be the unlabeled intersection of circles DE and CB 

4.  Draw line segment AC 10. Trace point F and change its color 

5.  Let B' be the image as B is reflected across line segment AC 11. Animate point C around circle AB 

6.  Draw circle B'C with center at B' and passing through point C  

 

 Note that except for steps 4 and 5, no straight edge is required for this 

construction.  By making point B' the reflected image of point B across segment AC 

instead of the intersection of circle AB and circle CB, we eliminate the GSP flaw, but our 

construction is not totally compass-only (unfortunately).  In this regard, any constructions 

found in the rest of the text that are labeled compass-only will require this type of work-

around solution. 

 



 

Chapter 6: The Cardioid  Playing With Dynamic Geometry 6-18 

 

Figure 6-7: A Solid of Revolution Formed from the Cardioid 

 

The Cardioid was rotated about the x-axis thereby forming the solid of revolution seen in 

the figure above.  As can be seen, the cusp of the Cardioid forms an indentation in the 

solid of revolution.  It has been placed over an infinite plane; however, in this case, the 

infinite plane has been made to resemble water.  The object has been given a golden-

bronze colored finish which can be seen reflected in the water that it appears to be 

floating above.  The light source has been placed so as to illuminate the left side of the 

solid and also partially illuminates the indentation formed by the Cardioid’s cusp. 
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Chapter 7 – The Nephroid 
 

 

Figure 7-1: The Nephroid in Three Dimensions 

 

The cross-section of the object in the figure above is the curve known as the Nephroid.  

To create the object, the Nephroid was simply extruded into the third dimension, given an 

orchid-colored finish and placed over and slightly into a cloud or fogbank.  Light sources 

are positioned so as to cast a shadow on the inner surface of the extruded object. 
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7.1 Introduction 

 Chapter 6 introduced the concept of an Epicycloid as the trace of a fixed point on 

the circumference of a circle rolling around the outside of the circumference of a second, 

stationary circle.  It further stated that when the radius of the rolling circle is equal to the 

radius of the stationary circle, the curve traced by the fixed point is called a Cardioid.  It 

turns out that if the radius of the rolling circle is ½ of the radius of the stationary circle, 

the curve so traced is called a Nephroid.  The Nephroid was studied extensively by both 

Christian Huygens and Ehrenfried Tschirnhaus circa 1679 in connection with the theory 

of caustics.  Nephroid means kidney shaped. 

7.2 Equations and Graph of the Nephroid 

 By letting b = ½a in the parametric equation for the Epicycloid (Equation 6-1), we 

obtain a parametric representation for the Nephroid, that is, 

 

t
a

t
a

y

t
a

t
a

x

3sin
2

sin
2

3

3cos
2

cos
2

3





     – < t <     Equation 7-1 

 By eliminating the parameter t between the two components of Equation 7-1, one 

can derive the Cartesian equation, which is 

 

  243222 274 yaayx       Equation 7-2 

 Similarly, one can derive the polar equation of the Nephroid by making the 

familiar substitutions of x = rcos, y = rsin, and r
2
 = x

2
 + y

2
.  That is, under these 

substitutions, Equation 7-2 becomes 
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 Likewise, the pedal, Whewell, and Cesáro equations for the Nephroid are, 

respectively 

 

222 434 apr       Equation 7-4 

2
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
as       Equation 7-5 

222 94 as       Equation 7-6 

 Finally, the equation of the Nephroid’s tangent line at the point t = q is 

 

.sin22sin2cos qaxqyq       Equation 7-7 
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 The graph of the Nephroid is shown in Figure 7-2. 

 

 

Figure 7-2: Graph of the Nephroid 

7.3 Analytical and Physical Properties of the Nephroid 

Using the parametric representation of the Nephroid given in Equation 7-1, i.e.,  

ttyttx aaaa 3sinsin ,3coscos
22

3
22

3  , the following subparagraphs delineate further 

properties of the Nephroid. 

7.3.1 Derivatives of the Nephroid 
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7.3.2 Metric Properties of the Nephroid 

The length of the Nephroid can be calculated using the formula  
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Since the curve is symmetric about the x-axis, we may integrate from t1 = 0 to t2 = π and 

then simply double the result.  Hence, we have from Equation 7-1, 
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Now, putting this result under the radical sign, we have 
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Hence the desired integral is simply 
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The total length of the Nephroid is therefore twice this result or s = 12a. 

 

 The area of the Nephroid can be calculated using the formula 
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where the limits of integration are from t0 = -π to t1 = +π.  We therefore have, after 

performing the indicated operations, the following integrals to evaluate. 
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In the first integral, write sin3t as sin (t + 2t), expand, and multiply accordingly.  After 

much manipulation the first integral can be written as 
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Now, by using the identity sin
2
t = ½ - ½cos2t, we can show that this integral evaluates to 

zero.  Using this same identity on the second and third integrals, it can be shown that 

their values are -3πa
2
/4 and -9πa

2
/4, respectively.  We therefore have for the area of the 

Nephroid, A = 0 – (-3πa
2
/4) – (-9πa

2
/4) = 3πa

2
. 

 

 The area of the surface of revolution that results when the Nephroid is revolved 

about the x-axis can be calculated by the formula 
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where the limits of integration are from t0 = -π to t1 = +π.  However, we already know 

that the expression under the radical (from the Nephroid length calculation) is 3asin t.  

Therefore, we have 
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From the Nephroid area calculation we know that this second integral evaluates to zero, 

so the required area of revolution is simply the value of the first integral, which is upon 

reduction using the identity sin
2
t = ½ - ½cos2t,  
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 If p is the distance from the origin to the tangent of the Nephroid, then 

 

tap sin2 . 

 

 If r is the radial distance from the origin to the curve, then 

 

tar 2sin31 . 

7.3.3 Curvature of the Nephroid 

 If ρ is the radius of curvature of the Nephroid, then 
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 If (, β) are the coordinates of the center of curvature of the Nephroid, then 
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7.3.4 Angles for the Nephroid 

 If ψ is the angle between the tangent and the radius vector at the point of tangency 

to the Nephroid, then 
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 If  denotes the radial angle for the Nephroid, then, 
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 If  denotes the tangential angle for the Nephroid, then 

 

 = 2t. 

7.4 Geometric Properties of the Nephroid 

 Intercepts:  (a, 0); (-a, 0); (0, ±2a) 

 

 y-maximum:  (0, 2a) 

 

 y-minimum:  (0, -2a) 
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 Extent:  Same as maxima and minima. 

 

 Symmetries:  The Nephroid is symmetric about both the x and y-axis and 

about the origin. 

 

 Cusp:  (a, 0); (-a, 0) 

7.5 Dynamic Geometry of the Nephroid 

 The next 14 subsections deal with the dynamic geometry of the Nephroid.  This 

includes GSP constructions that generate the Nephroid and GSP constructions that 

demonstrate selected properties of the Nephroid. 
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7.5.1 The Nephroid as an Epicycloid 

 As alluded to in section 7.1, an Epicycloid where the radius of the rolling circle is 

½ of the radius of the stationary circle is called a Nephroid.  That definition forms the 

basis for the construction found below in Table 7-1. 

Table 7-1: The Nephroid as an Epicycloid 

1.  Draw circle AB with center at A and passing through point B 5.  Let C2 be the image when C is rotated about C1 by BAC 

2.  Let C be a random point on the circumference of circle AB 6.  Let C3 be the image when C2 is rotated about C1 by BAC 

3.  Let point C1 be the image when C is dilated about A by 1.5 7.  Trace point C3 and change its color 

4.  Draw circle C1C with center at C1 and passing through point C 8.  Animate point C around circle AB 

 

The trace of point C2 in this construction forms a Limacon, another of the classic curves. 

7.5.2 The Nephroid as an Epicycloid Part II 

 The Double Generation theorem of Daniel Bernoulli also applies to the Nephroid.  

That is, another way to get a Nephroid with a rolling circle type of construction is to 

make the radius of the rolling circle equal to 3/2 the radius of the stationary circle and 

have the stationary circle on the inside of the rolling circle.  Such a construction is shown 

below in Table 7-2. 

Table 7-2: The Nephroid as an Epicycloid Part II 

1.  Draw circle AB with center at A and passing through point B 6.  Let A' be the image when A is translated by vector C1 → C3 

2.  Let C be a random point on the circumference of circle AB 7.  Draw circle A'C3 with center at A' and passing through C3 

3.  Let C1 be the image when  C is dilated about A by  1.5 8.  Trace point C3 and change its color 

4.  Let C2 be the image when C is rotated about C1 by BAC 9.  Animate point C around circle AB 

5.  Let C3 be the image when C2 is rotated about C1 by BAC  

 

 Note how similar this construction is to that of the previous subsection (i.e., 

section 7.5.1).  The only real difference between these two constructions is the radii of 

the rolling circles; i.e., in one case it is ½ of the radius of the stationary circle and in the 

other it is 3/2 the radius of the stationary circle. 

7.5.3 The Nephroid as the Caustic of a Circle 

 Christian Huygens showed in 1678 that the Nephroid is the catacaustic of a circle 

when the light source is at infinity.  In other words, the envelope of parallel rays that are 

reflected from the circumference of a circle creates a Nephroid.  See Table 7-3. 

Table 7-3: The Nephroid as the Caustic of a Circle 

1.  Draw horizontal line AB 8.  Draw line segment CC1 

2.  Draw circle AB with center at A and passing through point B 9.  Draw line segment C1C3 

3.  Let C be a random point on the circumference of circle AB 10. Draw line segment AC3 

4.  Let C1 be the image when point C is reflected by line AB 11. Draw line segment CC3 

5.  Let C2 be the image when C is rotated about A by BAC 12. Trace line segment CC3 and change its color 

6.  Let C3 be the image when C2 is rotated about A by BAC 13. Animate point C around circle AB 

7.  Draw line segment CA  

  

 For best results with this construction, when point C is animated around circle 

AB, do it only once around the circle and at as high a speed as the animation will allow.  

Enjoy—it’s a beautiful construction (as can be seen in Figure 7-3)! 
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Figure 7-3: The Nephroid as a Caustic of a Circle 

7.5.4 The Nephroid as an Envelope of Diameters 

 The Nephroid can also be generated as the envelope of a diameter of the circle 

that itself generates the Cardioid as an Epicycloid.  In other words, construct a Cardioid 

as an Epicycloid (section 6.5.1) and then construct one of the diameters of the rolling 

circle.  The trace of that diameter will generate an envelope that is a Nephroid.  This is 

quite a beautiful construction; it is delineated below in Table 7-4 and illustrated in Figure 

7-4. 

Table 7-4: The Nephroid as an Envelope of Diameters 

1.  Draw horizontal line AB 6.  Draw circle A'C' with center at A' and passing through C' 

2.  Draw circle AB with center at A and passing through point B 7.  Let C'' be the image when C' is rotated about point A' by 180º 

3.  Let C be a random point on the circumference of circle AB 8.  Draw line segment C'C'' 

4.  Let A' be the image when A is rotated about point C by 180º 9.  Trace line segment C'C'' and change its color 

5.  Let C' be the image when C is rotated about A' by BAC 10. Animate point C around circle AB 

7.5.5 The Concurrent Tangents of the Nephroid 

 One of the very fascinating characteristics of the Nephroid is that for any given 

tangent to the Nephroid, two other tangents can be found such that all three tangents will 

intersect in a common point.  The construction for this remarkable characteristic is 

delineated below in Table 7-5.  (Of course, if three tangents are concurrent, then the three 

normals through the three points of tangency are also concurrent.) 
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Figure 7-4: The Nephroid as an Envelope of Diameters 

 The perpendiculars constructed in steps 17, 19, and 21 (Table 7-5) are the three 

concurrent tangents.  Obviously, line segments CC6, C2C9, and C5C11 are the respective 

normals.  If the normals are extended, they too will meet in a common point.  Note that 

circle AA' is circumscribed about the Nephroid and the point of tangent concurrency is 

confined to the circumference of this circumscribed circle; however, the point of normal 

concurrency is confined to the circumference of the inner circle, circle AB. 

Table 7-5: The Concurrent Tangents of the Nephroid 

1.  Draw circle AB with center at A and passing through point B 13. Let C9 be the image when C8 is rotated about C4 by –120º 

2.  Let C be a random point on the circumference of circle AB 14. Let C10 be the image when C9 is rotated about A by 120º 

3.  Let A' be the image when A is rotated about point B by 180º 15. Let C11 be the image when C10 is rotated about C7 by –120º 

4.  Draw circle AA' with center at A and passing through point A' 16. Draw line segment CC6 

5.  Let C1 be the image when C is dilated about A by 1.5 17. P1  to line segment CC6 through point C6 

6.  Let C2 be the image when C is rotated about point A by 120º 18. Draw line segment C2C9 

7.  Let C3 be the image when C is rotated about C1 by BAC 19. Construct P2  to line segment C2C9 through point C9 

8.  Let C4 be the image when C1 is rotated about point A by 120º 20. Draw line segment C5C11 

9.  Let C5 be the image when C2 is rotated about point A by 120º 21. Construct P3  to line segment C5C11 through point C11 

10. Let C6 be the image when C3 is rotated about C1 by BAC 22. Construct the locus of C6 while point C traverses circle AB 

11. Let C7 be the image when C4 is rotated about point A by 120º 23. Animate point C around circle AB 

12. Let C8 be the image when C6 is rotated about point A by 120º  

7.5.6 The Nephroid as the Caustic of a Cardioid 

 In 1692, Jacques Bernoulli showed that the Nephroid is the catacaustic of a 

Cardioid for a luminous cusp.  In other words, if the light source is located at the 

Cardioid’s cusp, the rays reflected from the circumference of the Cardioid form a 

Nephroid.  This construction follows in Table 7-6, and Figure 7-5 is a snapshot of the 

final construction. 

 

 



 

Chapter 7: The Nephroid  Playing With Dynamic Geometry   7-10 

Table 7-6: The Nephroid as the Caustic of a Cardioid 

1.  Draw circle AB with center at A and passing through point B 7.  Let D be the intersection of line segment BC' and circle AB 

2.  Let C be a random point on the circumference of circle AB 8.  Draw line segment C'D 

3.  Let A' be the image when A is rotated about point C by 180º 9.  Reflect line segment C'D in line segment CC' 

4.  Let C' be the image when C is rotated about A' by BAC 10. Trace the reflected line segment and change its color 

5.  Draw line segment CC' 11. Animate point C around circle AB 

6.  Draw line segment BC'  

 

 Point C', of course, is the point on the circumference of the Cardioid and point B 

is the source of the light rays.  Line segment BC' therefore represents the incident light 

ray and since the angle of incidence must equal the angle of reflection, reflecting DC' in 

the normal to the Cardioid at the point C' will represent the reflected rays.  Obviously, 

line segment CC' is the normal (normal to the Cardioid, that is). 

 

 

Figure 7-5: The Nephroid as the Caustic of a Cardioid 

7.5.7 The Nephroid’s Equilateral Triangle 

 The construction following in Table 7-7 demonstrates the fact that given any point 

on the circumference of a Nephroid, two other circumferential points can be found such 

that these three points form the vertices of an equilateral triangle. 

 

 Note that the locus of point C5 in this construction is that of the Limacon of 

Pascal.  Also note that the locus of either point C8 or point C10 is another Nephroid that is 

rotated by 90º from that of the Nephroid traced by point C7.  Further, if one draws line 

segment C7C8 and constructs its midpoint, the locus of that midpoint as point C revolves 

about circle AB is another Nephroid which is inscribed in circle AB. 
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Table 7-7: The Equilateral Triangle of the Nephroid 

1.  Draw circle AB with center at A and passing through point B 10. Let C8 be the image when C7 is rotated about point A by 120º 

2.  Let C be a random point on the circumference of circle AB 11. Let C9 be the image when C8 is rotated about C4 by 240º 

3.  Let C1 be the image when C is rotated about point A by 120º 12. Let C10 be the image when C9 is rotated about A by 120º 

4.  Let C2 be the image when C is dilated about A by 1.5 13. Let C11 be the image when C10 is rotated about C6 by 240º 

5.  Let C3 be the image when C1 is rotated about point A by 120º 14. Construct the locus of point C7 while C traverses circle AB 

6.  Let C4 be the image when C2 is rotated about point A by 120º 15. Draw line segments C7C9, C9C11, and C7C11 

7.  Let C5 be the image when C is rotated about C2 by BAC 16. Construct the interior of polygon C7C9C11 and color it 

8.  Let C6 be the image when C4 is rotated about point A by 120º 17. Measure distances C7C9, C9C11, and C7C11 

9.  Let C7 be the image when C5 is rotated about C2 by BAC 18. Animate point C around circle AB 

7.5.8 The Nephroid as an Envelope of Circles 

 This simple but elegant construction is based on the idea that a Nephroid is the 

envelope of a set of circles with their centers on a given base circle, such that each 

member of the set is tangent to a diameter of the base circle.  This construction follows in 

Table 7-8 and an illustration of it is shown in Figure 7-6. 

Table 7-8: The Nephroid as an Envelope of Circles 

1.  Draw horizontal line segment AB 7.  Draw circle ED with center at E and passing through point D 

2.  Let C be the midpoint of line segment AB 8.  Trace circle ED and change its color 

3.  Let D be a random point on line segment AB 9.  Draw circle FD with center at F and passing through point D 

4.  Draw circle CA with center at C and passing through point A 10. Trace circle FD and change its color 

5.  Construct P1  to line segment AB through point D 11. Animate point D along line segment AB 

6.  Let points E and F be the intersections of circle CA with P1  

 

 

 

Figure 7-6: The Nephroid as an Envelope of Circles 

7.5.9 A Nephroid Moving Around a Cardioid 

 The following construction is more for fun than to illustrate a specific property of 

the Nephroid.  However, it has some instructive characteristics and is presented below in 

Table 7-9. 
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Table 7-9: A Nephroid Moving Around a Cardioid 

1.  Draw circle AB with center at A and passing through point B 9.  Let D be a random point on circle B'C' 

2.  Let C be a random point on the circumference of circle AB 10. Construct P2  to line BC' through point D 

3.  Let A' be the image when A is rotated about point C by 180º 11. Let point E be the intersection of line BC' and P2 

4.  Let C' be the image when C is rotated about A' by BAC 12. Let E' be the image when E is rotated about D by C'B'D 

5.  Draw line BC' 13. Let E'' be the image when E' is rotated about D by C'B'D 

6.  Construct P1  to line BC' through point A 14. Construct the locus of C' while point C traverses circle AB 

7.  Let B' be the image when point B is reflected across P1 15. Construct the locus of point E'' while D traverses circle B'C' 

8.  Draw circle B'C' with center at B' and passing through C' 16. Animate point C around circle AB 

 

 Note how the two points at the cusps of the Nephroid describe the Cardioid.  It is 

also interesting to note that any random point placed on the circumference (i.e., the locus)  

of the Nephroid will trace a tangent line to the Cardioid as the animation is run.  Further, 

the trace of point E' describes an unusual looking double-looped curve. 

7.5.10 A Nephroid by Relative Velocity 

 This unusual construction of the Nephroid is based on the relative velocity of the 

two end points of a line segment.  If the two end points of a line segment travel around a 

circle, but one end point travels three times faster than the other, the envelope of the line 

segment forms a Nephroid.  The construction is delineated below in Table 7-10 and 

illustrated in Figure 7-7. 

Table 7-10: A Nephroid by Relative Velocity 

1.  Draw line segment AB (in upper-right portion of the screen) 9.  Construct circle C2 centered at C and radius = segment EA 

2.  Let C be a random point not on line segment AB 10. Let F be a random point on circle C1 

3.  Let D be the midpoint of line segment AB 11. Let G be a random point on circle C2 

4.  Draw line segment BD 12. Draw ray FC starting at point F and passing through point C 

5.  Let E be the midpoint of line segment BD 13. Let point H be the intersection of ray FC and circle C2 

6.  Draw line segment ED 14. Draw line segment HG 

7.  Draw line segment EA 15. Trace line segment HG and change its color 

8.  Construct circle C1 centered at C and radius = segment ED 16. Animate F and G around circles C1 and C2, respectively 

 

 

Figure 7-7: A Nephroid By Relative Velocity 
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 Note that in this construction, steps 1 through 7 are merely to construct two line 

segments, one of which is three times the length of the other, i.e., EA = 3ED.  Now 

construct two concentric circles with radii in this same ratio (steps 8 and 9).  Then, if two 

points can be made to revolve around the circles (one point around one of the circles and 

the other point around the other circle), while the point on the larger circle performs one 

revolution, the point around the smaller circle will perform 3 revolutions.  Hence we have 

the desired relative velocity.  For best results, in step 16 have point G make one 

revolution "quickly." 

7.5.11 Orthogonal Nephroids 

 The following (see Table 7-11) is a construction for two Nephroids which remain 

orthogonal to each other as the animation is run.  What this really means is that the 

intersection point of two mutually perpendicular lines is a point that is common to two 

different Nephroids.  Further, the perpendicular lines are each normal, respectively, to the 

Nephroids.  As a result, it’s as though the two Nephroids were orthogonal. 

Table 7-11: Orthogonal Nephroids 

1.  Draw horizontal line AB 13. Let F be a random point on circle A2E 

2.  Draw circle AB with center at A and passing through point B 14. Construct P1  to line CB through point C 

3.  Let A1 be the image when A is dilated about B by –2 15. Let C2 be the image when C1 is rotated about A3 by BA1D 

4.  Draw circle A1B with center at A1 and passing point B 16. Let C3 be the image when C is rotated about A2 by AA2F 

5.  Let C be a random point on the circumference of circle AB 17. Let A4 be the image when A is rotated about A2 by AA2F 

6.  Let A2 be the image when A1 is rotated about point A by 180º 18. Let C4 be the image when C2 is rotated about A3 by BA1D 

7.  Let D be a random point on the circumference of circle A1B 19. Let C5 be the image when C3 is rotated about A4 by AA2F 

8.  Let E be the point of circle AB diametrically opposite of B 20. Let C6 be the image when C5 is rotated about A4 by AA2F 

9.  Draw circle A2E with center at A2 and passing through point E 21. Construct the locus of point C4 while D traverses circle A1B 

10. Draw line CB 22. Construct the locus of point C6 while F traverses circle A2E 

11. Let C1 be the image when C is rotated about A1 by BA1D 23. Animate point C around circle AB 

12. Let A3 be the image when A is rotated about A1 by BA1D  

7.5.12 A Nephroid from a Compass-Only Construction 

 Refer to Chapter 6, section 6.5.15 for a discussion of the GSP version of a 

compass-only construction.  Table 7-12 contains the GSP version of a compass-only 

construction for the Nephroid. 

Table 7-12: A Nephroid Derived from a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 14. Let F be the unlabeled intersection of circles DE and C'C 

2.  Let C be a random point on the circumference of circle AB 15. Draw circle FC with center at F and passing through point C 

3.  Draw circle CB with center at C and passing through point B 16. Let points G and H be the intersections of circles FC and CC' 

4.  Draw line segment AC 17. Draw circle GC with center at G and passing through point C. 

5.  Let B' be the image as B is reflected across line segment AC 18. Draw circle HC with center at H and passing through point C 

6.  Draw circle B'C with center at B' and passing through point C 19. Let I be the unlabeled intersection of circle HC and circle GC 

7.  Draw line segment AB' 20. Draw circle CI with center at C and passing through point I 

8.  Let C' be the image as C is reflected across line segment AB' 21. Draw circle IC with center at I and passing through point C 

9.  Hide segment AB' 22. Let J and K be the intersections of circle IC and circle CI 

10. Draw circle CC' with center at C and passing through point C' 23. Draw circle JK with center at J and passing through point K 

11. Draw circle C'C with center at C' and passing through point C 24. Let L be the unlabeled intersection of circle JK and circle CI 

12. Let points D and E be the intersections of circles CC' and C'C 25. Trace point L and change its color 

13. Draw circle DE with center at D and passing through point E 26. Animate point C around circle AB 

 

 Steps 4, 5, 7, and 8 are, of course, the only non-compass construction steps.  The 

reason for hiding line segment AB' in step 9 is that attempting to carry out step 19, the 

construction of point I, will result in an ambiguous intersection if line segment AB' is 

visible.  Note how, during the animation, all but one of the circles contract to a single 
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point at one of the Nephroid’s cusps (the cusp at point B).  The one circle that doesn’t 

collapse to a point is the circle that is the path for the animated point, circle AB.  And at 

the other cusp, again all of the circles collapse with the exception of circles AB, CB, and 

B'C, the three initial circles.  Also, for a construction that one might entitle "The 

Nephroid as an Envelope of Circles Derived from a Compass-Only Construction," try 

tracing circle CI and rerun the animation.  And last but not least, the Osculating Circle of 

the Nephroid may be constructed by continuing the construction above.  That is, 

Table 7-12 (Continued): Osculating Circle Addition to Compass-Only Construction of Nephroid 

27. Let M and N be the intersections of circle CI and circle C'C 30. Let O be the unlabeled intersection of circles NC and  MC 

28. Draw circle MC with center at M and passing point C 31. Draw circle OL with center at O and passing through point L 

29. Draw circle NC with center at N and passing through point C 32. Rerun the animation 

 

 Circle OL is, of course, the Osculating Circle.  In sum, a truly beautiful 

construction! 

7.5.13 The Nephroid as an Envelope of Straight Lines 

 A quite simple but beautiful construction is the one shown below in Table 7-13. 

Table 7-13: The Nephroid as an Envelope of Straight Lines 

1.  Draw circle AB with center at A and passing through point B 6.  Construct P1  to line AC' through point C 

2.  Draw line AB 7.  Let point D be the intersection of P1 and line AB 

3.  Let C be a random point on the circumference of circle AB 8.  Draw line C'D 

4.  Let C' be the image when C is translated by vector A → C 9.  Trace line C'D and change its color 

5.  Draw line AC' 10. Animate point C around circle AB 

7.5.14 The Osculating Circle of the Nephroid 

 Although a construction for the osculating circle of the Nephroid has already been 

presented (see the continuation of Table 7-12), here is a different construction of it.  

Constructions of osculating circles (or centers of curvature) are usually quite complex; 

however, the construction for the osculating circle of the Nephroid following in Table 7-

14 is relatively simple and therefore worth the redundancy. 

Table 7-14: The Osculating Circle of the Nephroid 

1.  Draw circle AB with center at A and passing through point B 8.  Draw line CC3 

2.  Let C be a random point on the circumference of circle AB 9.  Line C1C3 

3.  Let C1 be the image as point C is dilated about point A by 1.5 10. Let D be the unlabeled intersection of line C1C3 and circle C1C 

4.  Let C2 be the image as C is rotated about point C1 by BAC 11. Draw line AD 

5.  Draw circle C1C with center at C1 and passing through C 12. Let E be the intersection of lines CC3 and AD 

6.  Let C3 be the image as C2 is rotated about C1 by BAC 13. Draw circle EC3 with center at E and passing through C3 

7.  Construct the locus of point C3 while C traverses circle AB 14. Animate point C around circle AB 

 

 Quite a nice little construction for the osculating circle, which is, of course, circle 

EC3.  Additionally, construct the locus of point E while point C traverses circle AB.  This 

locus gives you the Nephroid’s evolute (which is another Nephroid rotated 90 from the 

original, ⅓ the size of the original, and inscribed between its cusps).  Also, draw and 

trace line segment EC3, the radius of curvature of the Nephroid.  Now, rerun the 

animation and you will find that the traced radius of curvature fills in the original 

Nephroid, but envelopes the evolute Nephroid.  Quite spectacular! 
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7.5.15 A Nephroid-Cardioid Waltz 

 As a final construction for this chapter, consider the Nephroid-Cardioid dance that 

is delineated below in Table 7-15.   

Table 7-15: A Nephroid-Cardioid Waltz 

1.  Draw horizontal line AB 12. Construct P1  to line segment BC through point C 

2.  Draw circle AB with center at A and passing through point B 13. Let C1 be the image when C is rotated about A3 by BA3D 

3.  Let A1 be the image when A is dilated about B by a factor of 2 14. Let A4 be the image when A is rotated about A3 by BA3D 

4.  Let A2 be the image when A is dilated about B by –2 15. Let C2 be the image when C is rotated about A2 by BA2E 

5.  Let A3 be the image when A is dilated about B by –1 16. Let A5 be the image when A is rotated about A2 by BA2E 

6.  Draw circle A2B with center at A2 and passing through B 17. Let C3 be the image when C1 is rotated about A4 by BA3D 

7.  Draw circle A3B with center at A3 and passing through B 18. Let C4 be the image when C2 is rotated about A5 by BA2E 

8.  Let C be a random point on the circumference of circle AB 19. Let C5 be the image when C4 is rotated about A5 by BA2E 

9.  Let D be a random point on the circumference of circle A3B 20. Construct the locus of C3 while point D traverses circle A3B 

10. Let E be a random point on the circumference of circle A2B 21. Construct the locus of C5 while point E traverses circle A2B 

11. Draw line segment BC 22. Animate point C around circle AB 

 

 Note that the Nephroid and Cardioid are tangent at point C and that the cusps of 

the Nephroid remain on the circumference of the Cardioid as the animation revolves.  

The dance is most evident if the following elements of the construction are hidden before 

running the animation:  points A, B, A1, D, E, C1, A4, C2, A5, C3, C4, and C5, circles AB, 

A2B, and A3B, line AB, and line segment BC.  If Roemer (see Chapter 8) had been able 

to use a dynamic geometry application such as GSP, his study for the best form of gear 

teeth would probably have been much easier. 
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Figure 7-8: The Solid of Revolution Formed by the Nephroid 

 

The Nephroid was revolved about the y-axis to produce the object seen in the figure 

above.  The resulting solid of revolution was then given a coral-colored finish and placed 

above the grey and rose colored checkered plane which meets a dark and forbidding sky 

at the horizon.  Light sources were placed so as to illuminate the solid of revolution as 

shown and to cast shadows on the checkered plane. 
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Chapter 8 – The Epicycloid 
 

 

Figure 8-1: A Five-Cusped Epicycloid in Three Dimensions  

 

The cross-section of the object in Figure 8-1 is a Five-Cusped Epicycloid.  It was created 

by taking a normal, two-dimensional Epicycloid with five cusps and simply extruding into 

the dimension that is normal to the plane of the page.  It was then given a shiny, yellow-

green finish and configured as though it were floating in a bright, summer sky.  Light 

sources have been placed so as to partially shadow the upper, inner surface. 
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8.1 Introduction 

 In Chapter 6 we introduced the concept of the Epicycloid and showed that when 

the radii of the fixed and rolling circles are the same, a curve called the cardioid results.  

Then, in Chapter 7 we showed that if the radius of the rolling circle is half the radius of 

the fixed circle, the resulting curve is a Nephroid.  We now take up the Epicycloid in 

general. 

 

 Back to Roemer, briefly (a very interesting character).  Cycloidal curves were first 

conceived by Roemer (a Dane) in 1674 while studying the best form for gear teeth.  

However, prior to Roemer’s work, in 1599, both Galileo and Mersenne had already 

discovered the ordinary cycloid.  Olaf Roemer (1644-1710) was a mathematician who 

gave the first good estimate of the speed of light.  This was done in 1675 by means of the 

eclipses of Jupiter’s satellites.  Roemer also constructed the fountains at the Versailles 

castle near Paris.  Relevant to this chapter, Roemer deduced from the properties of 

epicycloids the form of the teeth in toothed-wheels best fitted to secure a uniform motion.  

As already alluded to, the beautiful Double Generation theorem of these curves was first 

noticed by Daniel Bernoulli in 1725.  Astronomers find forms of the cycloidal curves in 

various coronas.  They also occur as caustics.  Rectification was first given by Newton in 

his Principia.   

8.2 Equations and Graph of the Epicycloid 

 We already have shown (in Chapter 6, Equation 6-1) that when the radius of the 

fixed circle is a, and the radius of the rolling circle is b, the parametric equation of the 

Epicycloid is 

       tbtbaytbtbax
b

ba
b

ba   sinsin     and     coscos      Equation 8-1 

We have relabeled it as Equation 8-1 here.  A polar equation can easily be derived by 

making the following computations 

 

       tbttbabtbax
b

ba
b

ba   22222 coscoscos2cos      and 

 

       .sinsinsin2sin 22222 tbttbabtbay
b

ba
b

ba    

 

By adding these last two expressions, we have, 

 

      ttttabbbayxr
b
a

b
a  1sinsin1coscos222222

. 

 

However, the expression in the square brackets is simply the cosine of the difference of 

the two arguments of the functions within the brackets.  Therefore, 

    tbabbbar
b
acos2222       Equation 8-2 

Note, however, that the parameter t in the above expression for r
2
 is not the polar angle.  

The polar angle is      
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   
   tbtba

tbtba

x

y

b
ba

b
ba










coscos

sinsin
tan      Equation 8-3 

If the pedal point is located at the center of the Epicycloid, then the pedal equation is 

 
 

 22

2

2

4

2
br

baa

ba
p 




      Equation 8-4 

Similarly, the Whewell equation is 

abs sin , 1a      Equation 8-5 

The Cesáro equation is 

22222 basa       Equation 8-6 

And, finally, the equation of the tangent to the Epicycloid at the point t = q is 

      1cos2coscossinsin   qbaxqqyqq
b
a

b
ba

b
ba      Equation 8-7 

 To obtain n cusps in the epicycloid, let b = a / n, because n rotations of the rolling 

circle bring the point on its circumference back to its starting position.  As we have 

already learned, a one-cusped Epicycloid is called a Cardioid and a two-cusped 

Epicycloid is called a Nephroid.  The only other named Epicycloid is one with five cusps.  

It is called the Ranunculoid, named after the buttercup genus Ranunculus.  Figure 8-2 

depicts the graph of four different Epicycloids, namely, three-, four-, five-, and six-

cusped Epicycloids in red, green, blue and violet, respectively, while Figure 8-3 portrays 

a variety of different Epicycloids for various selected values of the two radii of the 

associated circles (the fixed circle with radius a and the rolling circle with radius b).  

Note that as long as the ratio of a to n is a rational number, the Epicycloid will be closed; 

however, in some cases, the rolling circle will make more than one revolution before the 

tracing point comes back to its starting position, as is illustrated in all but one of the 

Epicycloids in Figure 8-3. 

8.3 Analytical and Physical Properties of the Epicycloid 

 Using the parametric representation of the Epicycloid given in Equation 8-1 i.e.,  

       tbtbaytbtbax
b

ba
b

ba   sinsin and coscos , the following subparagraphs 

delineate further properties of the Epicycloid. 

8.3.1 Derivatives of the Epicycloid 

     ttbax
b

ba sinsin    

 

     tbtba
b

ba
x

b
ba coscos 


   

 

     ttbay
b

ba coscos  
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Figure 8-2: Four Different Epicycloids 

 

 

 

 

Figure 8-3: A Variety of Epicycloids as a Function of the Parameters a and b 
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8.3.2 Metric Properties of the Epicycloid 

 The following addresses the length and area of the Epicycloid; however, rather 

than derive the formulas for length and area through the laborious process of integration 

(as we have done in previous chapters), we will make a departure here and show how one 

might intuitively arrive at the formulas.  Additionally, we present the formulas for the 

radial distance and the distance to the tangent for the Epicycloid. 

 

 Chapters 6 and 7 showed that the length of the Cardioid and Nephroid were 16a 

and 24a, respectively, where a is the radius of the rolling circle.  Table 8-1 tabulates the 

lengths for the first six epicycloids (the calculations for the three-cusped through the six-

cusped are left as an exercise for the reader). 

Table 8-1: Epicycloid Lengths 

Number of Cusps Name of the Curve Calculated Length 

1 Cardioid 16a 

2 Nephroid 24a 

3 3-Cusped Epicycloid 32a 

4 4-Cusped Epicycloid 40a 

5 Ranunculoid 48a 

6 6-Cusped Epicycloid 56a 

 

 One can quite easily intuit from this table that the length as a function of the 

number of cusps is simply L = 8a (n + 1), where n is the number of cusps and a is the 

radius of the rolling circle. 

 

 Chapters 6 and 7 showed that the area of the Cardioid and Nephroid were 6πa
2
 

and 12πa
2
, respectively, where a is the radius of the rolling circle.  Table 8-2 tabulates the 

areas for the first six epicycloids (again, the calculations for the three-cusped through the 

six-cusped are left as an exercise for the reader). 

Table 8-2: Epicycloid Areas 

Number of Cusps Name of the Curve Area 

1 Cardioid 6πa
2
 

2 Nephroid 12 πa
2
 

3 3-Cusped Epicycloid 20 πa
2
 

4 4-Cusped Epicycloid 30 πa
2
 

5 Ranunculoid 42 πa
2
 

6 6-Cusped Epicycloid 56 πa
2
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 Again, one can quite readily intuit (from Table 8-2) that the area as a function of 

the number of cusps can be written as A = πa
2 
 (n + 1) (n + 2). 

 

 If r denotes the distance from the origin to the curve, then 

 

 
b
atbabbabar cos222 22  . 

 

 If p denotes the distance from the origin to the tangent line of the epicycloid, then 

 

 
b

atbap
2

sin2 . 

8.3.3 Curvature of the Epicycloid 

 If ρ represents the radius of curvature of the Epicycloid, then 

 

 
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2
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
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 If (, ) represents the coordinates of the center of curvature of the general 

epicycloid, then, 
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
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2

     and    coscosba
2

  

8.3.4 Angles of the Epicycloid 

 If ψ is the angle between the tangent and the radius vector at the point of tangency 

to the general Epicycloid, then 

 

.

sin

cos1
2

tan

t
b

a

t
b

a

a

ba





  

 If  denotes the tangential angle to the general Epicycloid, then 

 

 
  tt

tt

b
ba

b
ba

sinsin

coscos
tan










 . 

 

 If  denotes the radial angle for the general Epicycloid, then 

 

   
   tbtba

tbtba

b
ba

b
ba









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sinsin
tan . 
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8.4 Geometric Properties of the Epicycloid 

 The general Epicycloid is always symmetric about the x-axis; however, it is also 

symmetric about the y-axis if the quantity (a + b) / b is an odd integer.  It is completely 

contained within a circle defined by r ≤ a + 2b.   

8.5 Dynamic Geometry of the Epicycloid 

 The next five subsections present some of the dynamic geometry constructions for 

the Epicycloid. 

8.5.1 An Epicycloid Toy 

Do you want to draw designs like those of Figure 8-3?  If you do, carefully follow the 

steps of the construction delineated below in Table 8-3 and you will reproduce a 

marvelous mechanism that can provide many stimulating hours of enjoyment. 

Table 8-3: An Epicycloid Toy 

1.  Draw horizontal line AB 11. Let G be a random point on the circumference of circle AE 

2.  Draw circle AB with center at A and passing through point B 12. Draw circle DF with center at D and passing through point F 

3.  Construct P1  to line AB through point A 13. Let H be a random point on the circumference of circle DF 

4.  Construct P2  to line AB through point B 14. Create circle C1 by translating circle DF by vector D → G 

5.  Let C be a random point on the circumference of circle AB 15. Draw line segment DH 

6.  Let D be a random point on perpendicular P2 16. Create S1 by translating line segment DH by vector D → G 

7.  Let E be a random point on line AB 17. Let I be the intersection of elements C1 and S1 

8.  Construct P3  to line AB through point E 18. Trace point I and change its color 

9.  Draw circle AE with center at A and passing through point E 19. Simultaneously animate point H on circle DF and Point G on  

10. Let F be a random point on perpendicular P3       circle AE 

 

 To see your tracings better, it is recommended that you hide the following 

construction elements after completing the construction:  Points A, C, D, F, and H; all 

three perpendiculars, the line AB, and the line segment DH; and the two circles, AE and 

DF.  Note that one can obtain different Epicycloids by dragging point E.  Have fun! 

8.5.2 An Epicycloid of Three Cusps 

 The simple, but spectacular, construction delineated below in Table 8-4 of a 

Three-Cusped Epicycloid contains a curve that we have not yet addressed.  See if you can 

spot it. 

Table 8-4: A Three-Cusped Epicycloid 

1.  Draw circle AB with center at A and passing through point B 8.  Let C2 be the image when C1 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 9.  Let C3 be the image when C2 is rotated about A' by CAB 

3.  Draw line segment AC 10. Draw circle CC3 with center at C and passing through C3 

4.  Construct P1  to line segment AC through point C 11. Trace circle CC3 and change its color 

5.  Dilate circle AB about point C by a factor of ⅓ 12. Let C4 be the image when point C3 is reflected by mirror P1 

6.  Let A' be the image as A is dilated about C by a factor of ⅓ 13. Animate point C around circle AB 

7.  Let C1 be the image when C is rotated about A' by CAB  

 

 Actually, this remarkable little construction incorporates two curves that we have 

not yet encountered.  If you turn on the trace of point C3, a curve called the Deltoid is 

drawn.  If you trace point C2, an ellipse is drawn.  Both of these curves will be addressed 

in subsequent chapters.  Of course, point C4 traces a three-cusped Epicycloid, just as 

circle CC3 generates an envelope that is a three-cusped Epicycloid.  As-a-matter-of-fact, 

the outside envelope generated by circle CC3 is the Epicycloid while the inside envelope 
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is the Deltoid alluded to above.  What a fascinating, elegant construction!  See Figure 8-4 

for a snapshot of this construction. 

 

 

Figure 8-4: A Three-Cusped Epicycloid 

8.5.3 A Compass-Only Three-Cusped Epicycloid 

 At the risk of being redundant, a construction for a three-cusped Epicycloid 

follows in Table 8-5.  Yes, the same result was presented in the previous section.  

However, this time it is done as a GSP-version of a compass-only construction.  Truly 

remarkable! 

Table 8-5: A Three-Cusped Epicycloid by Compass Only 

1.  Draw circle AB with center at A and passing through point B 14. Draw circle FB' with center at F and passing through point B' 

2.  Let C be a random point on the circumference of circle AB 15. Let points G and H be the intersections of circles FB' and B'C 

3.  Draw circle BC with center at B and passing through point C 16. Draw circle GH with center at G and passing through point H 

4.  Draw line segment AB* 17. Let I be the unlabeled intersection of circle GH and circle FB' 

5.  Let C' be the image as C is reflected across line segment AB* 18. Draw circle IC with center at I and passing through point C 

6.  Draw circle C'B with center at C' and passing through point B 19. Let points J and K be the intersections of circles IC and CB' 

7.  Draw line segment AC'* 20. Draw circle JC with center at J and passing through point C 

8.  Let B' be the image as B is reflected across line segment AC'* 21. Draw circle KC with center at K and passing through point C 

9.  Draw circle B'C with center at B' and passing through point C 22. Let point L be the unlabeled intersection of circles KC and JC 

10. Draw circle CB' with center at C and passing through point B' 23. Draw circle CL with center at C and passing through point L 

11. Let points D and E be the intersections of circles B'C and CB' 24. Trace circle CL and change its color 

12. Draw circle DE with center at D and passing through point E 25. Animate point C around circle AB 

13. Let F be the unlabeled intersection of circles DE and B'C  

* Steps 4, 5, 7, and 8 are the only non-compass steps in the construction 

8.5.4 An n-Cusped Epicycloid 

 The construction following in Table 8-6 is that of a five-cusped Epicycloid (e.g., a 

Ranunculoid).  However, following the construction steps, it will be shown how to 



 

Chapter 8: The Epicycloid  Playing With Dynamic Geometry   8-9 

modify specific steps of the construction in order to change the construction into one for 

an Epicycloid of any number of cusps desired, i.e., n cusps. 

Table 8-6: A Five-Cusped (or n-Cusped) Epicycloid 

1.  Create an x-y axis with origin at A and unit point B(1, 0) 9.  Draw circle C'C with center at C' and passing through point C 

2.  Draw circle AB with center at A and passing through point B 10. Let C1 be the image when C is rotated about C' by BAC 

3.  Let C be a random point on the circumference of circle AB 11. Let C2 be the image when C1 is rotated about C' by BAC 

4.  Measure BAC 12. Let C3 be the image when C2 is rotated about C' by BAC 

5.  Draw line segment AC 13. Let C4 be the image when C3 is rotated about C' by BAC 

6.  Measure the length of line segment AC 14. Let C5 be the image when C4 is rotated about C' by BAC 

7.  Calculate AC / 5 15. Trace point C5 and change its color 

8.  Let C' be the image as C is translated by BAC and AC / 5 16. Animate point C around circle AB 

 

 Make sure that the angle units in the GSP preference table are set for radian 

measure before executing the above animation.  To alter the steps in the above table for 

the construction of an n-cusped epicycloid (where n is any integer), do the following: 

Change step 7 to read "Calculate AC / n."  Change step 8 to read "Let C' be the image 

when C is translated by BAC and AC / n."  Replace steps 11-14 with the steps that 

result from executing the following pseudo-language loop 

                        begin loop 

for i = 2 to n 

9 + i.  Let Ci be the image when point Ci-1 is rotated about point C 

by BAC. 

end loop 

Finally, change what is now step 15 (and will be step 9 + n) to read "Trace point Cn and 

change its color.” 

8.5.5 Can We Build a Better Mousetrap? 

 Section 8.5.1 (An Epicycloid Toy) presented an "adjustable" Epicycloid 

construction; that is, a construction where a point can be dragged that changes the radius 

of the fixed circle, thereby changing the ratio of the radius of the fixed circle to that of the 

revolving circle and thence, as we have learned, changing the number of cusps in the 

traced Epicycloid.  However, that construction suffers from the inability to adjust the 

ratio finely enough to result in a closed Epicycloid (i.e., one where the tracing point 

eventually returns to its starting point), in other words, making the ratio a rational 

number.  The following construction (Table 8-7) is an attempt to design a better 

adjustable Epicycloid construction, one in which the ratio can be fine-tuned to result in a 

closed Epicycloid. 

Table 8-7: A Better Mousetrap? 

1.  Draw circle AB with center at A and passing through point B 10. Let H be a random point on the circumference of circle GG' 

2.  At top of screen, draw line segment CD screen wide 11. Draw line segment GH 

3.  Let E be a random point on line segment CD 12. Construct the parallel to line segment GH through point F 

4.  Let F be a random point on the circumference of circle AB 13. Let point I be the intersection of the parallel and circle FF' 

5.  Let F' be the image when F is translated by vector C → E 14. Trace point I and change its color 

6.  Draw circle FF' with center at F and passing through point F' 15. Let m1 be a measure of the radius of circle AB 

7.  Let G be a random point anywhere in the plane 16. Let m2 be a measure of the radius of circle GG' 

8.  Let G' be the image when G is translated by vector C → E 17. Calculate m2 / m1 

9.  Draw circle GG' with center at G and passing through point G' 18. Animate points H and F on circles GG' and AB, respectively 
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 The idea here is to construct an auxiliary line segment (i.e., line segment CD) 

upon which a variable point (point E) can be dragged from one end of the segment to the 

other.  If the distance from one end of the segment to the variable point is then marked as 

a vector and used as the radius of the fixed circle, maybe a fine enough adjustment can be 

made to the ratio under consideration as the variable point is dragged, particularly if we 

calculate that ratio so that we can see at what location on the segment the ratio become a 

whole number.  At least that’s the concept! 

 

 Well, it was a good idea, anyway!  It is very difficult to adjust the ratio to an 

integer by sliding point E along line segment CD.  However, you can get very close.  

Figure 8-5 shows the ratio to be very close to 3 which, of course, represents a two-cusped 

Epicycloid (i.e., the Nephroid). 

 

 

Figure 8-5: A Better Mousetrap? 

8.5.6 Yes, We Can Build a Better Mousetrap 

Table 8-8 presents an adjustable Epicycloid construction that can be adjusted 

finely enough to result in closed Epicycloids, but, interestingly enough, only when the 

ratio of (a + b) / b is an integer.  When the ratio is merely rational (but non-integer), GSP 

doesn’t perform very well. 

 

 Readers should realize that the following construction (Table 8-8) is not a true 

geometric construction but utilizes the graphing capability of GSP to render its 

construction elements.  However, here we will show how to use it to construct the center 

of curvature, the evolute, the osculating circle, as well as the tangent line—a simple but 

versatile use of a dynamic geometry application. 



 

Chapter 8: The Epicycloid  Playing With Dynamic Geometry   8-11 

Table 8-8: Yes, a Better Mousetrap 

1.  Create an x-y axis with origin at A and unit point B(1, 0) 11. Calculate y = (a + b) ∙sint – b∙sin [(a + b) t / b] 

2.  Draw circle BC centered at B and passing through point C  12. Let G be the result of plotting the point  (x, y) 

3.  Let D be a random point on the circumference of circle BC 13. Let  = [a / (a + 2b)] ∙ {[(a + b) ∙cost + b∙cos [(a + b) t / b]} 

4.  Draw line segments BD and BC 14. Let  = [a / (a + 2b)] ∙ {[(a + b) ∙sint + b∙sin [(a + b) t / b]} 

5.  Let t be the measure of CBD 15. Let point H be the result of plotting (alpha, beta) 

6.  Let E and F be two random points on the x-axis 16. Trace point H and change its color, say red 

7.  Let the x-coordinate of point E be a 17. Draw circle HG with center at H and passing through point G 

8.  Let the x-coordinate of point F be b 18. Trace circle HG and change its color, say green 

9.  Calculate (a + b) / b 19. Animate point D around circle BC 

10. Calculate x = (a + b) ∙cost – b∙cos [(a + b) t / b]  

 

 Point G (although we did not trace its path) will trace an Epicycloid.  The number 

of cusps will depend on the value of (a + b) / b, which can be adjusted to an integer value 

by sliding point E and/or F along the x-axis.  However, you must make sure that the value 

of (a + b) / b is a positive integer.  If it is negative, you will not obtain an Epicycloid but 

rather a curve called a Hypocycloid.  Now, point H, which is the center of curvature for 

the curve generated by point G, will trace the evolute, which in the case of an Epicycloid 

is also an Epicycloid.  Circle HG is the osculating circle for the Epicycloid, and by 

tracing it we obtain the Epicycloid as the envelope of those circles.  We’ve got everything 

but the kitchen sink in this construction; we might as well add the kitchen sink—I mean 

the tangent line to the Epicycloid. 

Table 8-8 (Continued): Yes, a Better Mousetrap 

20. Calculate 0.000 22. Let point I be the result of plotting (0, c) 

21. Calculate c = (a + 2b)[cos(at/b) – 1] / {sin[(a + b)t/b] – sint} 23. Draw line GI and change its color and make it thick 

 



 

Chapter 8: The Epicycloid  Playing With Dynamic Geometry   8-12 

 

Figure 8-6: A Six-Cusped Epicycloid in Three Dimensions 

 

The cross-section of the pseudo-cylinder above is a six-cusped Epicycloid.  It was 

rendered by extruding the cross-section into the third dimension using a technique 

referred to as treating the object as a lathe object.  The resulting object was then placed 

over the blue and yellow checkered plane which meets a pinkish-purple clouded sky at 

the horizon.  The object’s surface was given a pure reflective finish and one can see the 

plane reflected in its side and the sky and clouds reflected in its top.  Light sources were 

then placed so as to cast the object’s shadow onto the plane. 
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Chapter 9 – The Epitrochoid 
 

 

Figure 9-1: A Three-Dimensional Version of an Epitrochoid 

 

The cross-section of the object in the above figure is that of an Epitrochoid with 

parameters (a, b, h) = (6, 2, 7).  It was created by extruding a plane Epitrochoid with 

those parameters into the third dimension (i.e., the dimension normal to the plane of the 

page).  It was then given a finish of green marble flecked with red and placed over an 

infinite gray plane which meets the slate blue sky at the horizon.  Light sources were 

placed so as to illuminate the object and cast part of its shadow on the gray plane. 
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9.1 Introduction 

 The Epitrochoid was first described by Albrecht Dürer in 1525, who called the 

curve "spider lines" because he thought the curve bore resemblance to an arachnid.  Olaf 

Roemer also studied Epitrochoids in 1674 in connection with his research concerning 

gear teeth.  Through the ensuing centuries the curve was examined by a variety of 

mathematicians including Leibniz, Newton, L’Hopital, Desargues, and the Bernouillis.  

Today, Epitrochoids can be found in rotary combustion engines by observing the path 

that the rotor tip of the eccentric shaft traces out upon revolving.   

 

 The Epitrochoid is the locus of a point, P, that is rigidly attached to a small circle 

of radius b which rolls without slippage around the outside of a larger circle of radius a.  

Doesn’t this sound just like the Epicycloids that were studied in the previous chapter?  

Indeed—however, for Epicycloids the point P was confined to the circumference of the 

rolling circle.  Not so for the Epitrochoid.  The point P may be internal to the rolling 

circle or may be external to it.  (For the external case, consider it to be on an extension of 

the radius of the rolling circle.)  Obviously, this makes Epicycloids merely a special case 

of the Epitrochoid (namely when P is on the circumference). 

9.2 Equations and Graph of the Epitrochoid 

 If we let the distance from the center of the moving circle to the point P be h then 

the point P at t = 0 can be represented in coordinate form by its distance from the origin 

(see Figure 9-2).  That is, P = (a + b – h, 0).  As the smaller circle revolves 

counterclockwise around the larger circle, point P moves to the location shown in the 

 

 

Figure 9-2: Epitrochoid Position of Point P at Time t 
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rotated position of Figure 9-2.  At this time, the coordinates of point P can be described 

with the equation 

 

P = [(a + b) cos t – h cos, (a + b) sin t – h sin]. 

 

However, as the small circle rolls around the larger one, it travels the same arc-length 

distance, that is, arc AB = arc BC, or at = b ( – t).  Hence,   

 

t
b

ba 
 . 

 

We therefore have the parametric equations of the Epitrochoid, namely 

 

 

  thtbay

thtbax

b
ba

b
ba









sinsin

coscos
     – < t <      Equation 9-1 

Note how similar this equation is to that of the parametric equation for the Epicycloid 

(Equation 8-1).  In fact, the only difference is the factor h in the second term of each 

component of Equation 9-1 versus b in Equation 8-1.  And, of course, in the case of an 

Epicycloid, h = b, so this is consistent. 

 

 

Figure 9-3: Graphs of a Variety of Epitrochoids 

Figure 9-3 represents a graph of four different Epitrochoids.  Note that the three 

parameters, (a, b, h) completely specify the curve.  Further, if b < h, the curve will have  



 

Chapter 9: The Epitrochoid  Playing With Dynamic Geometry   9-4 

1
b

ba  inner loops provided that 
b

ba is an integer.  Of course, if b = h, as we have already 

learned, the curve degenerates to that of an Epicycloid.  Finally, if b > h, the curve has no 

loops and takes a general form like that shown in the blue graph of Figure 9-3. 

 

The equation of the tangent line to the Epitrochoid at the point t = q is 
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     Equation 9-2 

9.3 Analytical and Physical Properties of the Epitrochoid 

 Using the parametric representation of the Epitrochoid given in Equation 9-1, the 

following subparagraphs delineate further properties of the Epitrochoid. 

9.3.1 Derivatives of the Epitrochoid 

   tbth
b

ba
x

b
ba sinsin 


  . 

 

 
 

    tbat
b

bah
x

b
ba coscos

2

2




  . 

 

   thtb
b

ba
y

b
ba


 coscos . 

 

 
 

    tbat
b

bah
y

b
ba sinsin

2

2




  . 

 

 
 

  tbth

thtb
y

b
ba

b
ba

sinsin

coscos










. 

 

 
   

  
.

sinsin

cos2
3

23

tbthba

tbabhbahb
y

b
ba

b
a







 

9.3.2 Metric Properties of the Epitrochoid 

 It makes no sense to talk about the area of an Epitrochoid if the curve is not 

closed or if the curve loops back upon itself.  For closure, we have learned that 
b

ba  must 

be an integer; let us call that integer n.  To eliminate the loops, we have learned that h 

must be less than or equal to b (i.e., h  b).  Therefore, the parametric equation of the 

Epitrochoid, for these conditions becomes 

nthtbnynthtbnx sinsin     and     coscos       Equation 9-3 

and we may calculate the area using the formula 
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Now, making the laborious calculation, we find that the value of the integrand is, 
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Integrating and evaluating the results, we find that 
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However, sin2πn is always zero since n is an integer, hence we find that 
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If r denotes the distance from the origin to the curve, then 
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If p denote the distance from the origin to the tangent line, then 
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9.3.3 Curvature of the Epitrochoid 

If ρ represents the radius of curvature of the Epitrochoid, then 
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If (α, β) denotes the coordinates of the center of curvature for the Epitrochoid, then 
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9.3.4 Angles for the Epitrochoid 

If ψ is the angle between the tangent and the radius vector at the point of tangency 

to the general Epitrochoid, then 
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If  denotes the tangential angle, then 
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If  denotes the radial angle, then 
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9.4 Geometric Properties of the Epitrochoid 

 As already alluded to, for n
b

ba   an integer, the Epitrochoid is closed and there 

are n – 1 inner loops whenever h > b.  When h < b, the n – 1 loops become n – 1 

"indentations" in the overall line of the curve but the curve does not cross itself as it must 

to form a loop.  Further, these "indentations" are not cusps, as the derivative of the curve 

exists in every neighborhood of the "indentation."  The curve is always symmetric about 

the x-axis, and if n is an odd integer, it is also symmetric about the y-axis.  The curve is 

completely contained within a circle defined by .hbar   

9.5 Dynamic Geometry of the Epitrochoid 

 The next two subsections present two dynamic geometry constructions for the 

Epitrochoid. 

9.5.1 The Geometry of the Epitrochoid Illuminated 

 If you think the explanation involving "indentations" in section 9.4 leaves 

something to be desired, perform the following simple GSP construction and the idea of 

the "indentation" should become clear; Table 9-1 contains this construction. 
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Table 9-1: The Geometry of the Epitrochoid Illuminated 

1.  Draw circle AB with center at A and passing through point B 6.  Let C2 be the image of C1 rotated about point C' by BAC 

2.  Let C be a random point on the circumference of circle AB 7.  Draw line C'C2 

3.  Let C' be the image of C dilated about A by a factor of 5.0 8.  Let D be a random point on line C'C2 

4.  Draw circle C'C with center at C' and passing through point C 9.  Construct the locus of D while point C traverses circle AB 

5.  Let C1 be the image of C rotated about point C' by BAC 10. Change the color and line thickness of the locus 

 

 Now, drag point D along line C'C2 and note how the locus of point D changes.  

When point D and point C' coincide, the locus is a circle.  As point D moves away from 

point C', the locus becomes slightly elongated and flattened on two opposing sides.  As 

point D continues to move away from point C', the flattened portions becomes two 

"indentations" which, as point D continues moving, becomes two cusps (forming a 

Nephroid) and then eventually two loops.  Of course, the flattened and/or "indentation" 

configuration corresponds to an Epitrochoid with parameter h < b.  The cusp 

configuration corresponds to an Epitrochoid with parameter h = b, or as we have learned, 

an Epicycloid.  Finally, the loop configuration corresponds to an Epitrochoid with 

parameter h > b. 

9.5.2 An Epitrochoid to Play With 

 The construction found in Table 9-2 is similar to the construction in the "Can We 

Build a Better Mousetrap?" section of Chapter 8, except that the tracing point can be 

dragged to simulate different values of the parameter h. 

Table 9-2: An Epitrochoid to Play With 

1.  Draw circle AB with center at A and passing through point B 10. Let H be a random point on the circumference of circle GG' 

2.  Draw segment CD across the entire width of the screen top 11. Draw line segment GH 

3.  Let E be a random point on line segment CD 12. Construct the parallel to line segment GH through point F 

4.  Let F be a random point on the circumference of circle AB 13. Let I be a random point on the parallel line 

5.  Let F' be the image when F is translated by vector C → E 14. Trace point I and change its color 

6.  Draw circle FF' with center at F and passing through point F' 15. Let m1 be a measure of the radius of circle AB 

7.  Let G be a random point anywhere in the plane 16. Let m2 be a measure of the radius of circle GG' 

8.  Let G' be the image when G is translated by vector C → E 17. Calculate m2 / m1 

9.  Draw circle GG' with center at G and passing through point G' 18. Animate points H and F on circles GG' and AB, respectively  

 

 By dragging point E along line segment CD so that the ratio of m2 to m1 is an 

integer (or as close to an integer as one can obtain), one can cause point I (the tracing 

point) to trace a closed curve (or very close to it).  By dragging point I along the parallel 

so that it is internal to circle FF' and then adjusting the ratio to be less than one (< 1), we 

can obtain Epitrochoids with the so called "indentations."  As a matter of fact, adjusting 

the ratio as close to 0.25 while keeping point I internal to circle FF', we can trace the 

Epitrochoid shape found in the rotary combustion engine (i.e., the path that the rotor tip 

of the eccentric follows when revolving). 
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Figure 9-4: An Epitrochoid Solid of Revolution 

 

In order to obtain the object above, an Epitrochoid with parameters (a, b, h) = (20, 4, 2) 

was revolved about the x-axis.  It was then placed above the reflecting pool and a light 

source was located so as to cast the object’s shadow onto the pool.  Note how the object’s 

shiny surface also reflects the pool itself as well as the horizon line, sky, and ground. 
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Chapter 10 – The Deltoid 
 

 

Figure 10-1: The Deltoid in Three Dimensions 

 

This three-dimensional version of the Deltoid was rendered by extruding into the third 

dimension using its parametric representation.  The resulting object was then given a 

shiny, aquamarine finish and situated over the red and white checkered plane.  The plane 

meets a bright-blue sky at the horizon.  Light sources were placed so as to cast shadows 

of the object on the plane in various locations.  Also note the light sources reflecting off  

the object itself—one on the outer surface and one on the inner surface. 
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10.1 Introduction to the Deltoid 

 Conceived by Leonhard Euler in 1745, the Deltoid (sometimes called the 

Tricuspoid) was studied in connection with caustic curves.  It was also investigated by 

Steiner in 1856 and is sometimes called Steiner's Hypocycloid.  In point of fact, the 

Deltoid is a member of a family of curves called Hypocycloids.  This variety of cycloid is 

obtained as the locus of a point attached to the circumference of one circle rolling along 

the circumference of another circle, but rolling interior to it.  In other words, 

Hypocycloids are very much like the Epicycloids that we studied Chapter 8, but are 

produced by a rotating circle interior to the fixed circle instead of exterior.  The Deltoid is 

the specific Hypocycloid where the radius of the fixed circle is three times as large as the 

radius of the rolling circle.   

10.2 Equations and Graph of the Deltoid 

 To find the parametric equations for the Deltoid, let a be the radius of the rolling 

circle and 3a that of the fixed circle, as shown in Figure 10-2.  The fixed circle has 

equation x
2
 + y

2
 = 9a

2
, and for t = 0, the point P has coordinates P = (3a, 0).  Then, after 

the moving circle has rolled through an angle t (that is, the line O1O2 connecting the 

centers of the two circles makes an angle t with the x-axis), the point P has rolled around 

O2 through an angle 3t – t = 2t.  If the coordinates of point O2 are O2 = (Ox, Oy), then P = 

(Ox, Oy) + (acos2t, –asin2t).  But, (Ox, Oy) = (2acost, 2asint).  Therefore, the parametric 

representation for the Deltoid is 

 

 

Figure 10-2: Derivation of the Deltoid Equations 

 

      tttttayx -     ,2sinsin2,2coscos2,      Equation 10-1 
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Eliminating the parameter t from these two equations yields the Cartesian form of the 

Deltoid as  

   3
2222 324912 axaaaxyx       Equation 10-2 

If the pedal point is taken as the center of the fixed circle, then the pedal equation is 

222 98 apr       Equation 10-3 

Similarly, the Whewell equation is 

3cos83 as       Equation 10-4 

The Cesáro equation is 

222 649 as        Equation 10-5 

Finally, the equation of the tangent line to the Deltoid at the point t = q is 

    qqaxqyq cos21cos11cossin  .     Equation 10-6 

Figure 10-3 depicts the graph of the Deltoid. 

 

 

Figure 10-3: The Graph of the Deltoid 

10.3 Analytical and Physical Properties of the Deltoid 

Using the parametric representation of the Deltoid given in Equation 10-1, i.e.,  

x = 2acost + acos2t and y = 2asint – asin2t, the following subsections present the 

Deltoid’s derivatives, metric properties, curvature, and angles of interest. 
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10.3.1 Derivatives of the Deltoid 

  .cos21sin2 ttax   

 

  .cos41cos24 ttaax   

 

     .cos1cos212cos21cos22 ttattaay   

 

  .1cos4sin2  ttay  

 

 .
2

tan
sin

1cos













t

t

t
y   

 

 
 

.
cos21sin2

cos1
3 tta

t
y




  

10.3.2 Metric Properties of the Deltoid 

 The Deltoid’s length can be calculated by considering one branch of the curve, 

calculating its length, and then multiplying that result by three since each of the three 

branches are of equal length.  Therefore, the length of the branch from t = 0 to t = 2π/3 is 
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Adding these last two expressions together yields 
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However, 1 – cos 3t = 2sin
2 

(3t/2).  We therefore have 
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We may therefore conclude that the total length of the Deltoid is 16a, where a is the 

radius of the rolling circle. 
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 The area of the Deltoid may be computed from the formula 
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where, in this case, α = 0 and β = 2π.  From the previous calculation of the Deltoid’s 

length, we have expressions for dy/dt and dx/dt.  Therefore, 
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Forming the difference from these last two expressions yields 
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Therefore, the area is 
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If p is the distance from the origin to the Deltoid’s tangent, then 

 

   .cos12cos21
2

1
ttap   

If r is the distance from the origin to the curve, then 

 

tar 3cos45 . 

10.3.3 Curvature of the Deltoid 

If ρ is the radius of curvature of the Deltoid, then  
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If (, β) are the coordinates of the center of curvature of the Deltoid, then 

 

   .cos1sin6     and     cos2cos213 2 ttatta    

10.3.4 Angles for the Deltoid 

If θ is the radial angle of the Deltoid, then 
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If ψ is the tangential-radial angle of the Deltoid, then 
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If  is the tangential angle of the Deltoid, then 

 

 =  - t/2. 

10.4 Geometric Properties of the Deltoid 

 Intercepts:  (3a, 0); (-a, 0); 
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 Symmetry:  The Deltoid is symmetric about the x-axis and the lines 

xy 3 . 
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10.5 Dynamic Geometry of the Deltoid 

 The following subsections provide a variety of different and interesting 

constructions of the Deltoid. 

10.5.1 The Deltoid as a Hypocycloid 

 As briefly addressed in Section 10.1, the Deltoid is defined as a specific 

Hypocycloid, one where the radii of the fixed circle and rotating circle are in the ratio of 

3 to 1.  Our first dynamic geometry construction, found in Table 10-1, is based on this 

very definition. 

Table 10-1: The Deltoid as a Hypocycloid 

1.  Draw circle AB with center at A and passing through point B 6.  Let C2 be the image when C1 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 7.  Let C3 be the image when C2 is rotated about A' by CAB 

3.  Let A' be the image when A is dilated about C by ⅓ 8.  Trace point C3 and change its color 

4.  Draw circle A'C with center at A' and passing through point C 9.  Animate point C around circle AB 

5.  Let C1 be the image of  C rotated about point A' by CAB  

 

 Step 1, of course,  is to obtain the fixed circle while steps 2 through 4 construct 

the moving circle whose radius is one-third that of the fixed circle.  Steps 5 through 7 

then perform the necessary functions in order to simulate a point on the circumference of 
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the moving circle that rolls without slipping around the interior of the fixed circle.  Note 

that point C2 will trace an ellipse. 

10.5.2 The Pedal Curve of the Deltoid 

 Remember, the pedal curve of a given curve C is merely the locus of the 

intersection point created by dropping a perpendicular from the pedal point to a tangent 

of C.  Therefore, if we can construct a tangent to the Deltoid, it will be "duck soup" to 

construct the Deltoid’s pedal curve.  Such a construction is found below in Table 10-2. 

Table 10-2: The Pedal Curve of the Deltoid 

1.  Draw circle AB with center at A and passing through point B 9.  Construct the locus of C3 while point C traverses circle AB 

2.  Let C be a random point on the circumference of circle AB 10. Draw line segment CC3 

3.  Dilate circle AB about point C by a factor of ⅓ 11. Construct P1  to line segment CC3 through point C3 

4.  Let A1 be the image when A is dilated about C by ⅓ 12. Let D be a random point in the plane 

5.  Draw line segment AC 13. Construct P2  to P1 through point D 

6.  Let C1 be the image when C is rotated about A1 by CAB 14. Let point E be the intersection of perpendiculars P1 and P2 

7.  Let C2 be the image when C1 is rotated about A1 by CAB 15. Trace point E and change its color 

8.  Let C3 be the image when C2 is rotated about A1 by CAB 16. Animate point C around circle AB 

 

 In the above construction, point D acts as the pedal point.  You can drag it 

anywhere in the plane so as to change the pedal curve.  It is particularly instructive to 

drag it to where it is internal to the Deltoid and specifically when it is coincident with 

point A, the center of circle AB.  If instead of tracing point E, you construct the locus of 

point E as point C traverses circle AB (i.e., the locus of the pedal curve), then when you 

drag point D, you can see how the pedal curve changes. 

10.5.3 The Deltoid as an Envelope of Simson Lines 

 First of all, what is a Simson line?  Let there be any triangle inscribed in a circle 

and let the point P be any random point on the circumference of the circle.  On one of the 

sides of the triangle mark a point Q1, such that the line PQ1 is perpendicular to the side so 

chosen (one may have to extend the side of the triangle in order to find the point Q1). 

Now do the same thing for the other two sides of the triangle with points Q2 and Q3, 

respectively.  It turns out that the points Q1, Q2, and Q3 are collinear and the line passing 

through them is called a Simson line.  The envelope of the set of all Simson lines (the set 

composed from all points, P) form a Deltoid, as can be seen from the construction that 

follows in Table 10-3. 

Table 10-3: The Deltoid as an Envelope of Simson Lines 

1.  Draw circle AB with center at A and passing through point B 8.  Let point H be the intersection of line EF and perpendicular P2 

2.  Let C, D, E, and F be four random points on circle AB 9.  Draw line DF 

3.  Draw line DE 10. Construct P3  to line DF through point C 

4.  Construct P1 to line DE through point C 11. Let point I be the intersection of line DF and perpendicular P3 

5.  Let G be the intersection of line DE and perpendicular P1 12. Draw line GH 

6.  Draw line EF 13. Trace line GH and change its color 

7.  Construct P2  to line EF through point C 14. Animate point C around circle AB 

 

 Note that in this construction, we never really drew the triangle, however, it is 

implied (it is DEF).  Note also, that when we draw line GH (step 12), that line also 

passes through point I, i.e., G, H, and I are all collinear.  See Figure 10-4 for a snapshot 

of this construction. 
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Figure 10-4: The Deltoid as an Envelope of Simson Lines 

10.5.4 The Evolute of the Deltoid 

 As addressed earlier (Chapter 1), the evolute of a curve is the locus of its center of 

curvature.  The construction delineated below in Table 10-4 is the evolute of the Deltoid, 

which, it turns out, is another Deltoid.  Obviously, to use this construction as a means of 

generating a Deltoid requires one to possess another construction of the Deltoid in order 

to begin constructing its evolute.  Bottom line—obviously this is not a very good 

"generation from scratch" technique! 

Table 10-4: The Evolute of the Deltoid 

1.  Draw circle AB with center at A and passing through point B 8.  Draw line CC2 

2.  Let C be a random point on the circumference of circle AB 9.  Let C3 be the image when C2 is rotated about point C1 by 180º 

3.  Let m1 be the measure of angle BAC 10. Draw line AC3 

4.  Calculate m2 = –3m1 11. Let point D be the intersection of lines AC3 and CC2 

5.  Let C1 be the image when C is dilated about A by ⅔ 12. Trace point D and change its color 

6.  Draw circle C1C with center at C1 and passing through point C 13. Animate point C around circle AB 

7.  Let C2 be the image when point C is rotated about C1 by m2  

 

 When executing this construction, make sure that the unit for angle measurement 

in the preferences window under the display menu of GSP is set for either radian measure 

or directed degree measure.  (Of course, if it is set for radian measure, then step 9 should 

really read "Let C3 be the image when C2 is rotated about C1 by 3.14159  radians".)  

Note that point D, the intersection point of lines AC3 and CC2 (step 11), is the center of 

curvature for the Deltoid traced by point C3.  Also note that tracing point C2 produces the 

Deltoid for which the trace of point D is the evolute.  And note how the evolute is 

circumscribed about the fixed circle (circle AB).  Very neat! 
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10.5.5 The Deltoid as an Envelope of Osculating Circles 

 The previous construction, the evolute of the Deltoid, shows us how to locate the 

center of curvature.  From that, it is a simple matter to construct the Deltoid’s osculating 

circle.  For this construction, execute steps 1 – 11 of section 10.5.4 and then perform the 

following three steps: 

 
12. Draw circle DC2 with center at point D and passing through point C2.   
13. Trace circle DC2 and change its color.   

14. Animate point C around circle AB. 

 

Figure 10-5 illustrates this construction. 

 

 

Figure 10-5: The Deltoid as an Envelope of Osculating Circles 

 The reader might ponder why this construction is even included in the text, given 

that it is so similar to the previous construction.  After all, they are basically the same 

construction.  If one is at all serious about learning about these curves, the previous 

construction is instructive because it shows that the evolute of the Deltoid is another 

Deltoid and, lo and behold, this is true for all Hypocycloids; that is, their evolute is 

another version of the same curve.  However, this construction is included because it 

creates such a beautiful picture when the animation is executed – your author couldn’t 

bear to leave it out! 

10.5.6 A Rotating Deltoid 

The construction delineated in Table 10-6 is quite elaborate and beautiful.  It is 

worth reproducing. 
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Table 10-5: A Rotating Deltoid 

1.  Draw horizontal line AB 16. Draw circle GF' with center at G and passing through point F' 

2.  Let C be a random point on line AB 17. Draw circle GF'' with center at G and passing through F'' 

3.  Construct P1  to line AB through point A 18. Let G' be the image when G is dilated about F'' by ⅓ 

4.  Draw circle AC with center at A and passing through point C 19. Draw circle G'F'' with center at G' and passing through F'' 

5.  Let D be a random point on the circumference of circle AC 20. Let H be a random point on circle GF'' 

6.  Construct P2  to P1 through point D 21. Rotate circle G'F'' about point G by F''GH 

7.  Construct P3  to line AB through point D 22. Let E1 be the image when E is rotated about G by F''GH 

8.  Let E be the intersection of line AB and perpendicular P3 23. Let G'' be the image when G' is rotated about G by F''GH 

9.  Let point F be the intersection of perpendiculars P1 and P2 24. Let E2 be the image when E1 is rotated about G'' by HGF'' 

10. Draw line segment EF 25. Let E3 be the image when E2 is rotated about G'' by HGF'' 

11. Let F' be the image when F is dilated about A by ½ 26. Let E4 be the image when E3 is rotated about G'' by HGF'' 

12. Let E' be the image when E is dilated about A by ½ 27. Construct the locus of point E4 as H traverses circle GF'' 

13. Draw line segment E'F' 28. Let points I and J be the intersections of circle AC and P1 

14. Let F'' be the image when F' is rotated about point E' by 180º 29. Animate point D around circle AC 

15. Let G be the midpoint of line segment E'F'  

 

 Note that as the Deltoid rotates it remains tangent to line AB and perpendicular 

P1.  Further, point G' describes an ellipse, and line segment EF and line segment E'F' both 

describe a curve we have not yet examined called an Astroid (Chapter 11).  Changing 

either one or both of these line segments to dashed segments, changing their color, and 

tracing them as the animation runs, paints quite an interesting picture. 

10.5.7 The Deltoid as an Envelope of Straight Lines 

In section 10.5.3 we showed how the Deltoid can be generated as an envelope of 

Simson lines.  It’s not only Simson lines that do the job, as can be seen from the 

construction of Table 10-6. 

Table 10-6: The Deltoid as an Envelope of Straight Lines 

1.  Draw horizontal line AB 6.  Let C' be the image when point C is reflected across line AB 

2.  Draw circle AB with center at A and passing through point B 7.  Construct P2  to line BC through point C' 

3.  Let C be a random point on the circumference of circle AB 8.  Trace perpendicular P2 and change its color 

4.  Construct P1  to line AB through point C 9.  Animate point C around circle AB 

5.  Draw line BC  

 

 Alternately, here is a different construction for the Deltoid as an envelope of 

straight lines (see Table 10-7). 

Table 10-7: An Alternate Straight Line Envelope Construction of the Deltoid 

1.  Draw horizontal line AB 6.  Let B' be the image when B is reflected across P1 

2.  Draw circle AB with center at A and passing through point B 7.  Draw line B'C 

3.  Let C be a random point on the circumference of circle AB 8.  Trace line B'C and change its color 

4.  Draw line BC 9.  Animate point C around circle AB 

5.  Construct P1  to line AB through point C  

 

 Combining these two "straight-line constructions" in one sketch results in one 

Deltoid being superimposed upon the other Deltoid, but separated by 60°, thereby 

making quite an interesting graphic.  (These two constructions are really not different 

from one another in terms of the geometry involved but are rather slight variations of one 

another, i.e., in terms of the line used to trace the Deltoid.) 
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10.5.8 A Deltoid-Nephroid Gear 

 Table 10-8 below presents a rotating Deltoid coupled, in this case, to a Nephroid.  

Note the similarities and differences between this construction and the rotating Deltoid of 

section 10.5.6. 

Table 10-8: A Deltoid-Nephroid Gear 

1.  Draw circle AB with center at A and passing through point B 12. Let C1 be the image when C is rotated about A1 by BA1D 

2.  Let A1 be the image when A is dilated about B by a factor of 3 13. Let C2 be the image when C is rotated about A2 by BA2E 

3.  Let A2 be the image when A is dilated about B by –2 14. Let A4 be the image when A is rotated about A2 by BA2E 

4.  Create circle O1 by dilating circle AB about B by a factor of 3 15. Let C3 be the image when C1 is rotated about A3 by DA1B 

5.  Create circle O2 by dilating circle AB about B by –2 16. Let C4 be the image when C2 is rotated about A4 by BA2E 

6.  Let C be a random point on the circumference of circle AB 17. Let C5 be the image when C3 is rotated about A3 by DA1B 

7.  Draw line segment BC 18. Let C6 be the image when C4 is rotated about A4 by BA2E 

8.  Construct P1  to segment BC through point C 19. Let C7 be the image when C5 is rotated about A3 by DA1B 

9.  Let D be a random point on the circumference of circle O1 20. Construct the locus of C6 while point E traverses circle O2 

10. Let E be a random point on the circumference of circle O2 21. Construct the locus of C7 while point D traverses circle O1 

11. Let A3 be the image when A is rotated about A1 by BA1D 22. Animate point C around circle AB 

 

 As a suggestion, simultaneously animate point C on circle AB, point D on circle 

O1, and point E on circle O2.  Then trace points C1, C2, C3, C4, and C5.  Point C2 traces 

another Nephroid, point C4 traces a 3-looped Epitrochoid, and point C5 traces a Cardioid, 

while points C1 and C3 trace curves called Hypotrochoids (see Chapter 13). 

10.5.9 The Deltoid from a Compass-Only Construction 

 This construction is essentially the same construction that was presented in 

section 8.5.3.  However, instead of creating a three-cusped Epicycloid with the traced 

element, we now trace an element that yields the Deltoid directly (see Table 10-9). 

Table 10-9: The Deltoid from a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 13. Let F be the unlabeled intersection of circles DE and B'C 

2.  Let C be a random point on the circumference of circle AB 14. Draw circle FB' with center at F and passing through point B' 

3.  Draw circle BC with center at B and passing through point C 15. Let points G and H be the intersections of circles FB' and B'C 

4.  Draw line segment AB 16. Draw circle GH with center at G and passing through point H 

5.  Let C' be the image of C reflected across line segment AB 17. Let I be the unlabeled intersection of circle GH and circle FB' 

6.  Draw circle C'B with center at C' and passing through point B 18. Draw circle IC with center at I and passing through point C 

7.  Draw line segment AC' 19. Let points J and K be the intersections of circles IC and CB' 

8.  Let B' be the image of B reflected across line segment AC' 20. Draw circle JC with center at J and passing through point C 

9.  Draw circle B'C with center at B' and passing through point C 21. Draw circle KC with center at K and passing through point C 

10. Draw circle CB' with center at C and passing through point B' 22. Let L be the unlabeled intersection of circle KC and circle JC 

11. Let points D and E be the intersections of circles B'C and CB' 23. Trace point L and change its color 

12. Draw circle DE with center at D and passing through point E 24. Animate point C around circle AB 

 

 Instead of tracing point L, construct the locus of point L as point C traverses circle 

AB and then add the following steps to the construction. 

 
25. Let point M be the unlabeled intersection of circle DE and circle CB'. 

26. Draw circle ML. 

 

Now rerun the animation and you will see that circle ML is the osculating circle to the 

Deltoid, constructed with a compass-only methodology.  Spectacular! 
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10.5.10 Orthogonal Tangents to the Deltoid 

Given any tangent to the Deltoid, one can always draw a second tangent that is 

perpendicular to the given tangent.  See Table 10-10. 

Table 10-10: Orthogonal Tangents to the Deltoid 

1.  Draw circle AB with center at A and passing through point B 14. Trace line segment CC4 and change its color 

2.  Let C be a random point on the circumference of circle AB 15. Let C5 be the image when C4 is rotated about point A by 180º 

3.  Dilate circle AB about point A by a factor of ⅓ 16. Construct P1  to segment CC4 through point C4 

4.  Dilate circle AB about point C by a factor of ⅓ 17. Change the color of Perpendicular P1 

5.  Let A' be the image when A is dilated about C by ⅓ 18. Let C6 be the image when C5 is rotated about A'' by 180º 

6.  Draw line segment AC 19. Let D be the intersection of line segment AC and P1 

7.  Let C1 be the image when C is rotated about point A by 180º 20. Draw line segment C1C6 

8.  Let A'' be the image when A' is rotated about point A by 180º 21. Trace line segment C1C6 and change its color 

9.  Let C2 be the image when C is rotated about A' by CAB 22. Construct P2  to line segment C1C6 through point C6 

10. Let C3 be the image when C2 is rotated about A' by CAB 23. Change the color of perpendicular P2 

11. Let C4 be the image when C3 is rotated about A' by CAB 24. Let point E be the intersection of perpendiculars P1 and P2 

12. Construct the locus of C4 while point C traverses circle AB 25. Animate point C around circle AB 

13. Draw line segment CC4  

 

 Figure 10-6 portrays a snapshot of this construction.  In Figure 10-6, the two cyan 

colored lines are the two orthogonal tangents.  They are tangent to the dark blue Deltoid 

at points C4 and C6, respectively.  They intersect at point E and when the animation is 

executed point E revolves around the inner circle that was constructed in step 3.  The 

locus of the intersection point of tangents to a curve meeting at a constant angle is an 

isoptic of the curve.  In this case, the tangents meet at a constant 90 and trace a circle.  

Therefore, the circle is a 90-isoptic (sometimes called an orthoptic) of the Deltoid.  Line 

segments C1C6 and CC4 are traced simply to fill in the space between the Deltoid and the 

outer circle; it makes for a more spectacular picture.  Note that the Deltoid will also have 

two orthogonal normals.  This same construction can be used to create the normals.  

Simply construct perpendiculars to the two tangent lines through the points of tangency.  

They are not shown in Figure 10-6. 

 

 

Figure 10-6: Orthogonal Tangents to the Deltoid 
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10.5.11 Two Deltoids for the Price of One 

 In sections 10.5.4 and 10.5.5 we presented the Evolute of the Deltoid and the 

Deltoid as an envelope of its osculating circle.  As alluded to earlier, these two previous 

constructions are really the same; that is, the evolute is the locus of the centers of 

curvature and that locus is the same as the locus of the centers of the osculating circles.  

There is really nothing more to be learned by combining them into one construction; 

however, the resulting picture and dynamic geometry animation are truly beautiful.  As a 

result, this combined construction is presented in Table 10-11 and shown in Figure 10-7.  

Note, however, that we do not actually construct the osculating circle, only its radius. 

Table 10-11: Two Deltoids for the Price of One 

1.  Draw circle AB with center at A and passing through point B 9.  Draw line A'C3 

2.  Let C be a random point on the circumference of circle AB 10. Construct P1  to line CC3 through point C 

3.  Let A' be the image when A is dilated about C by ⅓ 11. Let point D be the intersection of P1 and line A'C3 

4.  Let C1 be the image when C is rotated about A' by CAB 12. Draw line AD 

5.  Let C2 be the image when C1 is rotated about A' by CAB 13. Let point E be the intersection of lines AD and CC3 

6.  Let C3 be the image when C2 is rotated about A' by CAB 14. Draw line segment EC3 

7.  Trace point C3 and change its color 15. Trace line segment EC3 and change its color 

8.  Draw line CC3 16. Animate point C around circle AB 

 

 

Figure 10-7: Two Deltoids for the Price of One 

 Note how the larger Deltoid, e.g., the one formed by the trace of line segment 

EC3, is offset from the smaller Deltoid by 90º.  Also note that the cusps of the smaller 

Deltoid bisect the respective sides of the larger Deltoid.  Finally, note how the stationary 

circle is inscribed in the larger Deltoid and circumscribes the smaller Deltoid.  This 

particular construction forms a graphic that is so symmetric, esthetically pleasing, and 

interesting to look at, it’s very surprising that it has not been chosen by some large 

corporation as their company logo. 

10.5.12 The Deltoid and a Three-Cusped Epicycloid as Gears  

The construction below in Table 10-12 is that of both a Deltoid and a three-

cusped Epicycloid interacting as though they were mechanical gears in an elaborate Rube 

Goldberg machine of some kind. 
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Table 10-12: The Deltoid-Epicycloid as Gears 

1.  Draw circle AB with center at A and passing through point B 13. Let C2 be the image when C1 is rotated about A3 by DA1B 

2.  Let A1 be the image when A is dilated about B by a factor of 3 14. Let C3 be the image when C is rotated about A2 by BA2E 

3.  Let C be a random point on the circumference of circle AB 15. Let A4 be the image when A is rotated about A2 by BA2E 

4.  Dilate circle AB about B by a factor of 3 to create circle O1 16. Let C4 be the image when C2 is rotated about A3 by DA1B 

5. Let A2 be the image when A1 is rotated about point B by 180º 17. Let C5 be the image when C3 is rotated about A4 by BA2E 

6.  Let D be a random point on the circumference of circle O1 18. Let C6 be the image when C4 is rotated about A3 by DA1B 

7.  Rotate circle O1 about point B by 180º to create circle O2 19. Let C7 be the image when C5 is rotated about A4 by BA2E 

8.  Draw line segment BC 20. Let C8 be the image when C7 is rotated about A4 by BA2E 

9.  Let C1 be the image when C is rotated about A1 by BA1D 21. Construct the locus of C6 while point D traverses circle O1 

10. Let A3 be the image when A is rotated about A1 by BA1D 22. Construct the locus of C8 while point E traverses circle O2 

11. Let E be a random point on circle O2 23. Animate point C around circle AB 

12. Construct P1  to line segment BC through point C  

 

 The perpendicular to segment BC is tangent to both the Deltoid and the 

Epicycloid.  The Deltoid rotates about its center, point A1, and the Epicycloid rotates 

about its center, point A2.  The cusps of the Deltoid and Epicycloid coincide as this 

rotation takes place.  It’s as if they were gears, albeit strange looking gears, in some large, 

intricate machine.  The remarkable thing about this is that if one actually manufactured 

gears with the cross-section of these two curves, they would, indeed, operate correctly.  It 

is also instructive to simultaneously animate point C around circle AB, point D around 

circle O1, and point E around circle O2, while tracing points C1, C2, C3, C4, C5, and C7.  

You’ll find that point C3 traces a three-cusped Epicycloid, point C4 traces a Cardioid, 

point C5 traces a four-looped Epitrochoid, and point C7 traces a five-looped Epitrochoid.  

Points C1 and C2 trace curves called Hypotrochoids (see Chapter 13). 

 

 It’s not a coincidence that Epicycloids and Hypocycloids appear to satisfy 

requirements for gears.  All Cycloidal curves were first conceived by Roemer (circa 

1674) while studying the best form for gear teeth.  However, enough of these "gear" 

constructions; let’s look at a couple of more pure Deltoid constructions! 

10.5.13 Steiner’s Deltoid 

 Here is another Deltoid generation construction where the Deltoid is formed from 

an envelope of straight lines.  Through each point P on the circumcircle of ΔABC, 

construct a line parallel to the line obtained by reflecting line AP in the bisector of 

BAC. (You get the same direction if line BP is reflected in the bisector of ABC, and 

likewise for line CP reflected in the bisector of ACB.)  If you do this, you will find that 

the envelope of all such lines forms a Deltoid, as can be seen from the construction found 

in Table 10-13.  This construction is sometimes called Steiner’s Deltoid.  Jakob Steiner 

(1796 – 1863) was a Swiss mathematician who extensively investigated, among many 

other things, the Deltoid curve.  

Table 10-13: Steiner's Deltoid 

1.  Draw circle AB centered at A and passing through point B 7.  Draw line CD 

2.  Let C, D, E, and F be random points on circle AB 8.  Let line L1 be the reflection of line CD across the bisector 

3.  Draw line segment DE 9.  Construct line L2 parallel to L1 through point C 

4.  Draw line segment EF 10. Trace line L2 and change its color 

5.  Draw line segment DF 11. Animate point C around circle AB 

6.  Construct the bisector of EDF  
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10.5.14 The Deltoid as a Hypocycloid – Again 

 Well, we started out this dynamic geometry section with a Deltoid construction 

based on the definition of a Hypocycloid, and we will finish this section with the same 

concept.  As addressed in section 10.5.1, when the radius of the moving circle is one-

third the radius of the fixed circle, a point on the circumference of the moving circle 

traces the Deltoid.  Well, the Double Generation theorem of Daniel Bernoulli tells us that 

a Deltoid is also traced if the radius of the moving circle is two-thirds that of the fixed 

circle.  Details of a construction based on this fact follow in Table 10-14. 

Table 10-14: The Deltoid as a Hypocycloid – Again 

1.  Draw circle AB with center at A and passing through point B 6.  Let C3 be the image when C2 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 7.  Let A'' be the image when A is translated by vector A' → C3 

3.  Let A' be the image when A is dilated about C by ⅓ 8.  Draw circle A''C3 with center at A'' and passing through C3 

4.  Let C1 be the image when C is rotated about A' by CAB 9.  Trace point C3 and change its color 

5.  Let C2 be the image when C1 is rotated about A' by CAB 10. Animate point C around circle AB 

 

 Note that this is really the same as the construction of section 10.5.1 except the 

smaller circle (the one with a radius of one-third that of the fixed circle) is not drawn and 

a two-thirds radius circle is drawn through the same tracing point (point C3) as before.  

The center of that larger circle is located by translating point A in step 7.  But, 

nevertheless, when the animation is run, one can see that a point on a two-thirds radius 

rolling circle does indeed trace the Deltoid. 
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Figure 10-8: A Three-Dimensional Version of the Deltoid 

 

Here, the Deltoid is rendered as a solid three-dimensional object using a technique 

called the "prism" methodology.  It has been given a glossy, cadet-blue finish that reflects 

the infinite, hexagonally checkered plane on the two lateral sides visible in the picture.  A 

light source is placed so as to cast the Deltoid’s shadow below and onto the plane. 
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Chapter 11 – The Astroid 
 

 

Figure 11-1: The Solid of Revolution Generated from the Astroid 

 

The Astroid has been rotated about the x-axis to obtain the solid of revolution seen 

above.  The resulting object has been given a light metallic-blue finish and placed over 

an infinite plain rendered to simulate water.  The water surface has been rippled so that 

it appears as though the object has just emerged from the depths.  The sky meeting the 

water at the horizon has been given a stormy-purplish color which is reflected in the 

water, giving it a purple color.  A light source has been placed in the scene in order to 

partially reflect the object in the water and can be seen glaring off the water in the lower 

right. 
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11.1 Introduction to the Astroid 

 Chapter 10 introduced the concept of a Hypocycloid as the trace of a fixed point 

on the circumference of a circle rolling around the inside of the circumference of a 

second, stationary circle.  It further stated that when the radius of the rolling circle was ⅓ 

of the radius of the stationary circle, the curve traced by the fixed point is called a 

Deltoid.  It turns out that if the radius of the rolling circle is ¼ the radius of the stationary 

circle, the curve so traced is called an Astroid.  Astroid (also sometimes referred to as the 

tetracuspid) of course means star-shaped. 

11.2 Equations and Graph of the Astroid 

 To find the parametric equations for the Astroid, let a/4 be the radius of the 

rolling circle and a that of the fixed circle.  Now, using an analogous argument to that in 

Chapter 10, section 10.2, where we derived the parametric equations for the Deltoid, we 

find that the parametric equations for the Astroid are: 

      tttttyx a      ,3sinsin3,3coscos3,
4

     Equation 11-1 

However, a more compact form for the parametric representation can be obtained by 

writing these equations as 
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and then expanding the cos (2t +t) and sin (2t + t) to obtain, 
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Of course, these last expressions can be written as 
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By multiplying out and collecting like terms, we finally arrive at  
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


     Equation 11-2 

Equation 11-2 is a form from which it is quite easy to derive the Cartesian equation of the 

Astroid, that is, 

3
2

3
2

3
2

ayx       Equation 11-3 

The pedal, Whewell, and Cesáro equations for the Astroid are, respectively 
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222 3par       Equation 11-4 

2cosas       Equation 11-5 

and    
22 44 as       Equation 11-6 

Finally, the equation of the Astroid’s tangent at the point t = q is 

 

qaxqy sintan       Equation 11-7 

The graph of the Astroid is seen in Figure 11-2. 

 

 

Figure 11-2: Graph of the Astroid 

11.3 Analytical and Physical Properties of the Astroid 

Based on the Astroid’s parametric representation found in Equation 11-2, that is,  

x = acos
3
t and y = a sin

3
t, the following subsections contain an analysis of the Astroid. 

11.3.1 Derivatives of the Astroid 

 ttax sincos3 2   

 

  ttax 2sin31cos3   

 

 ttay cossin3 2   

 

  1cos3sin3 2  ttay  
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 ty tan  

 

 
ta

t
y

sin3

sec4

  

11.3.2 Metric Properties of the Astroid 

 The Astroid’s length may be calculated using the parametric representation and 

the formula 

   22
dydxds  . 

 

Hence, dx = -3acos
2
tsin tdt and dy = 3asin

2
tcos tdt.  Squaring these two expressions 

and adding gives us 

 

    dtttadydx  22222
cossin9 . 

 

And, obviously, 

 

dtttads  cossin3 . 

 

Therefore, the total length of the Asteroid is 

 

   
2 2

2

0 0

0

2 .6sin
2

12
sinsin12cossin34

 



at
a

tdtatdttas  

 The area of the Astroid can be calculated by considering a small incremental 

rectangle, whose area is dA = ydx.  Since, from the Cartesian equation, y = (a
⅔
 - x

⅔
) 

3/2
, 

integrating between x = 0 and x = a, gives us the area of the Astroid in the first quadrant.  

By symmetry, we can then conclude that the total area of the Astroid is 

  

a

dxxaA
0

2
3

3
2

3
2

4 . 

This integral can be evaluated by making the substitution x = asin
3
θ.  Under this 

substitution, the integral for the area becomes 

 

   
2 2 2

0 0 0

6242422 cos12cos12cossin12

  

 dadadaA . 

 

The first integral has a value of 3π/16 and the second integral has a value of 5π/32.  

Therefore, the total value of the area enclosed by the Astroid is 

 

8

3

32

5

16

3
12

2
2 a

aA










 . 
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 The volume of the solid of revolution that is formed when the Astroid is rotated 

about the x-axis can be calculated by considering the incremental volume of a circular 

disk.  The volume of this disk is simply its area times its thickness or dV = πy
2
dx.  Of 

course, y is the ordinate of the curve and because of symmetry considerations, we have as 

the total volume 

  

a

dxxaV
0

3
3

2
3

2

2 . 

 

This integral can be evaluated by making the substitution x = asin
3
θ.  Under this 

substitution, the integral is transformed to 

 

  













2 2 2

0 0 0

973273 coscos6sincos6

  

 ddadaV . 

 

By writing the argument of the first integral as (1 – sin
2
θ)

3
cos θdθ and then expanding 

the cubed expression, one can obtain a series of integrals that are all powers of the sin 

function multiplied by cos θdθ.  These easily integrate and one obtains as a final value of 

this first integral 16/35.  By similar reasoning and manipulation, one obtains as a final 

value of the second integral 128/315.  Hence, the total volume under consideration is 

 

105

32

315

128

35

16
6

3
3 a

aV













 . 

 

 The surface area of the solid of revolution that is formed when the Astroid is 

rotated about the x-axis can easily be calculated using the formula 

 

 

b

a

dsyS 2 , 

 

where y is the ordinate of the curve and s is the arc length over the portion of the desired 

surface area.  In section 11.3.2, we have already shown that the incremental arc length for 

the Astroid is 3asin tcos tdt. Due to symmetry considerations, we can integrate between 

0 and π/2 and simply multiply the result by 2.  Hence, the total surface area of the Astroid 

is 

 

  
2 2

0 0

2
423

5

12
cossin12cossin3sin4

 




a
tdttatdttataS  

 If p represents the distance from the origin to the tangent of the Astroid, then 

 

ttap cossin . 

 

 If r denotes the distance from the origin to the Astroid, then 
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ttttr 4224 coscossinsin  . 

11.3.3 Curvature of the Astroid 

 If ρ is the radius of curvature of the Asteroid, then 

 
.cossin3 tta  

 

 If (, β) are the coordinates of the center of curvature of the Astroid, then 

 

t
a

t
a

3cos
2

cos
2

3
      and     t

a
t

a
3sin

2
sin

2

3
 . 

11.3.4 Angles for the Astroid 

 If θ is the radial angle, then 

t3tantan  . 

 

 If ψ is the tangential-radial angle, then 

 

t

t

2cos2

2sin
tan


 . 

 If  is the tangential angle, then 

 
ttantan   

11.4 Geometric Properties of the Astroid 

 Intercepts:  (a, 0); (-a, 0); (0, a); (0, -a). 

 

 Extrema:  Same as intercepts. 

 

 Extent:  Same as intercepts. 

 

 Symmetries:  The Astroid is symmetric about the x-axis, the y-axis, and 

the origin. 

 

 Cusps:  Same as intercepts. 

11.5 Dynamic Geometry of the Astroid 

The following subsections contain constructions that can all be used to generate 

and demonstrate interesting properties of the Astroid. 
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11.5.1 The Astroid as a Hypocycloid 

 In section 11.1, we introduced the Astroid as a Hypocycloid in which the radius of 

the moving circle is one-fourth the radius of the stationary circle.  Table 11-1 delineates a 

construction based on this concept. 

Table 11-1: The Astroid as a Hypocycloid 

1.  Draw circle AB with center at A and passing through point B 6.  Let B2 be the image when B1 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 7.  Let B3 be the image when B2 is rotated about A' by CAB 

3.  Dilate circle AB about point C by a factor of ¼ 8.  Let B4 be the image when B3 is rotated about A' by CAB 

4.  Let A' be the image when A is dilated about C by ¼ 9.  Trace point B4 and change its color 

5.  Let B1 be the image when B is dilated about C by ¼ 10. Animate point C around circle AB 

 

 For fun, draw line segment AB4 as a dashed line segment, trace it, and color it.  

When the animation is run, the trace of this line segment will fill in the area enclosed by 

the Astroid in an interesting pattern.  

11.5.2 Concurrent Tangents of the Astroid 

 Given a tangent to the Astroid, it is always possible to find two additional 

tangents that are concurrent with each other and with the given tangent.  The construction 

of Table 11-2 illustrates this property. 

Table 11-2: Concurrent Tangents to the Astroid 

1.  Draw circle AB with center at A and passing through point B 13. Let C6 be the image when C5 is rotated about A2 by CAB 

2.  Let A1 be the image when A is dilated about B by ½ 14. Let C7 be the image when C6 is rotated about point A by 120º 

3.  Draw circle AA1 with center at A and passing through A1 15. Let C8 be the image when C7 is rotated about A3 by –120º 

4.  Let C be a random point on the circumference of circle AB 16. Let C9 be the image when C8 is rotated about point A by 120º 

5.  Let A2 be the image when A is dilated about C by ¼ 17. Let C10 be the image when C9 is rotated about A4 by –120º 

6.  Let A3 be the image when A2 is rotated about point A by 120º 18. Draw line segments CC6, C1C8, and C3C10 

7.  Let A4 be the image when A3 is rotated about point A by 120º 19. Construct P1  to line segment CC6 through point C6 

8.  Let C1 be the image when C is rotated about point A by 120º 20. Construct P2  to line segment C1C8 through point C8 

9.  Let C2 be the image when C is rotated about A2 by CAB 21. Construct P3  to line segment C3C10 through point C10 

10. Let C3 be the image when C1 is rotated about point A by 120º 22. Construct the locus of C6 while point C traverses circle AB 

11. Let C4 be the image when C2 is rotated about A2 by CAB 23. Animate point C around circle AB 

12. Let C5 be the image when C4 is rotated about A2 by CAB  

 

 Note that circle AA1 has nothing whatsoever to do with the actual construction.  

However, observe how the point of concurrency (the common intersection point of the 

tangents) is confined to the circumference of this circle.  Three other circles can be drawn 

which also have nothing to do with the actual construction, but make the final 

construction look a little more like a finished product.  They are circles A3C1, A2C, and 

A4C3.  Note how these circles remain tangent to concentric circles AB and AA1.  Finally, 

if one creates a random point on line segment CC6 (or C3C10 or C1C8) and traces this 

random point, it will trace a four-sided figure that approaches an Astroid as the point is 

made to move closer and closer to the point C6 (or C10 or C8) and, of course, degenerates 

into a circle as the point is made to move closer to the other end of the line segment.  We 

will learn, a couple of chapters from now, that this four-sided figure is a Hypotrochoid. 

11.5.3 The Astroid as an Envelope of Line Segments 

 Here is a very beautiful and interesting construction for the Astroid (see Table 11-

3). Note that in this construction, circle AB, the animation circle, becomes inscribed in 



 

Chapter 11: The Astroid  Playing With Dynamic Geometry   11-8 

the Astroid generated by the traced line segment, whereas in the Hypocycloid (section 

11.5.1) construction, the animation circle circumscribes the Astroid. 

Table 11-3: The Astroid as an Envelope of Line Segments 

1.  Draw circle AB with center at A and passing through point B 7.  Let D be the midpoint of line segment CB3 

2.  Let C be a random point on the circumference of circle AB 8.  Let C' be the image when C is translated by vector D → C 

3.  Let B1 be the image when B is rotated about A by CAB 9.  Draw line segment B3C' 

4.  Let B2 be the image when B1 is rotated about A by CAB 10. Trace line segment B3C' and change its color 

5.  Let B3 be the image when B2 is rotated about A by CAB 11. Animate point C around circle AB 

6.  Draw line segment CB3  

 

 Trace point D for an interesting curve not yet encountered.  Figure 11-3 displays a 

snapshot of this construction. 

 

 

Figure 11-3: The Astroid as an Envelope of Line Segments 
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11.5.4 A Revolving Astroid and an Equilateral Triangle 

Table 11-4: A Revolving Astroid and Equilateral Triangle 

1.  Draw horizontal line AB 17. Let G1 be the image when G is dilated about point D by ⅓. 

2.  Let C and D be two random points on line AB 18. Let G2 be the image when G1 is dilated about point F1 by ¼ 

3.  Draw circle DC with center at D and passing through point C 19. Draw circle G1G with center at G1 and passing through G 

4.  Let E be a random point on the circumference of circle DC 20. Draw line segments D'H and HF 

5.  Rotate line AB about point D by –120º to obtain line L1 21. Construct the interior of polygon D'HF and change its color 

6.  Rotate line AB about point D by +120º to obtain line L2 22. Let I be a random point on the circumference of circle G1G 

7.  Construct the parallel to line AB through point E 23. Draw circle G2F1 with center at G2 and passing through F1 

8.  Let point F be the intersection of the parallel line and line L2 24. Let G3 be the image when G2 is rotated about G1 by F1G1I 

9.  Construct P1  to line L2 through point F 25. Draw circle G3I with center at G3 and passing through point I 

10. Let D' be the image when D is translated by vector E → F 26. Let F2 be the image when F is rotated about G1 by F1G1I 

11. Construct P2  to line AB through point D' 27. Let F3 be the image when F2 is rotated about G3 by IG1F1 

12. Draw line segment FD' 28. Let F4 be the image when F3 is rotated about G3 by IG1F1 

13. Let point G be the intersection of perpendiculars P1 and P2 29. Let F5 be the image when F4 is rotated about G3 by IG1F1 

14. Construct P3  to line L1 through point G 30. Let F6 be the image when F5 is rotated about G3 by IG1F1 

15. Let point H be the intersection of line L1 and perpendicular P3 31. Construct the locus of F6 while point I traverses circle G1G 

16. Let F1 be the image when F is dilated about G by 4/3 32. Animate point E around circle DC 

 

 Table 11-4 presents an interesting construction of an Astroid that appears to 

revolve about its center along with an equilateral triangle whose vertices are confined to 

the circumference of the Astroid. Although the Astroid appears to be rotating, note that 

point H performs simple harmonic motion along the first rotated line (L1), point F 

executes simple harmonic motion along the second rotated line (L2), and point D' does the 

same thing along line AB. 

11.5.5 The Trammel of Archimedes 

 The Astroid has the following interesting property:  If one defines the axes of an 

Astroid to be two mutually perpendicular lines that pass through the cusps of the Astroid, 

then the length of any tangent cut by these axes is constant.  Because this length is 

constant, no matter which tangent is selected (for a given Astroid), one can construct a 

mechanical device made up of a fixed bar with ends sliding on two perpendicular tracks.  

The envelope of the bar will then generate the Astroid.  Such a device is called the 

Trammel of Archimedes.  A GSP construction for this device is shown in Table 11-5. 

Table 11-5: The Trammel of Archimedes 

1.  Draw horizontal line AB 7.  Let point D be the intersection of perpendiculars P1 and P3 

2.  Draw circle AB with center at A and passing through point B 8.  Let E be the intersection of line AB and perpendicular P2 

3.  Construct P1  to line AB through point A 9.  Draw line segment DE 

4.  Let C be a random point on the circumference of circle AB 10. Trace line segment DE and change its color 

5.  Construct P2  to line AB through point C 11. Animate point C around circle AB 

6.  Construct P3  to P1 through point C  

 

 Of course, line segment DE is the moving bar whose end points travel on the 

mutually perpendicular tracks, AB and DA.  An interesting, alternate construction for the 

Trammel of Archimedes is also included here as Table 11-6. 
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Table 11-6: An Alternate Trammel of Archimedes Construction 

1.  Draw horizontal line segment AB 8.  Let F and G be the intersections of circle DC and P1 

2.  Let C be any random point not on line AB 9.  Draw circle EE' with center at E and passing through point E' 

3.  Let D be the midpoint of line segment AB 10. Let H and I be the two intersections of circle EE' and P1 

4.  Let E be a random point on line segment AB 11. Draw the two line segments EH and EI 

5.  Draw circle DC with center at D and passing through point C 12. Trace line segments EH and EI and change their color 

6.  Construct P1  to line segment AB through point D 13. Animate point E along line segment AB 

7.  Let E' be the image when E is translated by vector D → B  

11.5.6 Three Deltoids Inside an Astroid 

 Here is an interesting configuration of the Deltoid and the Astroid. 

Table 11-7: Three Deltoids and an Astroid 

1.  Draw horizontal line AB 15. Construct the locus of H while point D traverses circle AC 

2.  Let C be a random point on line AB 16. Let I be a random point on the circumference of circle GF 

3.  Construct P1  to line AB through point A 17. Construct P5  to line segment EF through point I 

4.  Draw circle AC with center at A and passing through point C 18. Let I' be the image when I is rotated about point G by 120 

5.  Let D be a random point on the circumference of circle AC 19. Let point J be the intersection of line segment EF and P5 

6.  Construct P2  to line AB through point D 20. Construct P6  to line segment EF through point I' 

7.  Construct P3  to P1 through point D 21. Let I'' be the image when I' is rotated about point G by 120 

8.  Let E be the intersection of line AB and perpendicular P2 22. Construct the locus of J while point D traverses circle AC 

9.  Let point F be the intersection of perpendiculars P1 and P3 23. Let point K be the intersection of line segment EF and P6 

10. Draw line segment EF 24. Construct P7  to line segment EF through point I'' 

11. Construct P4  to line segment EF through point D 25. Construct the locus of K while point D traverses circle AC 

12. Let G be the midpoint of line segment EF 26. Let point L be the intersection of line segment EF and P7 

13. Let point H be the intersection of line segment EF and P4 27. Construct the locus of  L while point D traverses circle AC 

14. Draw circle GF with center at G and passing through point F 28. Animate point I around circle GF 

11.5.7 Two Astroids for the Price of One 

 The evolute of all Epicycloids and Hypocycloids is another curve of the same 

type.  In other words, the evolute of the Astroid is another Astroid.  Therefore, as we 

have learned previously, the trace of the center of curvature of an Astroid should be its 

evolute, another Astroid.  Similarly, the evolute can be drawn as the envelope of the 

Astroid’s normals.  These two ideas are incorporated into the construction that is listed 

below in Table 11-8 and portrayed in Figure 11-4. 

Table 11-8: Two Astroids for the Price of One 

1.  Draw circle AB with center at A and passing through point B 10. Let D be the unlabeled intersection of line A1C4 and circle A1C 

2.  Let C be a random point on the circumference of circle AB 11. Draw line AD 

3.  Let A1 be the image when point A is dilated about C by ¼ 12. Draw line CC4 

4.  Draw circle A1C with center at A1 and passing through C 13. Let point E be the intersection of line CC4 and line AD 

5.  Let C1 be the image when C is rotated about A1 by CAB 14. Draw circle EC4 with center at E and passing through C4 

6.  Let C2 be the image when C1 is rotated about A1 by CAB 15. Draw line segment EC4 

7.  Let C3 be the image when C2 is rotated about A1 by CAB 16. Trace line segment EC4 and change its color 

8.  Let C4 be the image when C3 is rotated about A1 by CAB 17. Animate point C around circle AB 

9.  Draw line A1C4  

 

 In this construction, the trace of point C4 will produce the Astroid for which we 

then construct its evolute.  One can see this as the envelope of the C4-end of line segment 

EC4, which produces the inner Astroid as seen in Figure 11-4.  Point E is, of course, the 

center of curvature for this Astroid, circle EC4 is its osculating circle, and line CC4 is its 

normal.  Note that the evolute (the outer Astroid) is shifted 45 relative to the inner 

Astroid.  Note also the relative size of the two Astroids.  The evolute’s area is twice that 

of the original Astroid. 
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Figure 11-4: Two Astroids for the Price of One 

 

11.5.8 An Astroid, a Deltoid, and a Common Tangent 

 The construction below illustrates a coupling between an Astroid and a Deltoid.  

Additionally, a common tangent to both curves is included (see Table 11-9). 

Table 11-9: An Astroid, a Deltoid, and a Common Tangent 

1.  Draw circle AB with center at A and passing through point B 14. Let A4 be the image when A is rotated about A2 by BA2E 

2.  Let A1 be the image when A is dilated about point B by 4 15. Let C3 be the image when C1 is rotated about A3 by DA1B 

3.  Let A2 be the image when point A is dilated about B by 3 16. Let C4 be the image when C2 is rotated about A4 by EA2B 

4.  Draw circle A1B with center at A1 and passing through  B 17. Let C5 be the image when C3 is rotated about A3 by DA1B 

5.  Draw circle A2B with center at A2 and passing through  B 18. Let C6 be the image when C4 is rotated about A4 by EA2B 

6.  Let C be a random point on the circumference of circle AB 19. Let C7 be the image when C5 is rotated about A3 by DA1B 

7.  Let D be a random point on the circumference of circle A1B 20. Let C8 be the image when C6 is rotated about A4 by EA2B 

8.  Let E be a random point on the circumference of circle A2B 21. Let C9 be the image when C7 is rotated about A3 by DA1B 

9.  Draw line segment CB 22. Draw circle A4E with center at A4 and passing through E 

10. Construct P1  to line segment CB through point C 23. Draw circle A3D with center at A3 and passing through D 

11. Let A3 be the image when A is rotated about A1 by BA1D 24. Construct the locus of C8 while point E traverses circle A2B 

12. Let C1 be the image when C is rotated about A1 by BA1D 25. Construct the locus of point C9 while D traverses circle A1B 

13. Let C2 be the image when C is rotated about A2 by BA2E 26. Animate point C around circle AB 

 

 With this construction, one can also simultaneously animate point C around circle 

AB, point D around circle A1B, and point E around circle A2B.  Points C1 through C9 

then execute some interesting curves which can be seen by tracing them, although it is 

best to trace only one at a time, otherwise they overwrite one another and are difficult to 

distinguish. 
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11.5.9 The Astroid as an Envelope of Ellipses 

 The Astroid can also be generated as an envelope of co-axial ellipses wherein the 

sum of the major and minor axes is constant.  A construction that gives verification of 

this property can be created with GSP as shown below in Table 11-10. 

Table 11-10: The Astroid as an Envelope of Ellipses 

1.  Draw horizontal line AB 10. Draw line segment EF 

2.  Construct P1  to line AB through point A 11. Let G be a random point on line segment EF 

3.  Let C be a random point on line AB 12. Construct P4  to line segment EF through point D 

4.  Draw circle AC with center at A and passing through point C 13. Construct the locus of G while point D traverses circle AC 

5.  Let D be a random point on the circumference of circle AC 14. Let point H be the intersection of line segment EF and P4 

6.  Construct P2  to line AB through point D 15. Construct the locus of H while point D traverses circle AC 

7.  Construct P3 to  P1 through point D 16.  Trace the locus and change its color 

8.  Let point E be the intersection pf perpendiculars P1 and P3 17. Animate point G along line segment EF 

9.  Let point F be the intersection of line AB and P2  

11.5.10 The Astroid and a Four-Cusped Epicycloid 

 Here we show an interconnection between the Astroid (i.e., the four-cusped 

Hypocycloid) and the four-cusped Epicycloid.  Table 11-11 contains this construction, 

while Figure 11-5 presents a snapshot of the animation. 

Table 11-11: The Astroid and a Four-Cusped Epicycloid 

1.  Draw circle AB with center at point A and passing through B 8.  Let C2 be the image when C1 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 9.  Let C3 be the image when C2 is rotated about A' by CAB 

3.  Let A' be the image when point A is dilated about C by ¼ 10. Let C4 be the image when C3 is rotated about A' by CAB 

4.  Draw circle A'C with center at A' and passing through point C 11. Let C5 be the image when C4 is reflected in perpendicular P1 

5.  Draw line segment AC 12. Draw circle CC5 with center at C and passing through C5 

6.  Construct P1  to line segment AC through point C 13. Trace circle CC5 and change its color 

7.  Let C1 be the image when C is rotated about A' by CAB 14. Animate point C around circle AB 

  

 

Figure 11-5: An Astroid Enveloped by a Four-Cusped Epicycloid 



 

Chapter 11: The Astroid  Playing With Dynamic Geometry   11-13 

11.5.11 The Astroid as an Envelope of Lines 

 In section 11.5.3 we have a construction of the Astroid as an envelope of line 

segments.  Table 11-12 presents an alternate construction that uses lines, not line 

segments. 

Table 11-12: The Astroid as an Envelope of Lines 

1.  Draw circle AB with center at A and passing through point B 9.  Construct P3  to P2 through point A 

2.  Draw line AB 10. Let point C'' be the image when point C' is reflected across P3 

3.  Let C be a random point on the circumference of circle AB 11. Let E and F be two random points on perpendicular P1 

4.  Construct  P1 to line AB through point C 12. Let point E' be the image when point E is reflected across P2 

5.  Let point D be on circle AB diametrically opposed to point B 13. Let point F' be the image when point F is reflected across P2 

6.  Draw line CD 14. Draw line E'F' 

7. Let C' be the image when point C is reflected across line AB 15. Trace line E'F' and change its color 

8.  Construct P2  to line CD through point C' 16. Animate point C around circle AB 

11.5.12 The Astroid as a Hypocycloid – Revisited  

 We learned in section 11.5.1 that the Astroid is generated as the trace of a point 

on the circumference of a circle of radius a/4 rolling around the inside of a stationary 

circle of radius a.  However, the Astroid can also be generated if the radius of the rolling 

circle is 3a/4, as can be seen in Table 11-13 (i.e., the Double Generation theorem of 

Bernoulli strikes again). 

Table 11-13: The Astroid as a Hypocycloid – Revisited 

1.  Draw circle AB with center at A and passing through point B 7.  Let C4 be the image when C3 is rotated about A1 by CAB 

2.  Let C be a random point on the circumference of circle AB 8.  Let A2 be the image when A is translated by vector A1 → C4 

3.  Let point A1 be the image when A is dilated about C by ¼ 9.  Draw circle A2C4 with center at A2 and passing through C4 

4.  Let C1 be the image when C is rotated about A1 by CAB 10. Trace point C4 and change its color 

5.  Let C2 be the image when C1 is rotated about A1 by CAB 11. Animate point C around circle AB 

6.  Let C3 be the image when C2 is rotated about A1 by CAB  

   

It may not be obvious that circle A2C4 has a radius that is three fourths of the 

stationary circle (circle AB).  However, with GSP this is very easy to check out.  Simply 

measure the two radii of the respective circles and then form the ratio of the radius of 

circle A2C4 to that of the radius of circle AB.  One will find that the result is 0.75. 

11.5.13 A Compass-Only Construction for the Astroid 

Here is another spectacular compass-only (GSP version thereof) construction 

from which it is relatively easy to also construct the Astroid’s osculating circle (also 

compass-only).  Refer to Table 11-14. 
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Table 11-14: A Compass-Only Astroid 

1.  Draw circle AB with center at A and passing through point B 14. Draw circle FC with center at F and passing through point C 

2.  Let C be a random point on the circumference of circle AB 15. Draw circle CF with center at C and passing through point F 

3.  Draw line segment AB 16. Let G and H be the two intersections of circles CF and FC 

4.  Let C' be the image as C is reflected across line segment AB 17. Draw circle GH with center at G and passing through point H 

5.  Draw circle BC with center at B and passing through point C 18. Let I be the unlabeled intersection of circle GH and circle FC 

6.  Draw circle C'C with center at C' and passing through point C 19. Draw circle IC with center at I and passing through point C 

7.  Draw line segment AC' 20. Let J and K be the two intersections of circles IC and CC'' 

8.  Let C'' be the image as C is reflected across line segment AC' 21. Draw circle JC with center at J and passing through point C 

9.  Draw circle CC'' with center at C and passing through C'' 22. Draw circle KC with center at K and passing through point C 

10. Draw circle C''C with center at C'' and passing through C 23. Let point L be the unlabeled intersection of circles KC and JC 

11. Let D and E be the two intersections of circles CC'' and C''C 24. Trace point L and change its color 

12. Draw circle ED with center at E and passing through point D 25. Animate point C around circle AB 

13. Let F be the unlabeled intersection of circles ED and C''C  

 

 For the Astroid’s osculating circle, change step 24 to "Construct the locus of point 

L as point C traverses circle AB," and add the following steps. 

Table 11-14 (Continued): A Compass-Only Astroid 

26. Draw circle CL with center at C and passing through point L 31. Draw circle OC with center at O and passing through point C 

27. Draw circle LC with center at L and passing through point C 32. Let P and Q be the two intersections of circles OC and CL 

28. Let M and N be the two intersections of circles CL and LC 33. Draw circle PQ with center at P and passing through point Q 

29. Draw circle MN with center at M and passing through N 34. Let R be the unlabeled intersection of circles PQ and OC 

30. Let O be the unlabeled intersection of circles MN and CL 35. Draw circle RL with center at R and passing through point L 

 

 Now make circle RL, which is the osculating circle, thick and of a different color 

and rerun the animation.  Wow! 

11.5.14 The Osculating Circle of the Astroid 

 In the previous subsection (A Compass-Only Astroid), we have added the 

compass-only steps to produce the Astroid’s osculating circle.  What follows in Table 11-

15 is an alternate construction for the Astroid’s osculating circle.  It is not a compass-only 

construction as the previous construction was.  Why do we include it since we already 

have a construction for the Astroid’s osculating circle?  Because it is an interesting 

construction, although rather complex.  Further, we use a construction for the Astroid 

itself that has not been used up to this point.  In addition, we also construct the Astroid’s 

tangent line along the way.  So this construction embodies three goodies: the Astroid, the 

tangent line, and the osculating circle all wrapped up in one nice, neat package.  A good 

way to end this chapter! 
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Table 11-15: The Astroid, Its Tangent, and Its Osculating Circle 

1.  Draw horizontal line AB 28. Draw line AK 

2.  Draw circle AB centered at A and passing through point B 29. Construct P12  to line AK through point H 

3.  Let C be a random point on the circumference of circle AB 30. Make P12 thick and change its color 

4.  Draw line AC 31. Let point K' be the image when K is rotated about A by 90 

5.  Construct P1  to line AB through point A 32. Let point I2 be the image when point I is dilated about A by 6 

6.  Construct P2  to line AB through point C 33. Let point L be the intersection of line AB with P4 

7.  Let D be the intersection of line AB and perpendicular P2 34. Let point L' be the image when L is dilated about A by 3 

8.  Construct P3  to line AC through point D 35. Draw line segment AL' 

9.  Let E be the intersection of line AC and perpendicular P3 36. Let M be the midpoint of line segment AL' 

10. Construct P4  to line AB through point E 37. Let M' be the image when M is translated by vector I2 → M 

11. Construct P5  to P4 through point C 38. Let A' be the image when A is translated by vector M' → A 

12. Let point F be the intersection of perpendiculars P1 and P5 39. Construct P13  to line AB through point A' 

13. Construct P6  to line AC through point F 40. Let J2 be the image when J is dilated about A by 6 

14. Let point G be the intersection of line AC and P6 41. Let point N be the intersection of perpendiculars P1 and P7 

15. Construct P7  to P1 through point G 42. Let point N' be the image when N is dilated about A by 3 

16. Let point H be the intersection of perpendiculars P4 and P7 43. Let J3 be the image when J1 is translated by vector N'→ J1 

17. Construct the locus of point H as point C traverses circle AB 44. Construct P14  to P1 through point J3 

18. Make the locus thick and change its color 45. Let point O be the intersection of perpendiculars P13 and P14 

19. Construct P8  to line AB through point G 46. Construct P15  to line AK through point O 

20. Let point I be the intersection of line AB and P8 47. Draw line segment KK' 

21. Let point I1 be the image when I is dilated about point A by 3 48. Construct P16  to line segment KK' through point K' 

22. Construct P9  to line AB through point I1 49. Let point P be the intersection of line AK and P16 

23. Construct P10  to P1 through point E 50. Let H' be the image when H is translated by vector P → A 

24. Let point J be the intersection of perpendiculars P1 and P10 51. Draw circle H'H centered at H' and passing through point H 

25. Let point J1 be the image when J is dilated about point A by 3 52. Make circle H'H thick and change its color 

26. Construct P11  to P1 through point J1 53. Animate point C around circle AB 

27. Let point K be the intersection of perpendiculars P9 and P11  
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Figure 11-6: A Three-Dimensional Version of the Astroid 

 

The Astroid is extruded into the third dimension and placed in a watery setting with a 

newly rising sun.  Light sources are placed not only so as to cast the object’s shadow 

onto the water, but also to reflect the object in the water. 

 



 

Chapter 12: The Hypocycloid  Playing With Dynamic Geometry 12-1 

Chapter 12 – The Hypocycloid 
 

 

Figure 12-1: A Six-Cusped Hypocycloid in Three Dimensions 

 

The cross-section of the object in the above figure is a six-cusped Hypocycloid.  It is 

floating over a blue and gold checkered plane.  The extruded object has been given a 

shiny light-purple finish.  Light sources are placed so as to partially shadow the plane 

and to reflect off the interior sides of the extruded figure, thereby creating the dark and 

bright spots.  The plane meets a bright-blue sky at the horizon. 
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12.1 Introduction 

 Chapter 10 briefly alluded to the concept of the Hypocycloid, which was defined 

to be the trace of a point on the circumference of a circle that is rolling (without slipping) 

around the inside of a second, fixed circle.  Further, it stated that when the ratio of the 

radii of the fixed circle to the rolling circle is 3 to 1, the resulting traced curve is called a 

Deltoid.  Then, Chapter 11 stated that when the ratio is 4 to 1, the resulting trace is called 

an Astroid.  We now take up the Hypocycloid in general.  

 

 Although Cycloidal curves were first conceived by Roemer in 1674 while he was 

studying the best form for gear teeth, both Galileo and Mersenne had already discovered 

the ordinary Cycloid 75 years earlier, in 1599.  As already mentioned, the beautiful 

Double Generation theorem of these curves was first noticed by Daniel Bernoulli in 1725.  

Astronomers find forms of the Cycloidal curves in various coronas.  They also occur as 

Caustics.  Rectification was first given by Newton in his Principia. 

12.2 Equations and Graph of the Hypocycloid 

 Just as we derived the equations for the Deltoid in Chapter 10, if we let the radius 

of the fixed circle be a and the radius of the rolling circle be b, we find that the 

parametric equations for the general Hypocycloid are 

              ttbtbatbtbayx
b

ba
b

ba      ,sinsin,coscos,      Equation 12-1 

 As a slight digression, consider the special case when the fixed circle has twice 

the radius of the rolling one, a/2 = b and we find from Equation 12-1 that x = acos t and 

y = 0 and the Hypocycloid degenerates into the diameter of the fixed circle, described 

back and forth.  The interesting feature of this digression is that it provides a mechanical 

solution to the problem of drawing a straight line by using purely circular motions.  

Enough digression!  Back to the Hypocycloid! 

 

 If the pedal point is situated at the center of the hypocycloid, then the pedal 

equation is  

 
 

 22

2

2

4

2
ar

abb

ba
p 




      Equation 12-2 

The Whewell equation is 

1   ,sin  bbas       Equation 12-3 

 An n-cusped, non-self-intersecting Hypocycloid has a/b = n.  As we have already 

alluded to, a two-cusped Hypocycloid is a line segment, a three-cusped Hypocycloid is 

called a Deltoid or Tricuspoid, and a four-cusped Hypocycloid is called an Astroid.  If 

a/b is rational, the curve closes on itself and has b cusps.  If a/b is irrational, the curve 

never closes and fills the entire interior of the fixed circle.  Figure 12-2 portrays the graph 

of four different hypocycloids, namely three-, four-, five-, and six-cusped Hypocycloids 

in red, green, blue, and violet, respectively.  Figures 12-3 through 12-6 depict a variety of 

different Hypocycloids for various selected values of the two radii of the associated 

circles (the fixed circle with radius a and the rolling circle with radius b). 
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The equation of the tangent line at the point t = q is 

     
b

aq

b
ba

b
ba baxqqqqy

2

2sin22coscossinsin        Equation 12-4 

 

Figure 12-2: Graph of Four Different Hypocycloids 

 

 

 

Figure 12-3: Hypocycloid with a = 5 and b = 2 
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Figure 12-4: Hypocycloid with a = 7 and b = 4 

 

 

 

 

Figure 12-5: Hypocycloid with a = 8 and b = 5 
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Figure 12-6: Hypocycloid with a = 13 and b = 12 

12.3 Analytical and Physical Properties of the Hypocycloid 

Based on the Hypocycloid’s parametric representation found in Equation 12-1, 

that is,   tbtbax
b

ba coscos and   tbtbay
b

ba sinsin , the following 

subsections contain an analysis of the general Hypocycloid. 

12.3.1 Derivatives of the Hypocycloid 

   ttbax
b

ba sinsin . 

 

   tbatb
b

ba
x

b
ba


 coscos . 

 

   ttbay
b

ba coscos . 

 

   tbatb
b

ba
y

b
ba


 sinsin . 

 
tt

tt
y

b
ba

b
ba

sinsin

coscos










. 

 

 
 

  3
2

2

sinsin

sin22

ttabb

ab
y

b
ba

b
at







. 
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12.3.2 Metric Properties of the Hypocycloid 

 To calculate the length of the Hypocycloid, we first calculate dx/dt and dy/dt, i.e.,  

 

  ttba
dt

dx
b

ba sinsin      and       ttba
dt

dy
b

ba coscos . 

Then, 

   ttttba
dt

dx
b

ba
b

ba  






 222

2

sinsinsin2sin  

and 

   ttttba
dt

dy
b

ba
b

ba  






 222

2

coscoscos2cos . 

 

Therefore, the sum of these last two expressions is 

 

   .cos12
2

22

b
atba

dt

dy

dt

dx


















 

However,  

b
at

b
at

2

2sin2cos1  . 

Hence, we have 

 
b

atba
dt

dy

dt

dx
2

22

sin2 
















. 

To obtain the length of a single cusp, we then integrate this last expression from 0 to 

2πb/a.  That is,  

 
 

 
 

 






a

b
a

b

a

bab
d

a

bab
dtba

b
at

b
at

 2 2

0 0

22

8
cos

4
sin2 cusp single ofLength . 

As alluded to earlier, if a/b = n is rational, then the curve closes on itself without 

intersection after n cusps.  Therefore eliminating b in the expression for the length of a 

single cusp we arrive at the length of a single cusp in terms of the radius of the fixed 

circle, i.e.,  

 
2

18

n

na 
. 

Finally, multiplying this expression by the number of cusps, namely n, we derive the total 

length, s, of the n-cusped hypocycloid as, 

 

 
n

na 18 
. 
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 To calculate the area of the Hypocycloid, we first calculate x·dy/dt and then 

y·dx/dt, that is, 

      tabbttababtba
dt

dy
x

b
ba

b
ba   222222

coscoscos23cos  

and 

      tbabttababtba
dt

dx
y

b
ba

b
ba   222222

sinsinsin23sin . 

Now, subtracting these two expressions to form x·dy/dt – y·dx/dt, we have after much 

manipulation the following expression 

  1cos23 22 
b
atabab

dt

dx
y

dt

dy
x . 

But, the area of one cusp is 

    









a
b

a
b

dtababdt
dt

dx
y

dt

dy
xA

b
at

 2 2

0 0

22 .1cos23
2

1

2

1
 

This expression integrates as 

 






a

b
a

b

dt
abab

dt
abab

A
b
at

 2 2

0 0

2222

2

23
cos

2

23
. 

The first integral is zero and the second integral has the value 

 

  
3

221

n

ann 
, where a = b · n. 

Now, if n is rational, after n cusps, the area is 

 

  
.

21
2

2

n

ann
A


  

 If p represents the distance from the origin to the tangent of the Hypocycloid, then 

 

  .sin2
2b
atabp   

 

 If r denotes the distance from the origin to the curve, then 

 

    tbabbbar
b
acos222

 . 

12.3.3 Curvature of the Hypocycloid 

 If ρ is the radius of curvature of the Hypocycloid, then 
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 
b

at

ab

bab
2

sin
2

4




 . 

If (, ) are the coordinates of the center of curvature for the Hypocycloid, then 

  tbtba
ba

a
b

ba


 coscos
2

     and      tbatb
ba

a
b

ba sinsin
2




  . 

12.3.4 Angles for the Hypocycloid 

 If ψ is the tangential-radial angle of the Hypocycloid, then 

 

.
sin

cos12
tan

b
at

b
at

a

ab 



  

 

 If  denotes the tangential angle for the Hypocycloid, then 

 

tt

tt

b
ba

b
ba

sinsin

coscos
tan










 . 

 

 If  denotes the radial angle for the Hypocycloid, then 

 

 
 

.
coscos

sinsin
tan

ttba

tbtba

b
ba

b
ba








  

12.4 Geometry of the Hypocycloid 

 There are 
b

ba  + 1 cusps if 
b

ba is an integer.  The curve is symmetric about the x-

axis, and is symmetric about the y-axis if 
b

ba is an odd integer.  The curve is completely 

contained within a circle defined by| r | ≤ a. 

12.5 Dynamic Geometry of the Hypocycloid 

 The next few subsections contain constructions concerning the Hypocycloid. 

12.5.1 A Five-Cusped Hypocycloid 

 The construction below in Table 12-1 is for a five-cusped Hypocycloid.  After 

presenting the construction, we will show how to modify the construction to make it for 

an n-cusped Hypocycloid, where n is any integer. 

Table 12-1: A Five-Cusped Hypocycloid 

1.  Draw circle AB with center at A and passing through point B 7.  Let C3 be the image when C2 is rotated about A' by CAB 

2.  Let C be a random point on the circumference of circle AB 8.  Let C4 be the image when C3 is rotated about A' by CAB 

3.  Let A' be the image when A is dilated about point C by 1 / 5 9.  Let C5 be the image when C4 is rotated about A' by CAB 

4.  Draw circle A'C with center at A' and passing through point C 10. Trace point C5 and change its color 

5.  Let C1 be the image when C is rotated about A' by CAB 11. Animate point C around circle AB 

6.  Let C2 be the image when C1 is rotated about A' by CAB  

 



 

Chapter 12: The Hypocycloid  Playing With Dynamic Geometry 12-9 

 To modify this construction for that of an n-cusped Hypocycloid, change step 3 to 

read 

   
Let point A' be the image when point A is dilated about point C by a factor of 1/n. 

 

Then, replace steps 6 through 9 with the steps that result from executing the following 

pseudo-language loop: 

  begin loop 

  for i = 2 to n 
  4 + i.  Let Ci be the image when point Ci-1 is rotated about point A'  by  

  CAB. 

  end loop 

Finally, change what is now step 10 (and will be step 5 + n) to read 

 
Trace point Cn and change its color. 

12.5.2 An Adjustable Hypocycloid 

Using the graphing capability of GSP, one can create a Hypocycloid which can be 

adjusted to trace any number of cusps.  This is not a true geometric construction, but 

nevertheless it is interesting.  Refer to Table 12-2. 

Table 12-2: An Adjustable Hypocycloid 

1.  Create x-y axes with origin A and unit point B = (1, 0) 9.  Calculate the y-coordinate of point E and relabel it as a 

2.  Draw circle BC centered at B and passing through point C 10. Calculate the y-coordinate of point F and relabel it as b 

3.  Let D be a random point on the circumference of circle BC 11. Calculate (a – b) / b 

4.  Draw line segment BD 12. Calculate x = (a – b)cost + bcos((a – b)/b)t 

5.  Measure CBD (in radians) 13. Calculate y = (a – b)sint – bsin((a – b)/b)t 

6.  Relabel the measure of CBD as t  14. Let point G be the result of plotting x and y, i.e., G(x, y) 

7.  Let E and F be two random points on the y-axis 15. Trace point G and change its color 

8.  Measure the coordinates of point E 16. Animate point D around circle AB 

 

 Well, this is quite a remarkable and interesting construction.  By dragging point E 

or point F (or both) up and down the y-axis, one can adjust the value of the quantity  

(a – b) / b.  Adjusting it to be an integer, say n, gives us closed Hypocycloids where the 

number of cusps is, as we have stated earlier, equal to n + 1.  Making its value the integer 

1 gives us a straight line as discussed in the digression at the beginning of this chapter; 

making its value 2 gives us a three-cusped Hypocycloid, or the Deltoid; making its value 

3 gives us a four-cusped, or the Astroid; etc.  If you have trouble adjusting it to be an 

integer, try changing the precision of the angle and distance measurements to "tenths" in 

the object preference window of GSP.  Finally, by keeping point A above the x-axis (i.e., 

on the positive y-axis), dragging point B below the x-axis (i.e., on the negative y-axis), 

and re-adjusting to continue having the quantity (a – b) / b as an integer, one can obtain 

the sister curves to the Hypocycloids, namely, the Epicycloids. 

12.5.3 Hypocycloid Gears 

 Maybe if Roemer had had a Geometer’s Sketchpad to aid in his study of gears, his 

job would have been much easier.  Table 12-3 contains this construction. 
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Table 12-3: Hypocycloid Gears 

1.  Draw circle AB with center at A and passing through point B 14. Let D4 be the image when D3 is rotated about A1 by DAB 

2.  Let B1 be the image of point B rotated about point A by 180º 15. Let D5 be the image when D4 is rotated about A by BAB4 

3.  Draw circle B1B with center at B1 and passing through point B 16. Construct the locus of D5 while point D traverses circle AB 

4.  Let C be a random point on the circumference of circle B1B 17. Let E1 be the image when E is rotated about B3 by EB1C 

5.  Let D be a random point on the circumference of circle AB 18. Let E2 be the image when E1 is rotated about B3 by EB1C 

6.  Let A1 be the image when A is dilated about point D by ¼ 19. Let E3 be the image when E2 is rotated about B3 by EB1C 

7.  Let E be a random point on the circumference of circle B1B 20. Let E4 be the image when E3 is rotated about B3 by EB1C 

8.  Let B2 be the image when B is rotated about A by BB1C 21. Let E5 be the image when E4 is rotated about B3 by EB1C 

9.  Let B3 be the image when B1 is dilated about point E by ⅛ 22. Let E6 be the image when E5 is rotated about B3 by EB1C 

10. Let B4 be the image when B2 is rotated about A be BB1C 23. Let E7 be the image when E6 is rotated about B3 by EB1C 

11. Let D1 be the image when D is rotated about A1 by DAB 24. Let E8 be the image when E7 is rotated about B3 by EB1C 

12. Let D2 be the image when D1 is rotated about A1 by DAB 25. Construct the locus of E8 while point E traverses circle B1B 

13. Let D3 be the image when D2 is rotated about A1 by DAB 26. Animate point C around circle B1B 

12.5.4 A Five-Pointed Star 

 This Hypocycloid is one that crosses itself before closing and repeating its trace.  

Check it out in Table 12-4. 

Table 12-4: A Five-Pointed Star 

1.  Draw circle AB with center at A and passing through point B 13. Let C7 be the image when C1 is rotated about A1 by C6AB 

2.  Let C be a random point on the circumference of circle AB 14. Trace point C7 and change its color 

3.  Let C1 be the image when C is rotated about A by BAC 15. Let C8 be the image when C7 is rotated about A by –120º 

4.  Let C2 be the image when C1 is rotated about A by BAC 16. Let C9 be the image when C8 is rotated about A2 by +120º 

5.  Let A1 be the image when A is dilated about point C1 by 2/5 17. Let C10 be the image when C9 is rotated about A by –120º 

6.  Let C3 be the image when C is rotated about point A by –120º 18. Let C11 be the image when C10 is rotated about A3 by +120º 

7.  Let C4 be the image when C2 is rotated about A by BAC 19. Draw line segment C7C9 

8.  Draw circle A1C1 with center at A1 and passing through C1 20. Draw line segment C9C11 

9.  Let A2 be the image when A1 is rotated about A by –120º 21. Draw line segment C7C11 

10. Let C5 be the image when C3 is rotated about A by –120º 22. Construct polygon C7C9C11 

11. Let C6 be the image when C4 is rotated about A by BAC 23. Animate point C around circle AB 

12. Let A3 be the image when A2 is rotated about A by –120º  

 

 We not only have this marvelous Hypocycloid, but we have an equilateral triangle 

that has each of its vertices on the Hypocycloid and each vertex traces the curve and the 

equilateral triangle’s sides stay constant.  Fascinating! 
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Figure 12-7: The Solid of Revolution Formed from an Eight-Cusped Hypocycloid 

 

The object in the figure above is the solid of revolution that is formed when the curve 

represented by the parametric equations x = 7cost + cos7t and y = 7sint – sin7t is 

revolved about the y-axis.  The resulting solid has then been placed so as to appear to be 

floating over snow covered mountains in the background. The solid has been given a 

bluish, crackled finish. Light sources have been located so as to cast a shadow of the 

uppermost cusp upon the solid itself. 
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Chapter 13 – The Hypotrochoid 
 

 

Figure 13-1: A Hypotrochoid Solid of Revolution 

 

The object in the figure above is the solid of revolution that is formed when the 

Hypotrochoid represented by the parametric equations x = 14 cos (t) + 3 cos (7t) and 

 y = 14 sin (t) – 3sin (7t) is revolved about the y-axis.  The resulting solid has then been 

placed so as to appear to be floating over an infinite gray and white checkered plane 

which meets a blue, cloudless sky and rainbow at the horizon.  Light sources have been 

placed so as to cast shadows on the plane and on the solid itself.  The finish of the solid 

simulates reflection of the rainbow.  
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13.1 Introduction 

 A Hypotrochoid is defined as the roulette traced by a point, P, attached to a circle 

rolling about the inside of a fixed circle.  Of course, this sound very much like a 

Hypocycloid; what’s the difference?  In the case of a Hypocycloid, the point P is 

restricted to the circumference of the rolling circle.  This is not the case for a 

Hypotrochoid; the point P may be interior to the rolling circle or it may be exterior to the 

rolling circle (i.e., on an extended radius of the rolling circle).  Since the point P can be 

anywhere on the radius (or extended radius) of the rolling circle, Hypotrochoid really 

refers to a family of curves as opposed to one specific curve.  If the traced point is outside 

the circumference of the rolling circle, the Hypotrochoid is sometimes referred to as a 

Prolate Hypocycloid; on the other hand, if the traced point is inside the circumference of 

the rolling circle, the Hypotrochoid is often referred to as a Curtate Hypocycloid. 

 

 Mathematicians first became fascinated with this curve in the early 16
th

 century.  

The initial interest seems to have stemmed from a paper written in 1501 by Charles 

Bouvelles in an effort to solve the problem of squaring the circle. Giles Persone de 

Roberval, who played an integral role in finding the area for these curves, is given credit 

for the name "trochoid."  Blaise Pascal, who referred to these curves as "roulettes," 

actually offered cash prizes for anyone able to solve the problems of finding their area 

and center of gravity.  Galileo Galilei, who referred to these shaped as "cycloids," revered 

these curves for their graceful beauty and their architectural potential.  Ultimately, for 

20
th

 century dwellers, it was Hasbro's release of the Spirograph (a child’s toy that was 

very popular some years ago) that put the Hypotrochoid into mainstream awareness. 

13.2 Equations and Graph of the Hypotrochoid 

 Now let us derive the parametric equations from this definition.  Refer to Figures 

13-2 and 13-3, which depict the initial position of the point P (i.e., at t = 0) and its 

position after the rolling circle has carried point P through an angle t > 0.  Let a be the 

radius of the fixed circle while b is the radius of the rolling circle.  Let h be the distance 

of the point P from the center of the rolling circle and let t be the angle between the 

horizontal and the line segment connecting the center of the fixed circle to the center of 

the rolling circle.  Finally, let   be the angle between the horizontal and the line segment 

connecting the center of the rolling circle to the point P.  Note that as the small circle 

rolls around the circumference of the fixed circle, the center of the rolling circle travels 

on the circumference of a circle centered at the origin with radius a – b. 
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Figure 13-2: Initial Position of Rolling Circle and Point P 

 

 

Figure 13-3: Position of Rolling Circle and Point P at Time t > 0 

Since the circle is rolling without slippage, the length of the arc traveled by the 

smaller circle must be equal to the length of the arc traveled so far by the circle that is its 

path (the circle of radius a - b).  In other words,  

 

  btba  , 

or 

 

t
b

ba



 . 

 

The coordinates of the center of the rolling circle are (a – b) cos (t), (a – b) sin (t). 
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Now consider the origin to be the center of the rolling circle.  With this new origin, the 

coordinates of the point P are h cos (–), h sin (–).  However, 

 

    .sin)sin()sin(     and     coscoscos tt
b

ba
b

ba     

 

Therefore, from the original origin, we can combine the two sets of coordinates to find 

the parametric equations of the Hypotrochoid, namely, 

    .sinsin     and     coscos thtbaythtbax
b

ba
b

ba        Equation 13-1 

The equation of the tangent to the Hypotrochoid at the point t = q is 

   
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qbahhbab
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b
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b
ba

b
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











sinsin

cos2

sinsin

coscos 2

     Equation 13-2 

 

 Just as is the case with Epitrochoids, the triplet (a, b, h) completely specifies a 

particular Hypotrochoid.  Figure 13-4 shows the graph of two different Hypotrochoids. 

 

 

Figure 13-4: Graph of Two Distinct Hypotrochoids 

13.3 Analytical and Physical Properties of the Hypotrochoid 

 Based on the Hypotrochoid’s parametric representation found in Equation 13-1, 

that is,   thtbax
b

ba coscos and   thtbay
b

ba sinsin , the following 

subsections contain an analysis of the Hypotrochoid. 
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13.3.1 Derivatives of the Hypotrochoid 
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13.3.2 Metric Properties of the Hypotrochoid 

 If p is the distance from the origin to the tangent of the Hypotrochoid, then 

 

   

tbhhb

tbahbabh
p

b
a

b
a

cos2

cos2

22

2




 . 

 

 If r denotes the distance from the origin to the Hypotrochoid, then 

 

    tbahhbar
b
acos222

 . 

13.3.3 Curvature of the Hypotrochoid 

 If ρ is the radius of curvature for the Hypotrochoid, then, 
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b
a
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 If (α, β) denotes the coordinates of the center of curvature for the Hypotrochoid, 

then 

 

    
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13.3.4 Angles for the Hypotrochoid 

 If ψ is the tangential-radial angle for the Hypotrochoid, then 

 

   
.

sin
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2
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b
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 If  denotes the tangential angle of the Hypotrochoid, then 

 

.
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coscos
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thtb
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b
ba

b
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 If  denotes the radial angle of the Hypotrochoid, then 

 

 
  thtba

thtba

b
ba

b
ba










coscos

sinsin
tan . 

13.4 Geometric Properties of the Hypotrochoid 

 The Hypotrochoid consists of 1 + (a – b)/b outer loops if (a – b)/b is an integer.  

The curve is symmetric about the y-axis if (a – b)/b is an odd integer.  The curve is 

completely contained within a circle defined by | r | ≤ a – b + h.   

13.5 Dynamic Geometry of the Hypotrochoid 

 The following seven subsections delineate constructions germane to the 

Hypotrochoid. 

13.5.1 An Adjustable Hypotrochoid 

 For the complex (but very interesting and elegant) construction found in Table 13-1, 

assume that your computer screen is divided into four equal quadrants. 
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Table 13-1: An Adjustable Hypotrochoid 

1.  Draw horizontal line segment AB across top of screen 22. In upper-right quadrant draw vertical line segment LM 

2.  Let C be a random point on line segment AB 23. Somewhere to the left of line segment LM, place point N 

3.  Draw line segment AC and hide line segment AB and point B 24. Let N1 be the image as N is reflected across line segment LM 

4.  Label line segment AC as b 25. Let C1 be the circle centered at N with radius = b 

5.  Measure the length of line segment b 26. Let C1' be the reflection of circle C1 across line segment LM 

6.  Draw horizontal line segment DE across top of screen below b 27. Let C2 be the circle centered at point N with radius = h 

7.  Let F be a random point on line segment DE 28. Let C2' be the reflection of circle C2 across line segment LM 

8.  Draw line segment DF and hide line segment DE and point E 29. Let O be a random point on the circumference of circle C1 

9.  Label line segment DF as a 30. Let P be a random point on the circumference of circle C2 

10. Measure the length of line segment a 31. Let N2 be the image when N is translated by h at PNO 

11. Calculate a – b 32. Let N3 be the image as N2 is reflected across line segment LM 

12. Draw horizontal line segment GH across screen top below a 33. Draw line segments NN2 and N1N3 

13. Let I be a random point on line segment GH 34. Let Q be a point in the middle of the lower-left quadrant 

14. Draw line segment GI and hide line segment GH and point H 35. Let circle C3 be centered at Q with radius = a 

15. Label line segment GI as h 36. Let C4 be the circle centered at Q with radius = a – b 

16. Measure the length of line segment h 37. Let R be a random point on the circumference of circle C4 

17. Draw horizontal line segment JK across screen top below h 38. Translate line segment N1N3 be vector N1 → R 

18. Let J' be the image when J is translated by a – b at  0º 39. Let N4 be the image when N3 is translated by vector N1 → R 

19. Draw line segment JJ' and hide line segment JK and point K 40. Trace N4 and change its color 

20. Label line segment JJ' as a – b 41. Translate circle C1' by vector N1 → R 

21. Calculate (a – b)/ b 42. Simultaneously animate O about circle C1 and R about C4 

 

 By adjusting the length of line segments a, b, and/or h (that is, dragging points C, 

F, and/or I) one can generate different members of the Hypotrochoid family.  

Specifically, try and adjust segments a and/or b so that the quantity (a – b) / b becomes 

an integer.  Then the generated Hypotrochoid will be a closed curve (at least within the 

tolerances of GSP).  Also, hide the construction that was placed in the upper-right 

quadrant and now move the construction that was placed in the lower-left quadrant into 

the middle of the screen.  Doing this gives you more room to change the radii of the 

circles.  Finally, hide circle C4; doing so makes it clear that we have a circle of radius b 

rolling around the inside of a circle of radius a and that the point being traced is on a line 

segment radiating from the center of the rolling circle and is adjustable by manipulating 

the line segment labeled h.  Have fun! 

13.5.2 Variable Gears 

 This remarkable construction allows one to adjust (within certain limits) the shape 

of the gears.  Refer to Table 13-2. 
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Table 13-2: Variable Gears 

1.  Draw circle AB with center at A and passing through point B 19. Draw line A2D4 

2.  Let A1 be the image when A is rotated about point B by 180º 20. Let E be a random point on line A2D4 

3.  Let C be a random point on the circumference of circle AB 21. Let E1 be the image when E is rotated about A by BAC 

4.  Draw circle A1B with center at A1 and passing through B 22. Draw line segment A2E 

5.  Let D be a  random point on the circumference of circle AB 23. Let E2 be the image when E1 is rotated about A by D1AB 

6.  Let D1 be the image when D is rotated about A by BAC 24. Construct the locus of E1 while point D traverses circle AB 

7.  Let B1 be the image when B is rotated about A1 by DAB 25. Measure the length of line segment A2E 

8.  Let point A2 be the image when A is dilated about D by ⅓ 26. Measure the length of line segment A2D4 

9.  Let A3 be the image when A2 is rotated about A by BAC 27. Calculate scaling factor SF= (length of A2E)/(length of A2D4) 

10. Let B2 be the image when B1 is rotated about A1 by CAB 28. Let B6 be the image when B5 is dilated about B3 by SF 

11. Let B3 be the image when B1 is dilated about point A1 by 4/3 29. Let E3 be the image when E2 is rotated about A4 by BAD1 

12. Let D2 be the image when D is rotated about A2 by DAB 30. Let B7 be the image when B6 is rotated about A1 by CAB 

13. Let A4 be the image when A3 is rotated about A by D1AB 31. Let E4 be the image when E3 is rotated about A4 by BAD1 

14. Let B4 be the image when B3 is rotated about A1 by CAB 32. Construct the locus of B7 while point D traverses circle AB 

15. Let D3 be the image when D2 is rotated about A2 by DAB 33. Let E5 be the image when E4 is rotated about A4 by BAD1 

16. Let D4 be the image when D3 is rotated about A2 by DAB 34. Draw line segment BE5 

17. Draw line segment A2D4 35. Construct P1  to line segment BE5 through point E5 

18. Let B5 be the image when B1 is rotated about B3 by DA2D4 36. Animate point C around circle AB 

 

 Well, what have we got here?  First of all, note that point E is a random point on 

line A2D4 (step 20).  As such, it can be dragged along line A2D4, and as one does so, the 

associated loci change shape.  If one drags point E so that it stays between point A2 and 

point D4 (in other words remains on segment A2D4), the loci will remain as gears meshed 

with one another.  When point E coincides with point A2 (meaning the numerator of the 

scaling factor in step 27 is zero and of course the scaling factor itself is therefore zero), 

the two loci become circles that are tangent at point E5.  At the other extreme, that is 

when point E coincides with point D4 (the scaling factor is one), one locus becomes a 

Deltoid and the other locus becomes a three-cusped Epicycloid.  In between these two 

extremes, we have a Hypotrochoid gear meshing with an Epitrochoid gear.  Pretty neat!  

Incidentally, perpendicular P1 is always tangent to the Hypotrochoid and when point E is 

between points A2 and D4, it is also tangent to the Epitrochoid. 

13.5.3 Another Adjustable Hypotrochoid 

 Just for variety’s sake, here is another construction in which the relevant 

parameters can be adjusted to display other members of the Hypotrochoid family.  In this 

construction found in Table 13-3, dragging point G changes the distance between the 

center of the rolling circle and the point being traced, i.e., the parameter that we have 

called h in the Hypotrochoid equations.  In other words, dragging point G changes the 

radius of the rolling circle (b in the equations).  For best results and a clear picture of 

what is going on, hide the following construction elements:  circles C2, C3, C4, 

perpendiculars P1, P2, P3, P4, and ray CD. 
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Table 13-3: Another Adjustable Hypotrochoid 

1.  Draw horizontal line AB 17. Let point J be the intersection of perpendiculars P3 and P4 

2.  Let C be a random point on line AB 18. Let C2 be the circle centered at J and passing through point I 

3.  Let D be a second random point on line AB 19. Draw line segment JI 

4.  Let circle C1 be centered at point D and pass through point C 20. Let C3 be the circle centered at F with radius = segment JI 

5.  Draw ray CD starting at C and through D, then hide line AB 21. Let K be a random point on the circumference of circle C2 

6.  Let E be a random point on ray CD 22. Let L be the intersection of circle C3 and line segment FD 

7.  Let F be a random point on the circumference of circle C1 23. Draw line segment JK 

8.  Construct P1  to ray CD through point C 24. Let C4 be the circle centered at L with radius = segment CE 

9.  Construct P2  to ray CD through point D 25. Let F '  be the image when F is rotated about point L by KJI 

10. Let G be a third random point on ray CD 26. Draw line segment LF 

11. Draw line segment CE 27. Let C5 be the circle centered at L and passing through point F 

12. Draw line segment FD 28. Draw ray LF '  starting at L and passing through point F' 

13. Construct P3  to ray CD through point G 29. Rotate segment LF about point L by KJI 

14. Let H be a random point on perpendicular P2 30. Let point M be the intersection of circle C4 and ray LF '  

15. Construct P4  to P2 through point H 31. Trace point M and change its color 

16. Let point I be the intersection of perpendiculars P1 and P4 32. Simultaneously animate K on circle C2 and F on circle C1 

 

 Of course, if point G is dragged so that it coincides with point C, the animation 

cannot be executed and further, if point G is dragged so that it either coincides with point 

D or is on the opposite side of point D from point C, the tracing point vanishes and no 

trace is drawn.  To execute Hypotrochoids, point G must be confined to the space 

between points C and D. 

13.5.4 A Three-Cornered/Cusped/Looped Hypotrochoid 

 Table 13-4 presents still another adjustable Hypotrochoid; however, in this case 

only the parameter h is adjustable.  The quantity (a – b) / b is fixed at 2.  This means that 

when h is adjusted for a curtate configuration the constructed locus will have three 

rounded corners; when h is adjusted equal to b, the locus will have three cusps (i.e., a 

Deltoid); and finally, if h is adjusted for a prolate configuration the locus will have three 

loops.  Now maybe the title of this subsection makes a little bit more sense.  Oh, by the 

way, we will also create the tangent in this construction. 

Table 13-4: A Three-Cornered/Cusped/Looped Hypotrochoid and Tangent 

1.  Draw circle AB with center at A and passing through point B 12. Draw line AC 

2.  Let C be a random point on the circumference of circle AB 13. Draw line AB' 

3.  Draw circle BC with center at B and passing through point C 14. Construct line L1 parallel to line AB' through point D 

4.  Draw line segment AB 15. Construct line L2 parallel to line AC through point D 

5.  Let C' be the image of C reflected across line segment AB 16. Let point E be the intersection of lines AB' and L2 

6.  Draw circle C'B with center at C' and passing through point B 17. Let E' be the image as E is translated by vector A → E 

7.  Draw line segment AC' 18. Let point F be the intersection of lines AC and L1 

8.  Let B' be the image of B reflected across line segment AC' 19. Draw line segment E'F 

9.  Draw line B'C 20. Construct P1  to line segment E'F through point D 

10. Let D be a random point on line B'C 21. Animate point C around circle AB 

11. Construct the locus of D as point C traverses circle AB  

 

 Drag point D along line B'C and watch the locus change configurations! 

13.5.5 A Four-Cornered/Cusped/Looped Hypotrochoid with Tangent 

 Table 13-5 presents a construction analogous to the construction of the previous 

subsection except this time the quantity (a – b) / b is fixed at 3, thereby giving an Astroid 

when h = b.  Again, drag point D, this time along line CC'' and watch the locus change. 
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Table 13-5: A Four-Cornered/Cusped/Looped Hypotrochoid with Tangent 

1.  Draw circle AB with center at A and passing through point B 12. Draw line AC 

2.  Let C be a random point on the circumference of circle AB 13. Draw line AC'' 

3.  Draw circle BC centered at B and passing through point C 14. Construct line L1 parallel to line AC through point D 

4.  Draw line segment AB 15. Construct line L2 parallel to line AC'' through point D 

5.  Let C' be the image of C reflected across line segment AB 16. Let point E be the intersection of lines AC'' and L1 

6.  Draw circle C'C centered at C' and passing through point C 17. Let E' be the image when E is translated by vector A → E 

7.  Draw line segment AC' 18. Let E'' be the image when E' is translated by vector E → E' 

8.  Let C'' be the image of C reflected across line segment AC' 19. Let point F be the intersection of lines AC and L2 

9.  Draw line CC'' 20. Draw line segment E''F 

10. Let D be a random point on line CC'' 21. Construct P1  to line segment E''F through point D 

11. Construct the locus of point D as C traverses circle AB 22. Animate point C around circle AB 

13.5.6 Two Rotating Circles for One Hypotrochoid 

 To demonstrate that the Double Generation theorem of Bernoulli holds for 

Hypotrochoids, take a look at the construction in Table 13-6.  We have even given spokes 

to the rotating circles to make it easier to observe what is happening. 

Table 13-6: Double Generation of a Hypotrochoid 

1.  Draw circle AB centered at A and passing through point B 18. Draw line CE 

2.  Let C be a random point on the circumference of circle AB 19. Let point F be the intersection of lines AA'' and CE 

3.  Let A' be the image when point A is dilated about C by ⅓ 20. Draw circle AF centered at point A and passing through F 

4.  Draw circle A'C centered at A' and passing through point C 21. Draw circle A''F centered at A'' and passing through point F 

5.  Let D be a 2nd random point on the circumference of circle AB 22. Draw line A''E 

6.  Draw circle DC 23. Let H and G be the intersections of line A''E with circle A''F 

7.  Draw line segment AD 24. Draw line segment HG 

8.  Let C' be the image of C reflected across line segment AD 25. Rotate line segment HG about point A'' by 60 

9.  Draw circle C'D centered at point C' and passing through D 26. Rotate line segment HG about point A'' by – 60 

10. Draw line segment AC' 27. Let I be the unlabeled intersection of line A'D'' and circle A'C 

11. Let D' be the image of D reflected across line segment AC' 28. Draw line segment ID'' 

12. Let point D'' be the image of point D' dilated about C by ⅓ 29. Rotate line segment ID'' about point A' by 60 

13. Draw line A'D'' 30. Rotate line segment ID'' about point A' by – 60 

14. Let E be a random point on line A'D'' 31. Draw line segment A'E 

15. Construct the locus of E as point C traverses circle AB 32. Draw line segment A''E 

16. Let A'' be the image when A is translated by vector A' → E 33. Animate point C around circle AB 

17. Draw line AA''  

 

 Well, this doesn’t really demonstrate that the Double Generation theorem holds 

for all Hypotrochoids, but it does demonstrate that it holds for all Hypotrochoids that 

have three corners/cusps/loops; the reader can extrapolate from here.  It’s a nice 

construction and one can see that the small circle, circle A'C rotates about circle AB 

while the larger circle, circle A''F, rotates about circle AF.  Further, each rotating circle’s 

radius has been extended to intersect point E, the point tracing the Hypotrochoid.  Drag 

point E along line A'D'' to change the shape of the Hypotrochoid. 

13.5.7 The Osculating Circle for the Astroidal Type of Hypotrochoid 

 As a final construction for this chapter, consider the construction delineated in 

Table 13-7.  By way of explanation, Astroidal type means an adjustable Hypotrochoid 

where the quantity (a – b) / b is fixed at 3, but the parameter h can take on any value, and 

when h = b, we get an Astroid.  A snapshot of the construction appears in Figure 13-5. 
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Table 13-7: The Osculating Circle for the Astroidal Type of Hypotrochoid 

1.  Draw circle AB centered at A and passing through point B 10. Construct the locus of point D as point C traverses circle AB 

2.  Let C be a random point on the circumference of circle AB 11. Draw line CD 

3.  Let point A' be the image when A is dilated about C by ¼ 12. Construct P1  to line CD through point C 

4.  Let C1 be the image when C is rotated about A' by CAB 13. Let point E be the intersection of line A'C4 and P1  

5.  Let C2 be the image when C1 is rotated about A' by CAB 14. Draw line AE 

6.  Let C3 be the image when C2 is rotated about A' by CAB 15. Let point F be the intersection of lines CD and AE 

7.  Let C4 be the image when C3 is rotated about A' by CAB 16. Draw circle FD centered at point F and passing through D 

8.  Draw line A'C4 17. Construct the interior of circle FD 

9.  Let D be a random point on line A'C4 18. Animate point C around circle AB 

 

 

Figure 13-5: Osculating Circle for the Astroidal Type of Hypotrochoid 
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Figure 13-6: A Three-Dimensional Version of a Hypotrochoid 

 

The Hypotrochoid with parameters (a, b, h) = (6, 2, 3) has been extruded into the third 

dimension to render the object in the figure above.  It has been given a light sand colored 

finish and placed over the orange and plum colored plane.  Multiple light sources have 

been used to illuminate the object, which causes the shadows to fall partially on the 

object itself and create the strange configuration of shadows seen on the plane.  (This 

specific Hypotrochoid is used as the logo for the software Adobe Reader.) 
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Chapter 14 – The Conic Sections 
 

 

 

Figure 14-1: The Solid of Revolution Formed by an Ellipse 

 

The ellipse with simple equation x
2
/16 + y

2
 = 1 has been revolved around the y-axis to 

form the object shown above.  It has been given a mirrored reflective finish and placed 

over a white and yellow checkered plane with a partially cloudy sky at the horizon.  The 

lower half of the object, of course, reflects the plane while the upper half reflects the sky.  

Light sources have been placed so as to cast a shadow of the object on the plane (thereby 

revealing its elliptical nature).  Note how the object’s shadow is also reflected in the 

finish. 
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14.1 Introduction 

 Simply put, a conic section is merely the intersection of a plane and a right-

circular double cone (two single cones placed apex to apex).  By changing the angle and 

the location of the intersection, one can produce a circle, an ellipse, a parabola, or a 

hyperbola.  (Of course, if the plane intersects the cone and passes through the cone’s 

vertex, a point, line, or two intersecting lines are produced; these are degenerate conic 

sections and will not be considered here.)  If the plane is perpendicular to the axis of the 

cone, a circle is produced (see Figure 14-2).  For a plane not perpendicular to the cone’s 

axis, not parallel to the cone’s generator line, and intersecting only the upper cone (or 

only the lower cone), an ellipse is produced.  For a plane parallel to a generator line of the 

cone, a parabola is produced.  And finally, for a plane intersecting both upper and lower 

cones, a hyperbola is produced. 

 

 

Figure 14-2: The Conic Sections 

 For an alternate and more rigorous definition of a conic section, consider a point 

F (called the focus), a line L that does not contain F (called the directrix), and a positive 

number e (called the eccentricity).  A conic section is then defined as the locus of all 

points whose distance to F equals e times their distance to L.  For 0 < e < 1 we obtain an 

ellipse, for e = 1, we obtain a parabola, and for e > 1, we get a hyperbola.  The case of a 

circle needs special treatment; one takes e = 0 and imagines the directrix as infinitely 

removed from the focus.  The eccentricity of a conic section is therefore a measure of 

how far it deviates from being circular. 

 

 Conic sections have some interesting reflective properties that have very 

important real-world applications.  Parabolic mirrors (mirrors made in the shape of 

parabaloids, that is, surfaces formed from rotating parabolas about their central axis) are 
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used in reflecting telescopes because parabolic mirrors reflect all rays that are parallel to 

the mirror’s axis to the focal point of the mirror, thereby forming a sharp image at the 

focus.  Reverse this process (that is, put the light source at the focus) and all rays are 

reflected from the mirror parallel to one another.  This is how an automobile’s headlights 

operate.  Parabolas of revolution are also used as signal receptors—a satellite dish is a 

good example of this property.  If a mirror were in the form of an ellipsoid (an ellipse of 

revolution—see Figure 14-1 at the beginning of this chapter), the rays emitted from one 

focus are reflected toward the other focus.  Therefore, in a room with an elliptical ceiling, 

sound emitted from one focus can be clearly heard at the other focus.  This is called the 

whispering gallery effect, and a good example of this is found in Rome at St. Paul’s 

Cathedral.  Other applications of conic sections are found in planetary motion and more 

recently in space craft trajectories or astronavigation.  Johannes Kepler discovered that 

the planetary orbits are ellipses with the sun at one of the foci.  Newton was then able to 

derive the shape of orbits mathematically, under the assumption that gravitational force 

varies as the inverse square of distance.  Depending on the energy of the orbiting body, 

orbit shapes which are any of the four types of conic sections are possible.  Conic 

sections also play a role in projectile motion; a projectile will travel in the path of a 

parabola (if we neglect air resistance), a fact that is used for many military purposes. 

14.2 Equations of the Conic Sections 

 A conic section with directrix at x = 0 (i.e., the y-axis), focus at the point (p, 0), 

and eccentricity e > 0 (see Figure 14-3) has, by definition, the Cartesian equation 

  exypx  22
 

 

 

Figure 14-3: Distance to the Focus 

http://scienceworld.wolfram.com/biography/Newton.html
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Squaring and rearranging terms, we have 

  021 2222  ppxxey      Equation 14-1 

The polar equation for a conic section is 

cos1 e

ep
r


      Equation 14-2 

 In order to obtain a convenient form for the equation of a specific conic, equation 

14-1 is usually subjected to a coordinate transformation.  We will take up each of these 

coordinate transformations in turn. 

14.2.1 Equations and Graph of the Parabola 

 In the case of a parabola, i.e., e = 1, the coordinate transformation is  

(x, y) = (u + p/2, v).  Substituting these values in Equation 14-1 for x and y yields 

 

022  puv . 

 

Since the variables can be named whatever we want, u and v may be renamed and we can 

revert to our usual x,y notation.  Also, let p/2 = a and we have the more common form for 

the Cartesian equation of a parabola.  That is, 

axy 42       Equation 14-3 

 A parametric equation for the parabola may be derived by setting t = 2cot, where 

 has the usual meaning.  Therefore, 

 

.
24

22
cot2

2

a

y

a

y

yy

x
t    

 

Hence, y = 2at, and x can easily be found by putting this value of y into Equation 14-3 

and solving for x, that is, x = at
2
.  So we have a parametric form for the parabola, 

   ttatyx      )2,(,    Equation 14-4 

 A polar form for the parabola can also be found.  That is, 

 

.cos4cos4 222222  arraxxyxr   

 

Canceling r from both sides leaves r = rcos
2 + 4acos .  Transposing so that all of the 

r-terms are on one side of the equation and then solving for r, we have 

 csccot4ar       Equation 14-5 

The equation of the tangent line to the parabola at the point t = q is 

2aqxqy       Equation 14-6 

Figure 14-4 contains a graph of the parabola. 
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Figure 14-4: Graph of the Parabola 

14.2.2 Analytical and Physical Properties of the Parabola 

 Based on the parabola’s parametric representation found in Equation 14-4, that is,  

x = at
2
 and y = 2at, the following subsections contain an analysis of the parabola. 

14.2.2.1 Derivatives of the Parabola 

 atx 2  

 

 ax 2  

 

 ay 2  

 

 0y  

 

 
t

y
1

  

 

 
32

1

at
y   

14.2.2.2 Metric Properties of the Parabola 

 If p is the distance from the origin to the tangent of the parabola, then 

2

2

1 t

at
p


 . 
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 If r denotes the distance from the origin to the parabola, then 

 

42  tatr . 

14.2.2.3 Curvature of the Parabola 

 If ρ is the radius of curvature for the parabola, then, 

 

  2
3

212 ta  . 

 

If (α, β) are the coordinates of the center of curvature for the parabola, then 

 
32 2     and     32 atata   . 

14.2.2.4 Angles for the Parabola 

 If  is the radial angle, then 

2
cot

t
 . 

 

 If ψ is the tangential-radial angle for the parabola, then 

 

2
tan

2 


t

t
 . 

 

 If  denotes the tangential angle, then 

 

t

1
tan  . 

14.2.3 Geometry of the Parabola 

 Intercepts:  (0, 0) 

 

 Extrema:  (0, 0) 

 

 Extent:  0 ≤ x < ∞; –∞ < y < +∞ 

 

 Symmetries:  Parabola y
2
 = 4ax is symmetric about the x-axis. 

14.2.4 Equations and Graph of the Ellipse 

 In the case of an ellipse, i.e., 0 < e < 1, then the transformation of coordinates is 

 

  









 v

e

p
uyx ,

1
,

2
. 

 

Substituting these values for x and y in Equation 14-1 yields 
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  0
1

1
2

22
222 




e

pe
euv . 

As before, reverting to x, y notation, and letting a = ep / (1 – e
2
) and b

2
 = a

2
 (1 – e

2
) we 

have the more common equation for an ellipse.  That is, 

1
2

2

2

2


b

y

a

x
     Equation 14-7 

where F(–ae, 0) is the location of the focus and the directrix has equation x + a/e = 0.  

Note, that by symmetry, (ae, 0) and x – a/e = 0 are also a focus and directrix.  A 

parametric representation may be derived by letting  

 

x

y

b

a

b

a
t  tantan . 

However, from Equation 14-7 

 

22 xa
a

b
y  . 

Therefore 

 

2

2222

tan
x

xa

x

xa

b

a
t a

b 



 . 

From this we can see that 

2

2
22 1tansec

x

a
tt  . 

Hence, x = a cos t and of course, substituting this expression back into Equation 14-7 we 

can see that y = b sin t.  So, our parametric representation for the ellipse is 

      ttbtayx      sin,cos,      Equation 14-8 

The polar equation for the ellipse is a direct result of plugging the common polar 

transformations x = r cos  and y = r sin   into Equation 14-7, that is, 

 2222 cossin ba

ab
r


      Equation 14-9 

The equation of the tangent line to the ellipse at the point t = q is 

qabxqbya csccot       Equation 14-10 

See Figure 14-5 for a graph of the ellipse. 

14.2.5 Analytical and Physical Properties of the Ellipse 

Based on the ellipse’s parametric representation found in Equation 14-8, that is,  

x = a cos t and y = b sin t, the following subsections contain an analysis of the ellipse. 
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Figure 14-5: Graph of the Ellipse 

14.2.5.1 Derivatives of the Ellipse 
 tax sin  

 

 tax cos  

 

 tby cos  

 

 tby sin  

 t
a

b
y cot  

 

 
            

t
a

b
y 3

2
csc  

14.2.5.2 Metric Properties of the Ellipse 

 In order to calculate the area of the ellipse, consider an incremental rectangle of 

height y and width dx in the first quadrant of the ellipse; its area is, of course, y∙dx.  If we 

integrate that quantity from 0 to a, we obviously have the area of the portion of the ellipse 

that lies in the first quadrant.  If we then multiply that result by 4 (due to symmetry), we 

have the total area of the ellipse.  Hence, 


a

ydxA
0

.4
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However, from Equation 14-7 we know that 

 

22 xa
a

b
y  . 

Therefore, 

 
a

dxxa
a

b
A

0

224
. 

This integral can easily be evaluated by making the substitution x = a sin u.  Under this 

transformation, the integral becomes 

 

  









2 2

2

0 0

2

0

22 2cos
2

1

2

1
4cos4cos

4
 



duuabduuabduua
a

b
A . 

Hence, A = πab. 

 

 In a similar manner, when the ellipse is rotated about the x-axis to form a solid of 

revolution (i.e., an ellipsoid), its volume can be calculated.  Consider an incremental 

circular disk (in the first and fourth quadrants of the ellipse) whose radius is y and whose 

thickness is dx; its volume is, of course, πy
2
∙dx.  If we integrate that quantity from 0 to a, 

we have half of the required volume.  Multiplying that result by 2 (the symmetry 

argument again), we have the total volume of the ellipsoid.  That is, 

 

   

a a

abdxxa
a

b
dxyV

0 0

222

2

2
2 .

3

42
2 


  

 

If p is the distance from the origin to the tangent of the ellipse, then 

 

tbta

ab
p

2222 cossin 


 . 

 

If r is the distance from the origin to the ellipse, then 

 

tbtar 2222 sincos  . 

14.2.5.3 Curvature of the Ellipse 

 If ρ is the radius of curvature for the ellipse, then, 

 

  2
3

2222 cossin
1

tbta
ab

 . 

 If (α, β) are the coordinates of the center of curvature for the ellipse, then 

 

t
b

ab

a

ba 3
22

3
22

sin     andt     cos





  . 
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14.2.5.4 Angles for the Ellipse 

 If   is the radial angle, then 

.tantan t
a

b
  

 If ψ is the tangential-radial angle for the ellipse, then 

 

tt
ab

ab
cscsectan

22



 . 

 

 If  denotes the tangential angle for the ellipse, then 

 

t
a

b
cottan  . 

14.2.6 Geometry of the Ellipse 

 Intercepts:  (a, 0); (–a, 0); (0, b); (0, –b). 

 

 Extrema:  (a, 0); (–a, 0); (0, b); (0, –b). 

 

 Symmetry:  The ellipse is symmetric about the x-axis, the y-axis,    

and the origin. 

14.2.7 Equations and Graph of the Hyperbola 

 In the case of a hyperbola, i.e., e > 1, then the transformation of coordinates is 

  









 v

e

p
uyx ,

1
,

2
.  Substituting these values for x and y in Equation 14-1 yields  

  

  0
1

1
2

22
222 




e

pe
uev . 

 

Again, reverting to x,y notation and letting a = ep/(e
2
 – 1) and b

2
 = a

2
(e

2
 – 1) we have the 

common equation for a hyperbola.  That is 

1
2

2

2

2


b

y

a

x
     Equation 14-11 

where F(–ae, 0) and F(ae, 0) are the two foci. 

 

 In order to derive a parametric representation for the hyperbola, consider the 

following: let tan  = (b/a) sin t.  From Equation 14-11 we have 

 

22 ax
a

b
y  . 

Therefore,  
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t
a

b
ax

ax

b

x

y
sintan 22   

or 

2

22
2sin

x

ax
t


 . 

 

Solving this expression for x, we find that x = a sec t.  Plugging this value of x back into 

Equation 14-11 and solving for y, we find that y = b tan t.  Hence, a parametric 

representation for the hyperbola is 

      ttbtayx      tan,sec,      Equation 14-12 

The polar equation for the hyperbola is a direct result of plugging the common polar 

transformations x = r cos  and y = r sin  into Equation 14-11, that is, 

 2222 sincos ab

ab
r


      Equation 14-13 

The equation of the tangent line to the hyperbola at the point t = q is 

qabxqbya cotcsc       Equation 14-14 

See Figure 14-6 for a graph of the hyperbola. 

 

 

Figure 14-6: Graph of the Hyperbola 

14.2.8 Analytical and Physical Properties of the Hyperbola 

 Based on the hyperbola’s parametric representation found in Equation 14-12, that 

is, x = a sec t and y = b tan t, the following subsections contain an analysis of the 

hyperbola. 
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14.2.8.1 Derivatives of the Hyperbola 

 ttattax 2secsinsectan   

 

    ttattax 232 sin1sectan21sec   

 

 tby 2sec  

 

 ttby 3secsin2  

 

 t
a

b
y csc  

 
            

t
a

b
y 3

2
cot  

14.2.8.2 Metric Properties of the Hyperbola 

 If p is the distance from the origin to the tangent of the hyperbola, then 

 

222 sin

cos

bta

tab
p




 . 

 

 If r denotes the radial distance to the hyperbola, then 

 

  2222 tan atbar  . 

14.2.8.3 Curvature of the Hyperbola 

 If ρ is the radius of curvature for the hyperbola, then 

 

 
ab

btat
2

3
2223 sinsec 

 . 

 

 If (α, β) are the coordinates of the center of curvature for the hyperbola, then 

 

 
tb

bat

ta

ba
3

223

3

22

cos

sin
     and     

cos





  . 

14.2.8.4 Angles for the Hyperbola 

 If   is the radial angle, then 

.sintan t
a

b
  

 

 If ψ is the tangential-radial angle for the hyperbola, then 
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 
.

sin

cos
tan

22

2

bat

tab


  

 

 If  denotes the tangential angle for the hyperbola, then 

 

t
a

b
csctan  . 

14.2.9 Geometry of the Hyperbola 

 Intercepts:  (a, 0); (–a, 0). 

 

 Extrema:  (a, 0); (–a, 0). 

 

 Extent:  –∞ < x < +∞; –∞ < y < +∞. 

 

 Symmetry:  The hyperbola is symmetric about the x-axis, the y-   

axis, and the origin. 

 

 Asymptotes:  y = (b/a) x; y = – (b/a) x. 

14.2.10 Equations and Graph of the Circle 

 The preceding discussion that started in section 14.2 regarding the equations of 

the various conic sections does not include the circle, since the eccentricity, e, is, by 

definition, nonzero.  However, the circle may be considered as a limiting case of the 

ellipse where a = b.  As a result, from Equation 14-7 we have for the equation of the 

circle 

222 ayx       Equation 14-15 

where a is the radius of the circle.  Similarly, from Equation 14-8 we have a parametric 

representation of the circle, i.e., 

(x, y)  = a (cos t, sin t)     –π  t  π     Equation 14-16 

Of course, the polar equation for a circle is trivial, it being 

r = a     Equation 14-17 

The pedal, Whewell, and Cesáro equations are also quite simple.  Respectively, they are 

pa = r
2
     Equation 14-18 

s = aφ     Equation 14-19 

ρ = a     Equation 14-20 

Finally, the equation of the circle’s tangent at the point t = q is 

qaxqy csccot       Equation 14-21 

Figure 14-7 depicts a graph of the circle. 
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Figure 14-7: Graph of the Circle 

14.2.11 Analytical and Physical Properties of the Circle 

Based on the circle’s parametric representation found in Equation 14-16, that is,  

x = a cos t and y = a sin t, the following subsections contain an analysis of the circle. 

14.2.11.1 Derivatives of the Circle 

 tax sin  

 

 tax cos  

 

 tay cos  

 

 tay sin  

 

 ty cot  

 

 t
a

y 3csc
1

  

14.2.11.2 Metric Properties of the Circle 

 The familiar formula for the area of a circle can easily be derived by considering 

the area of an incremental rectangle of height y and width dx in the first quadrant of the 

circle, i.e., dA = y∙dx.  Upon integration of this expression from 0 to a we obtain the area 

of the circle in the first quadrant.  Multiplying by 4 due to symmetry then gives the total 

area of the circle.  That is, 
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  

a a

dxxadxyA
0 0

2244 . 

The transformation x = a sin u reduces this integral to 

 

   
2 2

0 0

2222 2cos12cos4

 

aduuaduuaA . 

The familiar formula for the volume of a sphere can also easily be derived by rotating the 

circle about the x-axis and considering the solid of revolution so produced.  Within this 

solid of revolution, assume a thin disk of radius y and thickness dx.  The volume of this 

disk will be dV = πy
2
∙dx.  Integrating from 0 to a and multiplying by 2 will then give the 

total volume of the sphere.  That is, 

 

   

a a

aaa
a

x
a

adxxadxyV
0 0

33332222

3

4

3

2
2

03

2

0
222 


 . 

Of course, the length of the circle (usually called its circumference) is also easily 

computed by considering the integral 

     

 


2

0

2

0

2

0

222222
.2cossin adtadttatadtdydxs  

The surface area of the sphere formed as a solid of revolution from the circle can also be 

calculated by considering the integral 

 

  


















 


0 0

22222

22

.4cossinsin22 adttatatadt
dt

dy

dt

dx
yS  

 

Finally, although it may be obvious and trivial, if p is the distance from the origin to the 

circle’s tangent and r is the radial distance, then  

 

p = –a  

and 
22 yxr  . 

14.2.12 Geometry of the Circle 

 Intercepts:  (a, 0); (–a, 0); (0, a); (0, –a). 

 

 Extrema:  (a, 0); (–a, 0); (0, a); (0, –a). 

 

 Extent:  –a ≤ x ≤ a; –a ≤ y ≤ a. 

 

 Symmetry:  The circle is symmetric about the x-axis, the y-axis, and the 

origin. 
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14.3 Dynamic Geometry of the Conic Sections 

 The following subsections present various constructions involving the conic 

sections. 

14.3.1 A Selectable Conic Section 

 This construction allows you, by dragging a specific point, to verify some of the 

theory presented in the introduction to this chapter.  Namely, if the eccentricity is 

between zero and one the conic section is an ellipse; if it’s equal to one, the conic section 

is a parabola; and if it’s greater than one, a hyperbola.  See Table 14-1 to check it out! 

Table 14-1: A Selectable Conic Section 

1.  Draw horizontal line segment AB 9.  Let m2 be a measure of the distance CB 

2.  Let C be a random point on line segment AB 10. Let m3 = m1 / m2 

3.  Let D be the midpoint of line segment AB 11. Let m4 be a measure of the distance AB 

4.  Draw circle AE with center at A and passing through point E 12. Let m5 be the measure of BAF 

5.  Let F be a random point on the circumference of circle AE 13. Let m6 = (m3∙m4) / [1 + m3∙cos (m5)] 

6.  Draw ray AF starting at point A and passing through point F 14. Let A' be the image when A is translated by m6 at m5 

7.  Construct P1  to line segment AB through point B 15. Trace point A' and change its color 

8.  Let m1 be a measure of distance AC 16. Animate point F around circle AE 

 

 Drag point C along line segment AB.  If you drag it so that it lies between points 

A and D, the trace you see when the animation is run will be that of an ellipse.  If you 

place point C between points D and B, your trace will be that of a hyperbola.  And, if you 

place it to coincide with point D, your trace will be a parabola.  Why?  Well, first of all, 

note that point A is the focus, perpendicular P1 is the directrix, BAF is the radial angle, 

and the ratio of AC to CB (or in the notation of the steps above, m1 to m2) is the 

eccentricity.  Therefore, what is calculated in step 13 (that is, m6) is the polar equation for 

a conic section (see Equation 14-2).  So point A' is simply the radial distance from the 

pole point to the curve.  That is why point A' traces the conic section.  Now, the ratio of 

m1 to m2 is equal to 1 when point C coincides with the midpoint of the line segment, that 

is, point D (and we know what happens when the eccentricity is 1—we get a parabola).  

When the ratio is greater than 1, that is, when point C lies between points D and B, we 

get the hyperbola, and when the ratio is less than 1 (when C lies between A and D) we get 

the ellipse.  Note that we cannot get a circle with this construction; however, as the 

eccentricity approaches 0 (in other words as point C approaches point A), the ellipse gets 

closer and closer to a circle.  You can see this by dragging point C very close to point A 

and then running the animation. 

14.3.2 Another Selectable Conic Section 

  It just so happens that the envelope of the locus of perpendicular bisectors of the 

line segments joining the focus to any point on a circle is a conic section.  The 

construction presented in Table 14-2 is based on this fact. 

Table 14-2: Another Selectable Conic Section 

1.  Draw circle AB with center at A and passing through point B 5.  Let E be a random point on line segment CD 

2.  Let C be a random point on the circumference of circle AB 6.  Construct P1  to line segment CD through point E 

3.  Let D be any random point in the plane 7.  Trace P1 and change its color 

4.  Draw line segment CD 8.  Animate point C around circle AB 
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 Drag point D, the focus, so that it is outside of circle AB, and the envelope is a 

hyperbola.  Drag point D so that it is inside of circle AB and the envelope is an ellipse.  

Drag point D so that it is coincident with the center of circle AB (point A) and the 

envelope is a circle.  Pretty slick!  Drag point E along line segment CD and rerun the 

animation for different members of the family of ellipses or hyperbolas (depending on the 

location of point D). 

14.3.3 An Elegant Hyperbola 

 This simple construction (Table 14-3) is one way of generating a hyperbola. 

Table 14-3: An Elegant Hyperbola 

1.  Draw horizontal line segment AB 8.  Draw line segment AE 

2.  Let C be a random point on line segment AB 9.  Construct P2  to line BE through point E 

3.  Draw circle BC with center at B and passing through point C 10. Let F be the midpoint of line segment AE 

4.  Let D be the midpoint of line segment AB 11. Construct P3  to line segment AE through point F 

5.  Let E be a random point on the circumference of circle BC 12. Let G be the intersection of line BE and perpendicular P3 

6.  Construct P1  to line segment AB through point D 13. Trace point G and change its color 

7.  Draw line BE 14. Animate point E around circle BC 

  

 In this construction, the two focal points are A and B.  Perpendicular P3 is the 

tangent to the hyperbola.  Note how it is tangent to one branch and then smoothly 

switches to be tangent to the other branch.  Very neat! 

14.3.4 An Elegant Ellipse 

 And this simple construction (Table 14-4) is one way of generating an ellipse. 

Table 14-4: An Elegant Ellipse 

1.  Draw circle AB with center at A and passing through point B 8.  Let F be the intersection of line segment AC and P1* 

2.  Let C be a random point on the circumference of circle AB 9.  Trace point F and change its color 

3.  Draw line segment AC 10. Draw line segment DF 

4.  Let D be a random point any where in the plane 11. Measure line segments AF and FD 

5.  Draw line segment DC 12. Calculate AF + FD 

6.  Let E be the midpoint of line segment DC 13. Animate point C around circle AB 

7.  Construct P1  to line segment DC through point E  

*If AC and P1 do not intersect, drag point D until they do. 

 

 Note that as the animation is run, the lengths of line segments AF and FD change 

but their sum does not.  Points A and D are the two foci of the ellipse and the distance 

between the two foci by way of the ellipse is always constant.  This is a property of 

ellipses and can be used as a basis for construction.  Also note that P1 is tangent to the 

ellipse.  Drag point D and rerun the animation for other ellipses in the family.  Make the 

two foci coincident, and see the resulting circle (as you would suspect)! 

14.3.5 An Ellipse from Two Intersecting Circles 

 In the previous construction we stated that the distance betwee the two foci of the 

ellipse by way of the circumference is constant.  This property is often used as the 

definition of an ellipse and can be formally stated as: An ellipse is the locus of points P 

such that the sum of the distances from two fixed points F1 and F2 (called foci) are 

constant.  In the simple construction of Table 14-5, note how this property is utilized. 
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 In this construction, points D and E are the two foci.  The sum of the distances 

from a point on the ellipse to the two foci is simply the sum of the two radii of the circles.  

Although these radii change as the animation is executed, their sum does not because 

their sum is constrained to be equal to the length of line segment AB. 

Table 14-5: An Ellipse from Two Intersecting Circles 

1.  Draw horizontal line segment AB 7.  Let E be a 2nd random point in the plane 

2.  Let C be a random point on line segment AB 8.  Construct circle C2 centered at E with radius = to segment CB 

3.  Draw line segment AC 9.  Let F and G be the intersections of circles C1 and C2* 

4.  Draw line segment CB 10. Trace points F and G and change their color 

5.  Let D be a random point in the plane 11. Animate point C along line segment AB 

6.  Construct circle C1 centered at D with radius = to segment AC  

*If they do not intersect, drag either point D or point E (or both) until they do. 

14.3.6 An Elegant Parabola 

 The parabola can be defined as the locus of a set of points equidistant from a fixed 

point, the focus, and a fixed line, the directrix.  The construction found in Table 14-6 is 

based upon that definition. 

Table 14-6: An Elegant Parabola 

1.  Draw horizontal line AB 8.  Construct P2  to line AB through point G 

2.  Let C be a point in the plane not on line AB 9.  Draw line segment CG 

3.  Draw circle DE centered at D and passing through point E 10. Let H be the midpoint of line segment CG 

4.  Let F be a random point on the circumference of circle DE 11. Construct P3  to line segment CG through point H 

5.  Draw line DF 12. Let point I be the intersection of perpendiculars P2 and P3 

6.  Let point G be the intersection of line DF and line AB 13. Trace point I and change its color 

7.  Construct P1  to line AB through point C 14. Animate point F around circle DE 

 

 Since point H is constructed to be the midpoint of line segment CG, the lengths of 

line segments GH and HC are always equal.  However, GH is the distance to the 

directrix, the directrix being line AB, and HC is the distance to the focus, the focus being 

point C. 

14.3.7 A Family of Ellipses 

 Table 14-7 presents a clever little construction for an ellipse that allows one to 

trace different members of a family of ellipses with each different execution of the 

animation. 

Table 14-7: A Family of Ellipses 

1.  Draw horizontal line segment AB 10. Let E be either intersection of circle BA with P1 

2.  Let measurement m1 be the distance from point A to point B 11. Construct P2  to P1 through point D 

3.  Draw circle BA with center at B and passing through point A 12. Draw circle CC' with center at C and passing through point C' 

4.  Let C be a random point on line segment AB 13. Let F be the intersection of circle BC and line segment BD 

5.  Draw circle BC with center at B and passing through point C 14. Construct P3  to line segment AB through point F 

6.  Let D be a random point on the circumference of circle BA 15. Let point G be the intersection of perpendiculars P2 and P3 

7.  Draw line segment BD 16. Trace point G and change its color 

8.  Construct P1  to line segment AB through point B 17. Animate point D around circle BA 

9.  Let C' be the image when C is translated distance m1 at 0  

 

 By dragging point C along line segment AB, different ellipses of a family can be 

observed.  What family are we talking about?  The family whose semi-major axis is 

length BE and whose semi-minor axis varies between length 0 and length AB. 
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14.3.8 A Simple Ellipse 

 The obvious construction presented in Table 14-8 is suggested by the parametric 

representation found in Equation 14-8, that is, (x, y) = (a cost, b sint). 

Table 14-8: A Simple Ellipse 

1.  Draw horizontal line segment AB 7.  Let E be the intersection of circle AC and line segment AD 

2.  Draw circle AB with center at A and passing through point B 8.  Construct P1  to line segment AB through point E 

3.  Let C be a random point on line segment AB 9.  Construct P2  to P1 through point D 

4.  Let D be a random point on the circumference of circle AB 10. Let point F be the intersection of perpendiculars P1 and P2 

5.  Draw circle AC with center at A and passing through point C 11. Trace point F and change its color 

6.  Draw line segment AD 12. Animate point D around circle AB 

 

 Note how dragging point C back and forth on line segment AB changes the value 

of the semi-minor axis of the ellipse.  Of course, dragging point B so that line segment 

AB becomes either longer or shorter, changes the semi-major axis. 

14.3.9 One Parabola from Another 

 If two of the normals which can be drawn to a parabola through a given point 

intersect at right angles to one another, then the locus of that intersection point is another 

parabola.  The construction outlined in Table 14-9 illustrates this remarkable property. 

Table 14-9: One Parabola from Another 

1.  Draw horizontal line AB 14. Trace point J and change its color 

2.  Let C be a point in the plane not on line AB 15. Let C' be the image when C is dilated about I by a factor of ½ 

3.  Draw circle DE with center at D and passing through point E 16. Construct P4  to line AB through point I 

4.  Let F be a random point on the circumference of circle DE 17. Construct P5  to P3 through point J 

5.  Draw line DF 18. Let perpendicular P5 be a thick line of different color 

6.  Let point G be the intersection of lines AB and DF 19. Construct P6  to P2 through point C' 

7.  Construct P1  to line AB through point G 20. Let point K be the intersection of perpendiculars P4 and P6 

8.  Draw line segment CG 21. Construct P7  to P6 through point K 

9.  Construct P2  to line segment CG through point C 22. Let perpendicular P7 be a thick line of different color 

10. Let H be the midpoint of line segment CG 23. Let point L be the intersection of perpendiculars P5 and P7 

11. Construct P3  to line segment CG through point H 24. Trace point L and change its color 

12. Let point I be the intersection of line AB and P2 25. Animate point F around circle DE 

13. Let point J be the intersection of perpendiculars P1 and P3  

 

 Point L is the given point under consideration, while perpendiculars P5 and P7 are, 

of course, the two normals to the parabola traced by point J.  As you can see, P5 and P7 

are at right angles to one another and indeed, point L also traces a parabola.  Quite a 

remarkable property! 

14.3.10 A Compass-Only Construction for the Hyperbola 

 Refer to Chapter 6, section 6.5.15, for a discussion that addresses what is meant 

by a GSP-version of a compass-only construction.  Refer to Table 14-10. 
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Table 14-10: The Hyperbola by Compass-Only 

1.  Draw circle AB with center at A and passing through point B 10. Draw circle EF with center at E and passing through point F 

2.  Let C be a random point on the circumference of circle AB 11. Let G be the unlabeled intersection of circles EF and CA 

3.  Draw circle CA with center at C and passing through point A 12. Draw circle GA with center at G and passing through point A 

4.  Let D be any point outside of circle AB but inside circle CA 13. Let H and I be the two intersections of circles GA and AB 

5.  Draw circle DA with center at D and passing through point A 14. Draw circle HA with center at H and passing through point A 

6.  Draw line segment CD 15. Draw circle IA with center at I and passing through point A 

7.  Let A' be the image as A is reflected across line segment CD 16. Let point J be the unlabeled intersection of circles HA and IA 

8.  Draw circle A'C with center at A' and passing through point C 17. Trace point J and change its color 

9.  Let E and F be the two intersections of circles A'C and CA 18. Animate point C around circle AB 

14.3.11 The Orthogonal Normals of an Ellipse 

 The construction following in Table 14-11 is rather complex and crowded, but 

well worth reproducing and understanding.  We will construct two normals to an ellipse 

that intersect at right angles.  The intersection point of those two normals will trace, as 

you will see, a quite beautiful curve. 

Table 14-11: The Orthogonal Normals of an Ellipse 

1.  Draw horizontal line AB 18. Draw circle AB' with center at A and passing through B' 

2.  Draw circle AB with center at A and passing through point B 19. Let J be a random point on the circumference of circle AB' 

3.  Let C be a random point on line AB but inside of circle AB 20. Let I' be the image when I is rotated about point B by 180° 

4.  Let D be a random point on the circumference of circle AB 21. Draw circle JI with center at J and passing through point I 

5.  Construct P1  to line AB through point A 22. Draw circle HI' with center at H and passing through point I' 

6.  Draw circle AC with center at A and passing through point C 23. Let K and L be the intersections of circle JI with circle HI' 

7.  Draw line segment AD 24. Draw line segments IL, IK, HL, and HK 

8.  Construct P2  to line AB through point D 25. Construct P4  to line segment IL through point J 

9.  Let E be the intersection of line segment AD and circle AC 26. Construct P5  to line segment IK through point J 

10. Let F be either intersection of perpendicular P1 and circle AC 27. Let M be the intersection of P4 and line segment HL 

11. Construct P3  to P2 through point E 28. Let N be the intersection of P5 and line segment HK 

12. Let point G be the intersection of perpendiculars P2 and P3 29. Construct P6  to P4 through point M 

13. Construct the locus of G while point D traverses circle AB 30. Construct P7  to P5 through point N 

14. Make the locus a thick line and change its color (say green) 31. Make P6 and P7 thick lines and change their color (say cyan) 

15. Let circle C1 be the translation of circle AB by vector A → F 32. Let point O be the intersection of perpendiculars P6 and P7 

16. Let B' be the image when B is translated by vector A → F 33. Trace point O and change its color (say yellow) 

17. Let H and I be the intersections of line AB and circle C1 34. Animate point J around circle AB' 

 

 To readily see what is going on and for a cleaner animation, it is suggested that 

you hide the following construction elements:  All of the circles (i.e., circles AB, AC, 

AB', JI, HI', and the translated circle [C1]); all of the perpendiculars except P6 and P7; line 

AB; line segments AD, IL, IK, HL, and HK; and, finally, points A, B, D, E, F, B', G, H, I, 

J, and I'.  By dragging point C along line AB, you can change the eccentricity of the 

ellipse, thereby affecting the size of the curve that point O traces as well as whether the 

curve is contained inside the ellipse or intersects the ellipse. 

14.3.12 A Parabola Arising from Two Lines and a Point 

 Given two non-parallel lines and a point not on either line, it is possible to draw a 

parabola tangent to the two given lines with the given point as the focus.  Table 14-12 

contains a construction that shows how. 
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Table 14-12: A Parabola from Two Lines and a Point 

1.  Draw horizontal line AB 12. Construct P2  to line E1E2 through point E1 

2.  Draw line CD not parallel to line AB 13. Draw line segment EI 

3.  Let E be a random point neither on line AB nor on line CD 14. Construct P3  to line E1E2 through point I 

4.  Let E1 be the image when point E is reflected across line AB 15. Let J be the intersection of line AB and perpendicular P1 

5.  Let E2 be the image when point E is reflected across line CD 16. Let K be the intersection of line CD and perpendicular P2 

6.  Draw line E1E2 17. Let L be the midpoint of line segment EI 

7.  Draw circle FG with center at F and passing through point G 18. Construct P4  to line segment EI through point L 

8.  Let H be a random point on the circumference of circle FG 19. Let point M be the intersection of perpendiculars P3 and P4 

9.  Draw line FH 20. Trace point M and change its color 

10. Let point I be the intersection of lines E1E2 and FH 21. Make lines AB and CD thick and change their color 

11. Construct P1  to line E1E2 through point E2 22. Animate point H around circle FG 

 

 Lines AB and CD are, of course, the two tangent lines while point E is the focus.  

You can play with this construction by changing the orientation of either line AB, CD, or 

both (by dragging point A, B, C, or D) and by dragging point E to change the location of 

the focus. 

14.3.13 Hyperbolas and Parallelogram 

 The following construction is quite long and complex, but well worth the effort.  

The result is a beautiful animation.  Be careful to label each line as suggested in the steps 

below as the plethora of lines can get very confusing.  Refer to Table 14-13. 

Table 14-13: Hyperbolas and Parallelogram 

1.  Draw horizontal line AB 24. Let point L be the intersection of lines AB and FJ 

2.  Draw circle AB with center at A and passing through point B 25. Draw circle AL with center at A and passing through point L 

3.  Let C be a random point on line AB 26. Construct P8  to line AB through point L 

4.  Let D be a random point on the circumference of circle AB 27. Draw line HK 

5.  Construct P1  to line AB through point A 28. Let M be the intersection of perpendicular P8 and line AD 

6.  Let L1 be the image when line AB is rotated about A by 45° 29. Let point N be the intersection of perpendiculars P5 and P8 

7.  Draw circle AC with center at A and Passing through point C 30. Let L2 be the image when line HK is rotated about A by 180° 

8.  Draw line AD 31. Construct P9  to P2 through point M 

9.  Construct P2  to line AB through point C 32. Draw line AN 

10. Let E and F be the two intersections of P1 with circle AB 33. Let point O be the intersection of perpendiculars P7 and P9 

11. Construct P3  to line AB through point D 34. Let L3 be the image when line AN is reflected across line AB 

12. Construct P4  to line AD through point D 35. Let O' be the image when point O is reflected across line L1 

13. Let G be the intersection of line AD and perpendicular P2  36. Trace point O' and change its color (say green) 

14. Draw line CE 37. Draw line HO 

15. Construct P5  to P1 through point E 38. Let L4 be the image when line HO is reflected across line L1 

16. Let H be the intersection of line AB and perpendicular P3 39. Let L5 be the image when line L4 is rotated about A by 180° 

17. Let I be the intersection of line AB and perpendicular P4 40. Let point P be the intersection of lines L4 and HK 

18. Construct P6  to P2 through point G 41. Let point Q be the intersection of lines L2 and L4 

19. Let J be the unlabeled intersection of line CE and circle AB 42. Let point R be the intersection of lines L5 and HK 

20. Construct P7  to line AB through point I 43. Let point S be the intersection of lines L2 and L5 

21. Draw line FJ 44. Construct polygon SQPR and color it (say yellow) 

22. Let point K be the intersection of perpendiculars P6 and P7 45. Measure the area and perimeter of polygon SQPR 

23. Trace point K and change its color (say blue) 46. Animate point D around circle AB 

 

 For the best looking animation, hide all lines and all points except point C, the 

two tracing points (K and O'), and the four points making up the parallelogram (P, Q, R, 

and S).  Drag point C to change the eccentricity of the two hyperbolas.  Incidentally, the 

two hyperbolas are conjugates.  That is, if one hyperbola has equation x
2
/a

2
 – y

2
/b

2
 = 1, 

then its conjugate has equation y
2
/b

2
 – x

2
/a

2
 = 1.  They share the same asymptotes and the 

same axes.  If the first hyperbola’s eccentricity is e and the conjugate’s eccentricity is e', 

then the two eccentricities are related by 1/e
2
 + 1/e'

2
 = 1.  Note how the area of the 

parallelogram remains constant (except for a small glitch from GSP when the length of 
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the parallelogram becomes infinite and its width becomes zero) even though its perimeter 

constantly changes as the animation executes.  A really wonderful construction! 

14.3.14 An Ellipse as Derived from a Compass-Only Construction 

 See Chapter 6, section 6.5.15, for a discussion of the GSP-version of a compass-

only construction.  Refer to Table 4-14. 

Table 14-14: An Ellipse as Derived from a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 9.  Draw circle EA with center at E and passing through point A 

2.  Let C be a random point on the circumference of circle AB 10. Draw circle FA with center at F and passing through point A 

3.  Draw line segment AB 11. Let G be the unlabeled intersection of circles FA and EA 

4.  Let C' be the image as C is reflected across line segment AB 12. Draw line segment CC' 

5.  Let D be a random point inside circle AB 13. Let G' be the reflection of G across line segment CC' * 

6.  Draw circle AD with center at A and passing through point D  14. Trace point G' and change its color 

7.  Draw circle CA with center at C and passing through point A 15. Animate point C around circle AB 

8.  Let E and F be the two intersections of circles AD and CA  

*Note that point G' would also be the intersection of circles CG and C'G if these two circles had been 

  constructed.  The GSP limitation discussed in Chapter 6, section 6.5.15 precludes us from creating G' in 

  that manner. 

14.3.15 A Triangle that Draws Three Ellipses 

 The construction that follows in Table 14-15 is a marvelous construction that is 

fun to play with.  Execute it and see what you think. 

Table 14-15: A Triangle that Draws Three Ellipses 

1.  Draw small ΔABC composed of line segments AB, BC & AC 12. Trace point J and change its color (say red) 

2.  Draw horizontal line DE 13. Let K be a second random point on parallel L2 

3.  Let F be a random point on line DE 14. Trace point K and change its color (say green) 

4.  Draw circle EF with center at E and passing through point F 15. Let L3 be the image when L2 is rotated about K by BAC 

5.  Let G and H be random points on circle EF’s circumference 16. Let L4 be the image when L2 is rotated about J by ABC 

6.  Draw lines GE and HE 17. Let point L be the intersection of lines L3 and L4 

7.  Construct line L1 parallel to line DE through point H 18. Trace point L and change its color (say cyan) 

8.  Let point I be the intersection of line GE and parallel L1 19. Construct polygon JKL and color it (say yellow) 

9.  Let E' be the image when E is translated by vector H → I 20. Measure the area and perimeter of polygon JKL 

10. Construct line L2 parallel to HE through point E' 21. Animate point H around circle EF 

11. Let J be a random point on parallel L2  

 

 Hide all of the construction elements except triangle ABC, points J, K, L and 

polygon JKL.  Step 1, the construction of triangle ABC, should be executed off to the 

side of the screen; use triangle ABC to change the eccentricity and orientation of the 

ellipses by manipulating angles BAC and ABC.  Note how the vertices of triangle 

(polygon) JKL trace the three ellipses and also not that the area and perimeter of the so-

called tracing triangle are constant.  Neat! 

14.3.16 A Parabola as Derived from a Compass-Only Construction 

 This GSP-version of a compass-only construction (Table 14-16) has only two 

steps that are non-compass steps, that is, steps 4 and 5.  At the risk of sounding 

redundant, see Chapter 6, section 6.5.15 for a discussion of the GSP-version of a 

compass-only construction. 
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Table 14-16: A Parabola from a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 10. Draw circle BA with center at B and passing through point A 

2.  Let C be a random point on the circumference of circle AB 11. Draw circle FB with center at F and passing through point B 

3.  Draw circle CB with center at C and passing through point B 12. Let G and H be the two intersections of circles BA and FB 

4.  Draw line segment AC 13. Draw circle GB with center at G and passing through point B 

5.  Let B' be the image as B is reflected across line segment AC 14. Draw circle HB with center at H and passing through point B 

6.  Draw circle B'C with center at B' and passing through point C 15. Let I be the unlabeled intersection of circles GB and HB 

7.  Let E and D be the intersections of circle B'C and circle CB 16. Trace point I and change its color 

8.  Draw circle DE with center at D and passing through point E 17. Animate point C around circle AB 

9.  Let F be the unlabeled intersection of circle DE and circle CB  

14.3.17 A Conic Section by Straight Edge Alone 

 Here is a really weird construction that requires a lot of playing around to obtain 

all of the conics. Refer to Table 14-17. 

Table 14-17: A Conic Section by Straight Edge Alone 

1.  Let A, B, C, and D be four random points in the plane 8.  Draw line BI 

2.  Draw lines AB, BC, and AC 9.  Draw line AI 

3.  Draw line DE such that it intersects lines AC and BC 10. Let point J be the intersection of lines AI and BC 

4.  Draw circle FG with center at F and passing through point G 11. Let point K be the intersection of lines BI and AC 

5.  Let H be a random point circle FG 12. Draw line JK 

6.  Draw line FH 13. Trace line JK and change its color 

7.  Let point I be the intersection of line FH and line DE 14. Animate point H around circle FG 

 

 Drag points A, B, C, and D to different positions and rerun the animation to 

obtain different conics.  Why is this construction entitled "... by straight edge alone" 

when there is clearly a circle drawn (therefore a compass used) in step 4?  Circle FG is 

merely the driving mechanism for the animation; in lieu of steps 4 – 7, we could just as 

easily have put a random point on line DE instead of point I and simply animated that 

random point along line DE.  So the compass was not really needed! 

14.3.18 The Ellipse and Its Tangent 

 Table 14-18 contains a simple construction for the tangent to the ellipse. 

Table 14-18: The Ellipse and Its Tangent 

1.  Draw circle AB with center at A and passing through point B 10. Let point F be the intersection of perpendiculars P1 and P2 

2.  Let C be a random point outside of circle AB 11. Construct the locus of F while point D traverses circle AC 

3.  Draw circle AC with center at point A and passing through C 12. Construct P3  to line AB through point E 

4.  Draw line AB 13. Construct P4  to P1 through point D 

5.  Let D be a random point on the circumference of circle AC 14. Let point G be the intersection of perpendiculars P3 and P4 

6.  Draw line AD 15. Draw line AG 

7.  Construct P1  to line AB through point D 16. Construct P5  to line AG through point F 

8.  Let E be either intersection of line AD with circle AB 17. Animate point D around circle AC 

9.  Construct P2  to P1 through point E  

14.3.19 The Hyperbola and Its Tangent 

 The construction of a hyperbola’s tangent is also simple, but very elegant, as can 

be seen from the construction of Table 14-19. 
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Table 14-19: The Hyperbola and Its Tangent 

1.  Draw circle AB with center at A and passing through point B 12. Construct the locus of point F as point C traverses circle AB 

2.  Draw line AB 13. Let G be the intersection of perpendicular P2 and line AC 

3.  Let C be a random point on the circumference of circle AB 14. Construct P5  to P2 through point G 

4.  Draw line AC 15. Construct P6  to line AC through point E 

5.  Construct P1  to line AC through point C 16. Let H be the intersection of perpendicular P6 and line AB 

6.  Let point D be the intersection of P1 and line AB 17. Construct P7  to line AB through point H 

7.  Construct P2  to line AB through point D 18. Let point I be the intersection of perpendiculars P5 and P7 

8.  Construct P3  to line AB through point B 19. Let I' be the image when point I is reflected across line AB 

9.  Let point E be the intersection of P3 and line AC 20. Draw line AI' 

10. Construct P4  to P3 through point E 21. Construct P8 to line AI' through point F 

11. Let point F be the intersection of perpendiculars P2 and P4 22. Animate point C around circle AB 

 

 Perpendicular P8 is obviously the tangent to the hyperbola.  Note how the tangent 

switches from one branch of the hyperbola to the other as the animation is executed. 

14.3.20 Dancing Ellipses 

 See Table 14-20 for the last construction of this chapter. 

Table 14-20: A Dance of Ellipses 

1.  Draw horizontal line AB 11. Let G be the midpoint of line segment DE 

2.  Draw circle AB with center at A and passing through point B 12. Construct P1  to line segment BD through point F 

3.  Let C be a random point inside circle AB not on line AB  13. Construct P2  to line segment DE through point G 

4.  Draw circle AC with center at A and passing through point C 14. Let H be the intersection of line AB and perpendicular P1 

5.  Let D be a random point on the circumference of circle AC 15. Let I be the intersection of line AE and perpendicular P2 

6.  Let E be a random point on the circumference of circle AB 16. Construct the locus of point I as point E traverses circle AB 

7.  Draw line segment BD 17. Let I' be the image when I is reflected across perpendicular P1 

8.  Draw line segment DE 18. Construct the locus of point I' as point E traverses circle AB 

9.  Draw line AE 19. Animate point D on circle AC 

10. Let F be the midpoint of line segment BD  

  

Here are a few of the things that you can do to play with this construction.  Trace 

either perpendicular P1 or P2 and rerun the animation to obtain the envelope of a 

hyperbola.  Note how the eccentricities of the ellipses change as one drags point C closer 

and closer to point B.  Drag point B so that distance AB becomes less than distance AC 

and observe how the two ellipses are transformed into two hyperbolas.  Etc., etc., etc.   
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Figure 14-8: A Paraboloid 

 

The solid of revolution formed when the parabola with equation y
2
 = 4x is revolved about 

the x-axis, or, in other words, a paraboloid.  The paraboloid has been give a shiny-

metallic surface finish which is seen reflecting the background environment and the light 

sources that have been placed to light the scene.  The background is a star-lit night sky 

meeting an infinite blue and green checkered plane at the horizon.  Note how some of the 

stars are reflected on the inside of the paraboloid. 
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Chapter 15 – The Lemniscate of Bernoulli 
 

 

Figure 15-1: The Lemniscate of Bernoulli in Three Dimensions 

 

The cross-section of the object above is the Lemniscate of Bernoulli.  It has been extruded 

into the third dimension (normal to the plane of the paper) and rendered with a shiny-red 

surface.  It was then placed over the orange and green checkered plane which meets a 

threatening, darkish sky at the horizon.  Light sources have been placed so as to partially 

shadow the object. 
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15.1 Introduction 

 In 1694 Jakob Bernoulli published a curve in Acta Eruditorum that he described 

as being shaped like a figure eight, or a knot, or bow of a ribbon.  Following the protocol 

of his day, he gave this curve the Latin name of lemniscus, which translates as a pendant 

ribbon to be fastened to a victor's garland.  Bernoulli was not aware that the curve he 

described was a special case of a Cassini Oval which had already been described by 

Cassini some 14 years earlier.  Today, we know the curve as the Lemniscate (pronounced 

lem·nis·cate) of Bernoulli.  This curve is most commonly defined as the locus of a point 

which moves so that the product of its distances from two fixed points is constant and is 

equal to the square of half the distance between these points.  The general properties of 

the Lemniscate were discovered by G. Fagnano (an Italian mathematician and ordained 

priest) in 1750.  Later investigations of the arc length by Gauss and Euler ultimately led 

to the development of elliptic functions.  In the last chapter, we examined curves that 

were defined as the sections obtained when a plane cut a cone, i.e., conic sections.  

Another way to define the Lemniscate is as a toric section, that is, when a plane cuts a 

torus (see Figure 15-2). 

· 

 

Figure 15-2: The Lemniscate of Bernoulli as a Toric Section 

15.2 Equations and Graph of the Lemniscate of Bernoulli 

 Using the "locus" definition of the Lemniscate in the introduction above, and if 

the two fixed points are located at  0,
2

a , then the Cartesian equation will be 
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By squaring both sides, performing the indicated multiplication, and then simplifying the 

result, one gets  
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   222222 yxayx       Equation 15-1 

The polar equation is quite easily derived by making the usual substitutions of x
2
 + y

2
 = r

2
 

and (x, y) = r (cos, sin).  That is, 

2cos22 ar       Equation 15-2 

For a parametric representation, let y = x sint then substitute this value for y in Equation 

15-1 and solve for x.  Doing this yields  

t

ta
x

2sin1

cos


 . 

And, since y = x sint, we have that 

t

tta
y

2sin1

cossin


 . 

Therefore, our parametric equations are 

 

     


 tt
t

ta
yx      ,sin,1

sin1

cos
,

2
     Equation 15-3 

Further, the pedal and bipolar equations are, respectively 

par 23       Equation 15-4 

2

2a
rr       Equation 15-5 

The equation of the tangent line to the Lemniscate at the point t = q is 

    qaxqyqq 322 cossin313sinsin       Equation 15-6 

 Figure 15-3 depicts a graph of the Lemniscate of Bernoulli. 

 

 

Figure 15-3: Graph of the Lemniscate of Bernoulli 
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15.3 Analytical and Physical Properties of the Lemniscate of Bernoulli 

Based on the Lemniscate’s parametric representation found in Equation 15-3, that 

is, x = a cost / (1 + sin
2
t) and y = a cost sint / (1 + sin

2
t), the following subsections 

contain an analysis of the Lemniscate. 

15.3.1 Derivatives of the Lemniscate of Bernoulli 
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15.3.2 Metric Properties of the Lemniscate of Bernoulli 

For the area, we use the polar form for ease of calculation.  That is, 
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2

1
. 

 

For one loop of the Lemniscate we therefore have, 
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Therefore, the area of the total Lemniscate (i.e., both loops) is A = a
2
, quite an elegant 

result. 

 

 If p is the distance from the origin to the tangent of the Lemniscate, then 
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 If r represents the radial distance to the Lemniscate, then 
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15.3.3 Curvature of the Lemniscate of Bernoulli 

 If ρ represents the radius of curvature for the Lemniscate, then 
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 If (α, β) represents the coordinates of the center of curvature for the Lemniscate, 

then 
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15.3.4 Angles for the Lemniscate of Bernoulli 

 If ψ is the tangential-radial angle for the Lemniscate, then 
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 If  is the radial angle of the Lemniscate, then 
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 If  denotes the tangential angle of the Lemniscate, then 
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15.4 Geometric Properties of the Lemniscate of Bernoulli 

 Intercepts:  (a, 0); (0, 0); (–a, 0). 

 

 Extrema:  (a, 0) is the x-maximum, (–a, 0) is the x-minimum. 
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 are the y-maximum and minimum, respectively. 
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 Point of inflection: (0, 0). 

 

 Extent: –a ≤ x ≤ a; 
4

2

4

2 a
y

a



 

 

 Symmetries:  The Lemniscate is symmetric about the x-axis, the y-axis, 

and the origin. 

 

 Loops: two loops, one for t ≤ –/2 and t ≥ /2; the other for –/2 ≤ t ≤ /2. 

15.5 Dynamic Geometry of the Lemniscate of Bernoulli 

 The following nine subsections delineate dynamic geometry constructions that 

either generate or illustrate some property or characteristic of the Lemniscate of 

Bernoulli. 

15.5.1 The Lemniscate of Bernoulli from the Midpoint of a Line Segment 

 Here is a very simple construction that generates the Lemniscate of Bernoulli.  

Refer to Table 15-1. 

Table 15-1: The Lemniscate of Bernoulli from the Midpoint of a Line Segment 

1.  Draw circle AB with center at A and passing through point B 7.  Let C'' be the image as C' is reflected across line segment A'C 

2.  Let C be a random point on the circumference of circle AB 8.  Draw line segment A'C'' 

3.  Let A' be the image when A is rotated about point B by – 90° 9.  Draw line segment CC'' 

4.  Let C' be the image when C is translated by vector A → A' 10. Let D be the midpoint of line segment CC'' 

5.  Draw line segment A'C 11. Trace point D and change its color 

6.  Draw line segment AC 12. Animate point C around circle AB 

15.5.2 The Lemniscate of Bernoulli as the Pedal Curve of the Hyperbola 

 If we are given a rectangular hyperbola and a point on that hyperbola and if we 

draw a tangent to the hyperbola through the given point and then construct a 

perpendicular to the tangent through the origin, the locus of the intersection point of the 

tangent and the perpendicular is the Lemniscate of Bernoulli.  That’s the long way of 

saying that the pedal curve of a rectangular hyperbola is a Lemniscate when the pedal 

point is the origin, and you can verify that fact with the construction of Table 15-2. 
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Table 15-2: The Lemniscate of Bernoulli as the Pedal Curve of the Hyperbola 

1.  Create an x-y axis with origin at A and unit point B = (1, 0) 16. Construct P5  to the x-axis through point H 

2.  Draw circle AB with center at A and passing through point B 17. Draw circle AF' with center at A and passing through point F' 

3.  Let C be a random point on the x-axis 18. Let I be the intersection of perpendiculars P4 and P5 

4.  Let D be a random point on the circumference of circle AB 19. Trace point I and change its color (say green) 

5.  Construct P1  to the x-axis through point C 20. Let J be either intersection of the x-axis with circle AF' 

6.  Draw line AD 21. Draw line GI 

7.   Draw circle AC with center at A and passing through point C 22. Draw line segment AI 

8.  Construct P2  to the x-axis through point D 23. Construct P6  to line GI through point A 

9.  Construct P3  to line AD through point D 24. Let K be the midpoint of line segment AI 

10. Let E be the intersection of Line AD and perpendicular P1 25. Let L be the intersection of line GI and perpendicular P6 

11. Let F be either intersection of the y-axis with circle AC 26. Trace point L and change its color (say yellow) 

12. Let G be the intersection of the x-axis and perpendicular P2 27. Draw line segment KL 

13. Let H be the intersection of the x-axis and perpendicular P3 28. Construct P7  to line segment KL through point L 

14. Construct P4  to P1 through point E 29. Animate point D around circle AB 

15. Let F' be the image when F is translated by vector A → B  

  

In this construction, point I is the point on the hyperbola and line GI is a tangent 

to the hyperbola.  Further, as an added bonus, perpendicular P7 is a tangent to the 

Lemniscate.  For a really beautiful animation, hide all the lines except the x-axis, the y-

axis, and the two tangents and make the tangents thick and of different colors.  Hide all 

the circles, all the line segments, and all of the points except the two tracing points (I and 

L) and the point C.  Drag point C to change the eccentricity of the hyperbola and thereby 

the shape of the Lemniscate loops. 

15.5.3 The Lemniscate of Bernoulli as the Cissoid of Two Circles 

 The Lemniscate of Bernoulli can be generated if treated as the Cissoid of two 

circles with respect to a point that is located at a distance R∙√2 from the center of each 

circle, where R is the radius of each circle.  A demonstration of this property is found in 

Table 15-3. 

Table 15-3: The Lemniscate of Bernoulli as the Cissoid of Two Circles 

1.  Draw horizontal line AB 8.  Let D be the unlabeled intersection of line A1C and circle AB 

2.  Draw circle AB with center at A and passing through point B 9.  Let point A2 be the translation of point A1 by vector C → D 

3.  Let m1 be a measure of the distance AB 10. Trace point A2 and change its color 

4.  Calculate m2 = m1∙√2 11. Construct P1  to line AB through point A1 

5.  Let A1 be the image when A is translated by distance m2 at 0° 12. Let A3 be the reflection of point A2 across perpendicular P1 

6.  Let C be a random point on the circumference of circle AB 13. Trace point A3 and change its color 

7.  Draw line A1C 14. Animate point C around circle AB 

 

 Lest you think that there is a circle missing here, think again.  If you must see the 

second circle, simply reflect circle AB across perpendicular P1—that’s the second circle. 

15.5.4 The Lemniscate of Bernoulli and a Circumscribing Circle 

 Table 5-4 delineates a rather bizarre construction that not only generates the 

Lemniscate of Bernoulli but also inscribes the Lemniscate inside a circle. 
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Table 15-4: The Lemniscate of Bernoulli and a Circumscribing Circle 

1.  Draw line AB 9.  Let F' be the image when F is translated by m1 at 0° 

2.  Let C and D be two random points on line AB 10. Draw circle FF' with center at F and passing through F' 

3.  Let E be a random point not on line AB 11. Let G and H be the intersections of circles CE and FF' 

4.  Draw circle CE with center at C and passing through point E 12. Draw line segments FG and FH 

5.  Draw line segment CE 13. Let I be the midpoint of line segment FG 

6.  Let C1 be the circle centered at D and radius = to line segment CE 14. Let J be the midpoint of line segment FH 

7.  Let F be a random point on the circumference of circle C1 15. Trace points I and J and change their color 

8.  Let m1 be a measure of distance CD 16. Animate point F around circle C1 

 

 With this construction, you might say that we are simultaneously generating a 

conic and toric section (a little mathematical humor—very little). 

15.5.5 The Lemniscate of Bernoulli as an Envelope of Circles 

 It just so happens that if you take any point on a rectangular hyperbola as the 

center of a circle which passes through the point at the center of the hyperbola, then the 

envelope of the locus of all of those circles forms the Lemniscate of Bernoulli.  The 

following construction can be used to verify this property.  Refer to Table 15-5. 

 

 Dragging point D will change the eccentricity of the hyperbola and of the 

Lemniscate.  However, if you drag point D so that it lies inside of circle AB, the 

hyperbola turns into an ellipse and the envelope becomes something other then a 

Lemniscate.  Try it! 

Table 15-5: The Lemniscate of Bernoulli as an Envelope of Circles 

1.  Draw circle AB with center at A and passing through point B 9.  Construct P1  to line segment CD through point F 

2.  Let C be a random point on the circumference of circle AB 10. Let point G be the intersection of P1 and line AC 

3.  Let D be any point in the plane outside of circle AB 11. Draw line segment DG 

4.  Draw line segment AD 12. Draw circle GE with center at G and passing through point E 

5.  Let E be the midpoint of line segment AD 13. Trace circle GE and change its color 

6.  Draw line segment CD 14. Construct the locus of G while point C traverses circle AB 

7.  Let point F be the midpoint of line segment CD 15. Animate point C around circle AB 

8.  Draw line AC  

15.5.6 A Lemniscate "Toy" to Play With 

 The animation delineated in Table 15-6 is an adjustable construction that can be 

used to experiment with different configurations—some of which trace the Lemniscate of 

Bernoulli. 

Table 15-6: A Lemniscate of Bernoulli Toy 

1.  Draw horizontal line AB through the middle of the screen 14. Let E2 be the image when E is translated by length m2 at 0° 

2.  Let C be a random point near the top of the screen 15. Draw line segment EE2 

3.  Construct line L1 parallel to line AB through point C 16. Draw circle EE1 with center at E and passing through point E1 

4.  Let D be a random point just underneath point C 17. Let H be a random point on the circumference of circle EE1 

5.  Construct line L2 parallel to line AB through point D 18. Draw line segments E2H and EH 

6.  Let E be a random point on line AB 19. Let I be the midpoint of line segment E2H 

7.  Let F be a random point on L1 20. Construct P1  to line segment E2H through point I 

8.  Let G be a random point on L2 21. Let E3 be the reflection of point E across perpendicular P1 

9.  Hide lines L1, L2, and AB 22. Draw line segments E2E3 and E3H 

10. Draw line segments CF and DG 23. Let J be the midpoint of line segment E3H 

11. Let m1 be a measure of the length of line segment CF 24. Let K be a random point on line segment E3H 

12. Let m2 be a measure of the length of line segment DG 25. Trace point K and change its color 

13. Let E1 be the image when E is translated by length m1 at 0° 26. Animate point H around circle EE1 
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 Three points are adjustable here.  Points E, F, and K can all be dragged to affect 

the curve that the animation traces.  Case 1:  If point E and/or point F are dragged so that 

distance CF is less than distance DG (i.e., CF < DG), we get the trace of the Lemniscate 

of Bernoulli whenever point K and point J coincide.  As point K is dragged toward either 

end of its line segment (i.e., away from the midpoint, J), we get Lemniscate-like curves 

where one loop is smaller than the other.  When point K starts getting close to the 

endpoint of line segment E3H, the small loop disappears and we get one large loop with a 

slight protrusion on one side.  Finally, when point K coincides with the endpoint of the 

line segment, we get a circle.  Case 2:  If point E and/or point F are dragged so that 

distance CF is equal to distance DG (i.e., CF = DG), point K traces a circle no matter 

where point K is dragged on line segment E3H.  Case 3:  If point E and/or point F are 

dragged so that distance CF is greater than distance DG (i.e., CF > DG), point K traces 

closed curves that are not quite completely circular but flattened slightly on one side. 

It is interesting to experiment with this "toy." 

15.5.7 The Lemniscate of Bernoulli as a Compass-Only Construction 

 See Chapter 6 for a discussion of what is meant by the GSP-version of a compass-

only construction.  Steps 6 and 7 below in Table 15-7 are the non-compass steps, but 

necessary because of GSP’s inability to correctly manipulate point A' if point A' is 

constructed as the intersection of circle CA and circle DA. 

Table 15-7: The Lemniscate of Bernoulli as a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 8.  Draw circle A'C with center at A' and passing through point C 

2.  Let C be a random point on the circumference of circle AB 9.  Let E and F be the two intersections of circles A'C and CA 

3.  Let D be a random point external to circle AB 10. Draw circle EF with center at E and passing through point F 

4.  Draw circle CA with center at C and passing through point A 11. Let G be the unlabeled intersection of circle EF and circle CA 

5.  Draw circle DA with center at D and passing through point A 12. Trace point G and change its color 

6.  Draw line segment CD 13. Animate point C around circle AB 

7.  Let A' be the reflection of A across line segment CD  

15.5.8 The Lemniscate of Bernoulli as the Inverse of a Hyperbola 

As the title to this subsection suggests, the inverse of a rectangular hyperbola with 

respect to its center is the Lemniscate of Bernoulli.  Check it out with the construction 

delineated in Table 15-8. 

Table 15-8: The Lemniscate of Bernoulli as the Inverse of a Hyperbola 

1.  Draw circle AB with center at A and passing through point B 11. Draw line EG 

2.  Let C be a random point on the circumference of circle AB 12. Let m1 be a measure of the distance from point E to point G 

3.  Draw horizontal line segment AD > line segment AB 13. Draw circle EH with center at E and passing through point H 

4.  Let E be the midpoint of line segment AD 14. Let m2 be a measure of the distance from point E to point H 

5.  Draw line segment CD 15. Calculate m3 = (m2)
2 / m1 

6.  Let F be the midpoint of line segment CD 16. Let E' be the image when E is translated by m3 at 0° 

7.  Draw line AC 17. Draw circle EE' with center at E and passing through point E' 

8.  Construct P1  to line segment CD through point F 18. Let I and J be the two intersections of circle EE' with line EG 

9.  Let G be the intersection of perpendicular P1 and line AC 19. Trace either point I or point J and change its color 

10. Construct the locus of point G as point C traverses circle AB 20. Animate point C around circle AB 

15.5.9 The Osculating Circle of the Lemniscate of Bernoulli 

 Table 15-9 contains a construction for the osculating circle of the Lemniscate of 

Bernoulli as well as a few other surprises. 
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Table 15-9: The Osculating Circle of the Lemniscate of Bernoulli 

1.  Draw Circle AB with center at A and passing through point B 18. Draw line AD  

2.  Let C be a random point on the circumference of circle AB 19. Construct P4  to P1 through point H 

3.  Let D be a random point external to circle AB 20. Let point J be the intersection of line AD and P4 

4.  Draw line segment CD 21. Construct P5  to P4 through point J 

5.  Let E be the midpoint of line segment CD 22. Let point K be the intersection of line AC and P5 

6.  Construct P1  to line segment CD through point E. 23. Construct P6  to line AC through point K 

7.  Draw line segment AD 24. Let point L be the intersection of perpendiculars P4 and P6 

8.  Let F be the midpoint of line segment AD 25. Draw line segment FL 

9.  Construct P2  to P1 through point F 26. Let M be the midpoint of line segment FL 

10. Let point G be the intersection of perpendiculars P1 and P2 27. Let point N be the intersection of line GI with P4 

11. Construct the locus of G as point C traver4ses circle AB 28. Construct P7  to line GI through point N 

12. Draw line AC 29. Let point O be the intersection of perpendiculars P2 and P7 

13. Let point H be the intersection of line AC and P1 30. Draw line MO 

14. Draw line segment FH 31. Let point P be the intersection of line MO and line GI 

15. Let I be the midpoint of line segment FH 32. Draw circle PG with center at P and passing through point G 

16. Draw line GI 33. Make circle PG thick and change its color 

17. Construct P3  to line GI through point G 34. Animate point C around circle AB 

 

Surprises?  Oh yes, construct the locus of point H as point C travels on circle AB 

and you will find that the locus is that of a rectangular hyperbola.  Further, if you 

construct circle LH, i.e., the circle centered at point L and passing through point H, you 

will see when you rerun the animation that circle LH is the osculating circle of the 

hyperbola.  What an extremely remarkable construction! 
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Figure 15-4: The Lemniscate of Bernoulli as a Solid of Revolution 

 

Made to look like it’s resting on the sea floor, the Lemniscate of Bernoulli has been 

rotated about the x-axis to form the solid in the picture above.  The solid has been given a 

finish that reflects the light coming from above and also the watery surroundings. 
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Chapter 16 – The Folium of Descartes 
 

 

Figure 16-1: The Folium of Descartes as a Solid of Revolution 

 

To form the object in the above picture, the Folium of Descartes was truncated along its 

asymptote and then rotated about the line y = x.  The object was then placed above the 

checkered plane and given a semi-reflective surface.  One can see that it reflects the 

checkered plane in its loop and the loop itself is then reflected in the disk formed by its 

wings.  Light sources have been placed so as to give intersecting shadows on the plane 

below. 
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16.1 Introduction 

 The curve that is known today as the Folium of Descartes was first discussed by 

Descartes in 1638. (Folium, of course, means leaf.) Although Descartes found the correct 

shape of the curve in the first quadrant, he believed that the leaf shape was repeated in all 

four quadrants, thereby rendering a curve that looked like the four petals of a flower.  

(See Figure 16-2 for a graph of this curve.)  It is said that Descartes devised the curve to 

challenge Fermat’s extremum-finding techniques.  Whether Fermat was successful or not 

is unknown; the story may simply be untrue.  However, the problem to determine the 

tangent to the curve was definitely proposed to Roberval who also wrongly believed that 

the curve had the form of a jasmine flower.  His name (fleur de jasmine) was later 

changed.  As will be seen in the dynamic geometry section of this chapter, the problem of 

finding the tangent to the curve is quite a formidable one and takes some doing.   

16.2 Equations and Graph of the Folium of Descartes 

 The Folium of Descartes is the curve described by the Cartesian equation 

axyyx 333       Equation 16-1 

Clearly, the polar form follows directly by substituting x = r cos and y = r sin  resulting 

in 




33 cossin

cossin3




a
r      Equation 16-2 

Further, a parametric representation can be derived by letting y = xt in Equation 16-1.  

Making this substitution and solving for x and, in turn y, we have 

    


 tt
t

at
yx      ,1

1

3
,

3
     Equation 16-3 

In the parametric form, the curve has three arcs.  For –1 < t < 0, the curve is located in the 

second quadrant, with t = 0 corresponding to the origin.  For t < –1, the curve occupies 

the fourth quadrant, and approaches the origin as t → – ∞.  The loop in the first quadrant 

corresponds to 0 ≤ t < ∞, going counterclockwise with increasing t. 

 

The equation of the tangent to the Folium of Descartes at the point t = q is  

    233 3221 aqxqqyq       Equation 16-4 

Figure 16-2 represents a graph of the curve. 

16.3 Analytical and Physical Properties of the Folium of Descartes 

Based on the Folium of Descartes’ parametric representation found in Equation 

16-3, i.e., x = 3at / (1 + t
3
) and y = 3at

2
 / (1 + t

3
), the following subsections contain an 

analysis of the Folium of Descartes. 
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Figure 16-2: Graph of the Folium of Descartes 

16.3.1 Derivatives of the Folium of Descartes 
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16.3.2 Metric Properties of the Folium of Descartes 

 To calculate the area of the loop, the easiest way to proceed is to convert the 

parametric form of the Folium of Descartes to a polar form and use the area formula 




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drA 2

2

1
. 

Upon doing this, we get 
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To evaluate this integral, let u = 1 + t
3
.  Then du = 3t

2
dt and the limits become 1 to ∞.  

Hence,  
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 If p is the distance from the origin to the tangent of the Folium of Descartes, then 
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 If r is the radial distance, that is, the distance from the origin to the curve, then 
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16.3.3 Curvature of the Folium of Descartes 

 If ρ represents the radius of curvature for the Folium of Descartes, then 
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 If (α, β) denotes the coordinates of the center of curvature for the Folium of 

Descartes, then 
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16.3.4 Angles for the Folium of Descartes 

 If ψ is the tangential-radial angle for the Folium of Descartes, then 
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 If  denotes the tangential angle of the Folium of Descartes, then 

 

 
3

3

21

2
tan

t

tt




 . 

 

 If  represents the radial angle for the Folium of Descartes, then 

 

tan  = t. 

16.4 Geometric Properties of the Folium of Descartes 

 Intercept:  (0, 0). 

 

 Extrema:   33 4,2 aa  is y-maximum;   33 2,4 aa  is x-maximum. 

 

 Extent:  –∞ < x < +∞; –∞ < y < +∞; –∞ < t < +∞. 

 

 Discontinuity:  t = –1. 

 

 Symmetry:  The Folium of Descartes is symmetric about the line y = x. 

 

 Asymptote:  x + y + a = 0. 

 

 Loop:  0 ≤ t < ∞. 

16.5 Dynamic Geometry of the Folium of Descartes 

 The next few sections delineate dynamic geometry constructions for the Folium 

of Descartes and its tangent.  Interestingly enough, every one of the following 
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constructions specifies the use of the inversion of a point.  Recall that the inversion of 

point C with respect to circle AB means that if point C' is the inverted point then AB
2
 = 

AC · AC' and C' will lie on line AC.  The inversions that follow are therefore generally 

accomplished by calculating the quantity m = (AB
2
/AC) – AC and then translating point 

C at the appropriate angle by the calculated distance.  However, this calculation of m and 

the subsequent translation does not seem like a "straight-edge and compass construction."  

Nonetheless, the inversion of a point with respect to a circle can be done with a simple 

straight-edge and compass and we show how to make such a construction in the 

Appendix.  Therefore, when encountering inversion in any of the constructions in this 

text, consider the calculation method alluded to above to be merely a shortcut for the 

"straight-edge and compass" methodology. 

16.5.1 The Folium of Descartes Using Polar Coordinates 

 For the construction found in Table 16-1, make sure that the grid form and the 

coordinate form under the graph menu of GSP are set for polar representation and that the 

angle units in the preference window under the display menu are set for radian measure. 

Table 16-1: The Folium of Descartes Using Polar Coordinates 

1.  Create x-y axes with origin at point A and unit point B = (1, 0) 11. Calculate m3 = m1 + m2 

2.  Draw circle AB with center at A and passing through point B 12. Let G be the plot of m3 and t as r, , i.e., G = (r,) = (m3, t) 

3.  Draw circle CD with center at C and passing through point D 13. Draw ray AG 

4.  Let E be a random point on the circumference of circle CD 14. Let m4 be the measure of the distance from point A to point B 

5.  Draw line segments CD and CE 15. Let m5 be the measure of the distance from point A to point G 

6.  Let t be the measure of DCE in radians 16. Calculate m6 = (m4
2 / m5) – m5 

7.  Let F be a random point in the plane 17. Let G' be the image when G is translated by m6 at BAG 

8.  Label the r-coordinate of point F as a 18. Trace point G' and change its color 

9.  Calculate m1 = cos2t / (3asint) 19. Animate point E around circle CD 

10. Calculate m2 = sin2t / (3acost)  

 

 If, in the Cartesian equation for the Folium of Descartes, one makes the 

substitution x = r cost and y = r sint, it is easy to see that 
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Hence, the curve can be constructed by taking the inverse with respect to the unit circle 

of the point with polar coordinates 
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Therefore, steps 5 – 9 make the necessary calculations for the coordinates and then plot 

the point.  Steps 11 – 15 construct the plotted point’s inverse.  Drag point F to change the 

value of a. 

16.5.2 A Real Geometric Construction for the Folium of Descartes 

 The previous construction is what one might call a quasi-geometric construction 

in that it relies heavily on the plotting capability of GSP to achieve its animation.  The 
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only geometry involved is the inversion of point G.  However, Table 16-2 presents a 

construction that is 100 percent geometric. 

Table 16-2: A Real Geometric Construction for the Folium of Descartes 

1.  Draw horizontal line AB 13. Construct P3  to line L2 through point G 

2.  Draw circle AB with center at A and passing through point B 14. Let H be the intersection of perpendicular P2 and line AC 

3.  Construct P1  to Line AB through point A. 15. Let I be the intersection of perpendicular P3 and line AC 

4.  Let C be a random point on the circumference of circle AB 16. Draw line segment HI 

5.  Draw line AC 17. Let J be the midpoint of line segment HI 

6.  Let point D be the point diametrically opposite point B 18. Let J' be the inversion of point J with respect to circle AB* 

7.  Let L1 be the line parallel to line AC through point D       a.  Let m1 be a measure of the distance of point A to point B 

8.  Let E be either intersection of P1 with circle AB       b.  Let m2 be a measure of the distance of point A to point J 

9.  Let L2 be the line parallel to line AC through point E       c.  Calculate m3 = (m1
2/m2) – m2 

10. Let point F be the intersection of line L1 and P1       d.  Translate point J by m3 at BAJ 

11. Construct P2  to line L1 through point F 19. Trace point J' and change its color 

12. Let point G be the intersection of line L2 and line AB 20. Animate point C around circle AB 

*Steps a, b, c, and d are the sub-steps necessary to accomplish step 18. 

 

 We will now continue this construction to add the Folium’s tangent.  This 

becomes quite a complicated construction, mostly due to the fact that the screen gets 

quite crowded with all the lines that are required.  However, if you persevere, it is well 

worth the effort.  The resulting animation is spectacular! 

Table 16-2 (Continued): A Real Geometric Construction for the Folium of Descartes 

21. Let K be the intersection of perpendicular P2 and line AB 32. Construct P6  to P3 through point N 

22. Let K' be the image when point K is reflected across line L1 33. Let point O be the intersection of perpendiculars P5 and P6 

23. Let L be the intersection of perpendiculars P1 and P3  34. Draw line AO 

24. Let L' be the image when point L is reflected across line L2 35. Construct P7  to line AO through point J 

25. Let L'' be the image when point L' is reflected across line AC 36. Draw line segment JJ' 

26. Construct P4  to P3 through point L'' 37. Let P be the midpoint of line segment JJ' 

27. Let point M be the intersection of perpendiculars P2 and P4 38. Construct P8  to line AC through point P 

28. Construct P5  to line AC through point J 39. Let Q and R be random points on perpendicular P7 

29. Let K'' be the image when point K' is reflected across line AC 40. Let Q' and R' be the reflections of Q and R across P8 

30. Draw line segment MK'' 41. Draw line Q'R' 

31. Let N be the midpoint of line segment MK'' 42. Make line Q'R' thick and change its color 

 

 Of course, line Q'R' is the tangent.  For the best looking animation and to really be 

able to see the tangent touch the curve as the animation executes, hide all of the 

construction elements except the tracing point and the tangent line.  It’s gorgeous! 

16.5.3 An Alternate Folium of Descartes Construction 

 If you thought that the previous construction was complicated and created a 

cluttered screen, get a load of the one in Table 16-3.  However, it’s very interesting—give 

it a try.  This construction is also continued in Table 16-3 (Continued) just as we did in 

the previous section, to add the Folium’s tangent.  In this case, it’s also an alternative 

construction for the tangent line.  Again, the screen gets quite crowded with all the lines 

that are required.  As before, however, if you persevere, it is well worth the effort.  When 

you get done and are successful, for a non-cluttered animation, hide all construction 

elements except the tangent line (P11) and the tracing point (J').  There is something quite 

breathtaking about this particular curve.  
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Table 16-3: An Alternate Construction for the Folium of Descartes 

1.  Draw horizontal line AB 16. Let point H be the intersection of line L1 and perpendicular P4 

2.  Draw circle AB with center at A and passing through point B 17. Let H' be the image when H is rotated about point F by 90° 

3.  Construct P1  to line AB through point A 18. Let H'' be the inverse of point H' with respect to circle AB* 

4.  Let C be a random point on the circumference of circle AB       a.  Let m1 be a measure of the distance from point A to B 

5.  Draw line AC       b.  Let m2 be a measure of the distance from point A to H' 

6.  Construct P2  to line AC through point B       c.  Calculate m3 = (m1
2/m2) – m2 

7.  Let D be the intersection of perpendicular P2 and line AC       d.  Let H'' be the translation of  H' by m3 at BAH' 

8.  Construct P3  to line AB through point D 19. Construct P6  to line AB through point H'' 

9.  Let E be the intersection of perpendicular P3 and line AB 20. Let I be the intersection of line AB and perpendicular P6 

10. Construct P4 to line AC through point E 21. Let line L2 be the parallel to perpendicular P4 through point A 

11. Let F be the intersection of perpendicular P4 and line AC 22. Let line L3 be the parallel to line AC through point I 

12. Construct P5  to P2 through point E 23. Let point J be the intersection of lines L2 and L3 

13. Let point G be the intersection of perpendiculars P2 and P5 24. Let J' be the image when J is rotated about point A by 90° 

14. Draw line FG 25. Trace point J' and change its color 

15. Let line L1 be the parallel to line FG through point B 26. Animate point C around circle AB 

*Steps a, b, c, and d are the sub-steps necessary to accomplish step 18. 

 

Now for the continuation: 

Table 16-3 (Continued): An Alternate Construction for the Folium of Descartes 

27. Let K be either intersection of circle AB and P1 37. Let M be the intersection of perpendiculars P1 and P9 

28. Bisect BAK 38. Draw circle AM with center at A and passing through M 

29. Let J'' be the reflection of point J' across the angle bisector 39. Let K' be the inverse of point K with respect to circle AM** 

30. Construct P7  to line AB through point J'       i. Let m7 be a measure of the distance from A to point M 

31. Let L be the intersection of line AB and perpendicular P7       j. Let m8 be a measure of the distance from point A to point K 

32. Draw circle AL with center at A and passing through point L       k. Calculate m9 = (m7
2/m8) – m8 

33. Let B' be the inverse of point B with respect to circle AL*       l. Let K' be the image when K is translated by m9 at BAK 

      e. Let m4 be a measure of the distance from point A to point L 40. Let K'' be the image when K' is dilated about A by 3 

      f. Let m5 be a measure of the distance from point A to point B 41. Construct P10  to P1 through point K'' 

      g. Calculate m6 = (m4
2/m5) – m5 42. Let point N be the intersection of perpendiculars P8 and P10 

      h. Let B' be the image when B is translated by m6 43. Draw line segment NJ'' 

34. Let B'' be the image when B' is dilated about A by 3 44. Construct P11  to line segment NJ'' through point J' 

35. Construct P8  to line AB through point B'' 45. Make perpendicular P11 thick and change its color 

36. Construct P9  to P8 through point J'  

* Steps e, f, g, and h are the sub-steps necessary to accomplish step 33. 

**Steps i, j, k, and l are the sub-steps necessary to accomplish step 39. 

16.5.4 A Variant of the Folium of Descartes Construction 

Table 16-4 contains a construction that is simply a variant of the previous 

construction, but interesting in its own right. 

Table 16-4: Variant of the Folium of Descartes Construction 

1.  Draw horizontal line AB 12. Draw line segment AF 

2.  Construct P1  to line AB through point A 13. Let G be the midpoint of line segment AF 

3.  Draw circle AB with center at A and passing through point B 14. Let G1 be the image when G is translated by vector D' → G 

4.  Let C be a random point on the circumference of circle AB 15. Let G2 be the inversion of G1 with respect to circle AB* 

5.  Draw line AC       a. Let m1 be a measure of the distance from A to B 

6.  Construct P2  to line AC through point B       b. Let m2 be a measure of the distance from A to G1 

7.  Let point D be the intersection of perpendiculars P1 and P2       c. Calculate m3 = m1
2 / m2 – m2 

8.  Let E be the intersection of line AC and perpendicular P2       d. Translate point G1 by distance m3 at BAG1 

9.  Construct P3  to line AB through point B 16. Let G3 be the image when G2 is dilated about point A by 3 

10. Let D' be the image when D is rotated about point E by 90° 17. Trace point G3 and change its color 

11. Let F be the intersection of line AC and perpendicular P3 18. Animate point C around circle AB 

*Steps a, b, c, and d are the sub-steps necessary to accomplish step 15. 

 

 We will not continue with the tangent for this construction as it is essentially a 

duplicate of the tangent construction done in the previous section.
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Figure 16-3: The Loop of the Folium of Descartes in Three Dimensions 

 

The loop of the Folium of Descartes has been extruded to create the three-dimensional 

object seen floating in the sky above.  It has been given an iridescent finish which makes 

it look as though it were made from opal.  A light source has been placed so as to shadow 

the inside portion of the loop.  
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Chapter 17 – The Lemniscate of Gerono 
 

 

Figure 17-1: The Lemniscate of Gerono Rendered in Three Dimensions 

 

The cross-section of the object above is the curve known as the Lemniscate of Gerono.  

To obtain this rendering, the curve was extruded into the third dimension, given a golden 

colored finish, and placed above the green and white checkered plane.  Unlike previous 

renderings, this time the viewpoint is looking down on the object so there is no horizon 

line.  Light sources have been situated so as to illuminate the object from above and 

slightly to the side, thereby casting the shadow down upon the plane and to the side of the 

object.  This also causes the inside loops to be partially shadowed. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 17: The Lemniscate of Gerono  Playing With Dynamic Geometry   17-2 

17.1 Introduction 

 The curve for this chapter is the Lemniscate of Gerono; this curve is sometimes 

referred to as the Eight Curve or the Bowtie Curve (due to its shape).  Camille Christophe 

Gerono was a French mathematics teacher who was born in Paris in 1799, lived there all 

his life, and died in Paris in 1891.  He published many papers on geometry and the 

Diophantine analysis.  The curve was first studied by Gregoire of St. Vincent in 1647 and 

further studied by Cramer in 1750; in 1895, Aubry officially named the curve in 

Gerono’s honor. 

17.2 Equations and Graph of the Lemniscate of Gerono 

 The Lemniscate of Gerono is defined by the Cartesian equation 

 2224 yxax       Equation 17-1 

By making the usual transformation to polar coordinates, that is, x = rcos and y = rsin, 

we obtain the polar equation as 

 2cossec422  ar      Equation 17-2 

Now if we let y = x sin t, Equation 17-1 will yield a parametric representation which is 

   ttayx sin,1cos,  ,     t      Equation 17-3 

An alternate parametric representation can be obtained by letting u = tan (t/2).  After 

much manipulation, this substitution into Equation 17-3 gives 

 
 















22

2

1

2
,1

1

1
,

u

u

u

ua
yx      –   u  +      Equation 17-4 

Figure 17-2 portrays the graph of the Lemniscate of Gerono. 

 

 

Figure 17-2: Graph of the Lemniscate of Gerono 
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The equation of the tangent line to the Lemniscate of Gerono at the point t = q is 

  qaxqyq 32 cos1sin2sin  .     Equation 17-5 

17.3 Analytical and Physical Properties of the Lemniscate of Gerono 

 Based on the Lemniscate of Gerono’s parametric representation found in Equation 

17-3, that is, x = a cos t and y = a sin t cos t, the following subsections contain an analysis 

of the Lemniscate of Gerono. 

17.3.1 Derivatives of the Lemniscate of Gerono 

 tax sin . 

 

 tax cos . 

 

  tay 2sin21 . 

 

 ttay cossin4 . 

 

 
t

t
y

sin

1sin2 2 
 . 

 

 
 

t

tt
y

3

2

sin

sin21cos 
 . 

17.3.2 Metric Properties of the Lemniscate of Gerono 

 One method to calculate the area enclosed by the Lemniscate of Gerono is to first 

note that the two loops of the curve are symmetric and therefore the area enclosed by one 

loop is simply half of the entire area.  Further, each loop is symmetric about the x-axis, so 

the area enclosed by the curve in the first quadrant is one-quarter of the entire area.  

Therefore, solving the Cartesian equation for y, one obtains for the area in the first 

quadrant 

 

a

dxxax
a

A
0

221
. 

 

Now, a substitution of x = a sin  yields the following 

 

 
2

0

22 cossin



 daA . 

Of course, the value of this simple integral is merely a
2
/3 and therefore the total area 

enclosed by the curve is 4a
2
/3.  Alternately, one could substitute u = a

2
 – x

2
 in the first 

integral; however, the ultimate result is, of course, the same. 
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 If the Lemniscate of Gerono is rotated about the x-axis, the volume of the 

resulting solid of revolution can also be calculated.  For the portion of the solid’s volume 

in the first and fourth quadrant, we have 

 

   

a a

dxxxa
a

dxyV
0 0

422

2

2 
  

This expression integrates directly without any intermediate substitution necessary.  Its 

value is 2a
3
/15, thereby making the entire volume of the solid 4a

3
/15. 

 

 If r represents the distance from the origin to the Lemniscate of Gerono, then 

 

ttar 2sin1cos  . 

 

 If p denotes the distance from the origin to the tangent line of the Lemniscate of 

Gerono, then 

tt

ta
p

42

3

sin4sin31

cos




 . 

17.3.3 Curvature of the Lemniscate of Gerono 

 If ρ represents the radius of curvature for the Lemniscate of Gerono, then 

 

 
 tt

tta
2

42

sin21cos

sin4sin31
2

3




 . 

 If (α, β) denotes the coordinates of the center of curvature for the Lemniscate of 

Gerono, then 

 

 
 

 
 

.
sin21cos

sin32sin2
     and     

sin21cos

sin4sin63sin2
2

23

2

422

tt

tta

tt

ttta









   

17.3.4 Angles for the Lemniscate of Gerono 

 If ψ is the tangential-radial angle for the Lemniscate of Gerono, then 

 

tt csccot
2

1
tan 2  . 

 If  is the tangential angle for the Lemniscate of Gerono, then 

 

t

t

sin

1sin2
tan

2 
 . 

 If  is the radial angle for the Lemniscate of Gerono, then 

 

tsintan  . 
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17.4 Geometric Properties of the Lemniscate of Gerono 

 Intercepts: (a, 0); (0, 0), (–a, 0). 

 

 Extrema:  (a, 0) is x-maximum; (–a, 0) is x-minimum; 

               














2
,

2

2 aa
 and 













 

2
,

2

2 aa
 are y-maxima; 

               















2
,

2

2 aa
 and 


















2
,

2

2 aa
 are y-minima. 

 

 Point of Inflection:  (0, 0). 

 

 Extent:  – ≤ t ≤ ; –a ≤ x ≤ a; –a/2 ≤ y ≤ a/2. 

 

 The Lemniscate of Gerono is symmetric about the x-axis, the y-axis, and 

the origin. 

 

 There are two loops:  (1) – ≤ t ≤ –/2 and /2 ≤ t ≤ ; (2) –/2 ≤ t ≤ /2 

17.5 Dynamic Geometry of the Lemniscate of Gerono 

 The following subsections delineate two different constructions for the 

Lemniscate of Gerono as well as constructions for the curve’s tangent line and its 

osculating circle. 

17.5.1 The Lemniscate of Gerono Made Easy 

 The Lemniscate of Gerono can be constructed by taking the locus of the foot of 

the perpendicular through the point (cos, sin) dropped upon the line halfway between 

the point (cos2, sin2) and the x-axis.  The construction of Table 17-1 illustrates this. 

Table 17-1: The Lemniscate of Gerono Made Easy 

1.  Draw horizontal line AB 8.  Let D be the intersection of perpendicular P2 and line AB 

2.  Draw circle AB with center at A and passing through point B 9.  Draw line segment B'D 

3.  Let C be a random point on the circumference of circle AB 10. Let E be the midpoint of line segment B'D 

4.  Draw line AC 11. Construct P3  to P2 through point E 

5.  Construct P1  to line AB through point C 12. Let point F be the intersection of perpendiculars P1 and P3 

6.  Let B' be the image when point B is reflected across line AC 13. Trace point F and change its color 

7.  Construct P2  to line AB through point B' 14. Animate point C around circle AB 

17.5.2 The Tangent Line to the Lemniscate of Gerono 

 We will use the same construction for the Lemniscate here as we did in the 

previous construction; however, we will add the steps necessary to construct the tangent 

line.  Table 17-2 contains the construction.  Of course, once that you have constructed the 

tangent line, it’s "duck soup" to construct the Lemniscate’s pedal curves.  To do so, let 

point H be a random point anywhere on the screen and drop a perpendicular from point H 

to the Lemniscate’s tangent (i.e., P5 in the construction above).  Point I, the intersection 

of that perpendicular and the tangent, will trace the desired pedal curves.  Drag point H  
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Table 17-2: The Tangent to the Lemniscate of Gerono 

1.  Draw horizontal line AB 11. Construct P3  to P2 through point E 

2.  Draw circle AB with center at A and passing through point B 12. Let point F be the intersection of perpendiculars P1 and P3 

3.  Let C be a random point on the circumference of circle AB 13. Trace point F and change its color 

4.  Draw line AC 14. Construct P4  to P2 through point C 

5.  Let B' be the image when point B is reflected across line AC 15. Let point G be the intersection of perpendiculars P2 and P4 

6.  Construct P1  to line AB through point C 16. Draw line AG 

7.  Construct P2  to line AB through point B' 17. Construct P5  to line AG through point F 

8.  Let D be the intersection of perpendicular P2 and line AB 18. Make perpendicular P5 thick and change its color 

9.  Draw line segment B'D 19. Animate point C around circle AB 

10. Let E be the midpoint of line segment B'D  

 

around to various positions on the screen to trace different members of the family of 

pedals.  Experiment with different positions of point H; it is particularly interesting to 

place point H on a perpendicular to line AB through point A—one gets a very symmetric 

pedal.   

17.5.3 The Osculating Circle of the Lemniscate of Gerono 

Well, the constructions in this chapter have been pretty easy up to now.  Get a 

load of this one!  See Table 17-3. 

Table 17-3: The Osculating Circle of the Lemniscate of Gerono 

1.  Draw horizontal line AB 22. Let A2 be the image when A is translated by vector I → A 

2.  Draw circle AB with center at A and passing through point B 23. Draw line A1A2 

3.  Let C be a random point on the circumference of circle AB 24. Construct P6  to line A1A2 through point B' 

4.  Draw line AC 25. Let J be a random point on perpendicular P6 

5.  Construct P1  to line AB through point C 26. Let A3 be the image when A is translated by vector J → A 

6.  Let B' be the image when point B is reflected across line AC 27. Let K be a second random point on perpendicular P6 

7.  Construct P2  to line AB through point B' 28. Let A4 be the image when A is translated by vector K → A 

8.  Let D be the intersection of perpendicular P2 and line AB 29. Draw line A3A4 

9.  Draw line segment B'D 30. Let A5 be the image when A is reflected across line A3A4 

10. Let E be the midpoint of line segment B'D 31. Let B1 be the image when B is reflected across line A3A4 

11. Construct P3  to P2 through point E 32. Draw line A5B1 

12. Let point F be the intersection of perpendiculars P1 and P3 33. Let point L be the intersection of line A5B1 and line A1A2 

13. Trace point F and change its color 34. Construct P7  to line AG through point L 

14. Construct P4  to P2 through point C 35. Let M be the intersection of perpendicular P7 and line AG 

15. Let point G be the intersection of perpendiculars P2 and P4 36. Draw line MG' 

16. Let G' be the image when G is rotated about point A by 90° 37. Construct P8  to line MG' through point G' 

17. Draw line AG 38. Let N be the intersection of line AG and perpendicular P8 

18. Construct P5  to line AG through point G 39. Let F' be the image when F is translated by vector N → A 

19. Let H be a random point on perpendicular P1 40. Draw circle F'F with center at F' and passing through point F 

20. Let A1 be the image when A is translated by vector H → A 41. Change the color of circle F'F and make it thick 

21. Let I be a second random point on perpendicular P1 42. Animate point C around circle AB 

  

This is a spectacular looking animation!  If you’re interested in seeing the evolute 

of the Lemniscate of Gerono, trace point F' and rerun the animation.  The evolute is very 

weird and very symmetric; it makes for a nice graphic. 

17.5.4 An Alternate Construction for the Lemniscate of Gerono 

At first, this construction may seem very similar to that of section 17.5.1; 

however, it is actually quite different.  There is a type of derived curve that was not  
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addressed in Chapter 1.  Refer to Figure 17-3 for the following brief discussion.  The 

derived curve is called a hyperbolism and is defined in the following way.  Given two 

curves, Γ1 and Γ2, a point O, and a line L0 through point O intersecting Γ1 and Γ2 in points 

P and Q, respectively, draw line L1 through point P parallel to the x-axis and draw line L2 

through point Q perpendicular to the x-axis.  If point R is the intersection point of lines L1 

and L2, then the locus of point R for all of the possible L0 lines is the curve defined to be 

the hyperbolism of Γ1 and Γ2 with respect to point O.  Point O is, of course, called the 

pole point.   

 

Figure 17-3: The Hyperbolism 

 

Well, given this brief introduction to the hyperbolism, it turns out that the 

Lemniscate of Gerono is a hyperbolism of two tangent circles such that the smaller circle 

has half the radius of the larger circle, is inside the larger circle, and the pole point is the 

center of the larger circle.  In other words, if the pole point is the origin, and if the larger 

circle has equation x
2
 + y

2
 = a

2
 then the smaller circle must have equation x

2
 + y

2
 = ax.  

Table 17-4 contains the construction based on this idea. 

Table 17-4: An Alternate Construction for the Lemniscate of Gerono 

1.  Create x-y axes with origin at A and unit point B = (1, 0) 9.  Construct P2  to P1 through point E 

2.  Draw circle AB with center at A and passing through point B 10. Let point F be the intersection of perpendiculars P1 and P2 

3.  Let C be a random point on circle AB in the 1st quadrant 11. Trace point F and change its color (say yellow) 

4.  Let B' be the image when B is dilated about point A by ½ 12. Drag point C to the second quadrant so that point D appears 

5.  Draw circle B'B with center at B' and passing through point B 13. Construct P3  to P1 through point D 

6.  Draw line AC 14. Let point G be the intersection of perpendiculars P1 and P3 

7.  Let D and E be the intersections of line AC and circle B'B* 15. Trace point G and change its color (say yellow) 

8.  Construct P1  to the x-axis through point C 16. Animate point C around circle AB 

*GSP does not handle this situation correctly; however, the construction is structured to account for this mishandling.  

Point A will get labeled a second time (i.e., double labeled) as point D. 
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 The horizontal diameter of circle AB will also get traced as this animation is run; 

of course, this diameter is not part of the Lemniscate.  If GSP managed this situation 

correctly, the diameter would not get traced and point E would traverse the lower half of 

circle B'B when point C is dragged to the second quadrant instead of point D; point D 

would not be necessary, and therefore neither would perpendicular P3 nor point G.  In 

other words, point F would trace the entire Lemniscate.  If you are confused after reading 

this last paragraph, select both line AC and circle B'B and use the "point of intersection" 

command under GSP’s "construction" menu when executing step 7.  This guarantees that 

point E will appear after executing step 7 and point A will get double labeled as point D. 
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Figure 17-4: The Lemniscate of Gerono as a Solid of Revolution 

 

The plane curve known as the Lemniscate of Gerono was rotated about the x-axis to 

create the object in the figure above.  It was then situated so as to appear that it is resting 

upon the grayish, marble-like floor.  The floor itself has been given a partially reflective 

finish and the object can be seen reflected in the floor.  A light source has been located so 

as to shine on the object and cast its shadow behind on the floor. 
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Chapter 18 – The Cross and Bullet Nose Curves 
 

 

Figure 18-1: The Solid of Revolution Formed from the Cross Curve 

 

One branch of the Cross Curve obtained from the equation 1/x
2
 + 4/y

2
 = 1 was revolved 

about the y-axis to obtain the object pictured above.  In order to do this, the curve was 

truncated along both its x and y asymptotes, which is why one sees the circular disk-

shaped "base" and the long cylindrical protuberance rising from that base.  The resulting 

object was then rotated to be oriented as seen and placed above the gray and white 

checkered plane.  The plane has been made slightly reflective so as to reflect the image of 

the object.  Light sources have been located so as to cast the shadows on the plane just 

under and behind the object.  Note also how the cylindrical protuberance casts a shadow 

on the base itself.   
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18.1 Introduction 

 Instead of one curve, this chapter is devoted to two curves, namely the Cross 

Curve and the Bullet Nose Curve.  There is an interesting connection between the two 

and that is why both are included in one chapter.  We will discuss that connection later in 

the chapter.  Alternate names for the Cross Curve are the Stauroid, the Equilateral 

Cruciform Curve, and the Policeman on Point-Duty Curve.  This last alternate name 

undoubtedly stems from the fact that, visually, the curve looks like a city street 

intersection where there might very well be a policeman at the center directing traffic.  

However, names like that, humorous as they may be, tend to lessen the mystique and 

romance of the curves; Cross Curve is much preferred!  The Bullet Nose Curve derives 

its name from its shape which (with a little imagination) looks like two bullets nose-to-

nose. 

18.2 Equations and Graph of the Cross and Bullet Nose Curves 

 If one takes the equation of the ellipse
6
 given in Equation 14-7 of Chapter 14 and 

changes the sign of every exponent in that equation, one arrives at the Cartesian equation 

for the Cross Curve, that is, 

1
2

2

2

2


y

b

x

a
     Equation 18-1 

The usual substitutions of x = rcos and y = rsin into Equation 18-1 yields the polar 

form of the Cross Curve, which is 

 22222 cscsec bar       Equation 18-2 

Finally, making the substitution of y = (b/a) ∙x∙cot t into Equation 18-1 and solving for x, 

one obtains x = a sec t.  Then, similarly solving for y one obtains y = b csc t.  Therefore, a 

parametric representation for the Cross Curve is simply 

      ttbtayx      csc,sec,      Equation 18-3 

The equation of the tangent to the Cross Curve at the point t = q is 

qabxqbya 33 csccot       Equation 18-4 

Figure 18-2 portrays a graph of the Cross Curve. 

 

 In a similar vein, if one takes the equation of the hyperbola given in Equation 14-

11 of Chapter 14 and changes the sign of every exponent in that equation, one arrives at 

the Cartesian equation for the Bullet Nose Curve, that is, 

1
2

2

2

2


y

b

x

a
     Equation 18-5 

 

                                                 
6
 This connection with the ellipse is not completely coincidental, as the first dynamic geometry 

construction of this chapter will clearly demonstrate.   
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Figure 18-2: Graph of the Cross Curve 

The usual substitutions of x = rcos and y = rsin into Equation 18-5 yields the 

polar form of the Bullet Nose Curve, which is 

 22222 cscsec bar       Equation 18-6 

Finally, making the substitution of y = (b/a) ∙x∙csc t into Equation 18-5 and solving for x, 

one obtains x = a cos t.  Then, similarly solving for y one obtains y = b cot t.  Therefore, a 

parametric representation for the Bullet Nose Curve is simply 

      ttbtayx      cot,cos,      Equation 18-7 

The equation of the tangent to the Bullet Nose Curve at the point t = q is 

qabxqbya 33 cotcsc       Equation 18-8 

Figure 18-3 depicts a graph of the Bullet Nose Curve. 

18.3 Analytical and Physical Properties of Both Curves 

 Based on the Cross Curve’s parametric representation found in Equation 18-3 and 

based on the Bullet Nose Curve’s parametric representation found in Equation 18-7, the 

following is an analysis of both curves. 
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Figure 18-3: Graph of the Bullet Nose Curve 

18.3.1 Derivatives of the Cross and Bullet Nose Curves 

 CROSS CURVE    BULLET NOSE CURVE 

ttax tansec .            tax sin . 

 ttax 23 sin1sec  .      tax cos . 

ttby cotcsc .     tby 2csc . 

 ttby 23 cos1csc  .     ttby 2csccot2 . 

t
a

b
y 3cot .      t

a

b
y 3csc . 

ta

tb
y

52

4

sin

cos3
 .      
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52 sin

cos3
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18.3.2 Metric Properties of the Cross and Bullet Nose Curves 

 If r denotes the distance between the origin and the curve, then 

 

 CROSS CURVE  BULLET NOSE CURVE 

 

     tbtar 2222 cscsec  .  222 sincot btatr  . 

 

 If p denotes the distance from the origin to the tangent of the curve, then 
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CROSS CURVE  BULLET NOSE CURVE 

 

   
tbta
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p

6262 cossin 
 .    .

sin
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3
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p


  

18.3.3 Curvature of the Cross and Bullet Nose Curves 

 If ρ denotes the radius of curvature of the curve, then 

 

CROSS CURVE  BULLET NOSE CURVE 

 

  
 

ttab

tbta
44

6262

cossin3

cossin
2

3


 .  

 
ttab

bta

cossin3

sin
4

262 2
3


  

 

 If (α, β) denotes the coordinates of the center of curvature for the curve, then for 

the Cross Curve 

 

ttb

tbtbta

tta

tbtata
4

624262

4

624262

cossin3

coscos3sin
     and     

cossin3

cossin3sin 



  . 

 

For the Bullet Nose Curve 

 

 
ttb

tbta

tta

bttata

cossin3

1cos3sin
     and     

cossin3

cossin3sin 2262

4

224262 



  . 

18.3.4 Angles for the Cross and Bullet Nose Curves 

 If  represents the radial angle of the Curve, then 

 

CROSS CURVE  BULLET NOSE CURVE 

 

  t
a

b
cottan  .        .csctan t

a

b
  

 

 If ψ denotes the tangential-radial angle of the curve, then 

 

CROSS CURVE  BULLET NOSE CURVE 

 

tbta

ab
4242 cossin

tan


 .  
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2

sin

cossin
tan

bta

ttab


  
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If  denotes the tangential angle of the curve, then 

 

CROSS CURVE  BULLET NOSE CURVE 

  t
a

b 3cottan  .          t
a

b 3csctan   

18.4 Geometric Properties of the Cross and Bullet Nose Curves 

  CROSS CURVE  BULLET NOSE CURVE 

Intercepts:          None.    (0, 0) 

 

Extent:       – < t < , t ≠ 0, t ≠ ± /2                   – < t <  

 x > a and x < –a         –a < x < a 

 y > b and y < –b                – ∞ < y < + ∞ 

 

Inflection:       None              (0, 0) 

 

Discontinuity:   t = 0, t = ± /2   t = 0 

                         x = ± a, x = ± ∞ 

                         y = b, y = ± ∞. 

 

Symmetry:       x = 0, y = 0, (0, 0)             x = 0, y = 0, (0, 0) 

 

Asymptotes:    x = ± a           x = ± a 

 y = ± b. 

18.5 Dynamic Geometry of the Cross and Bullet Nose Curves 

 The next seven subsections delineate constructions for the Cross Curve, the 

construction of the Cross Curve’s tangent, the construction of the Cross Curve’s 

osculating circle, construction of the Bullet Nose Curve, construction of the tangent to the 

Bullet Nose Curve, and the osculating circle of the Bullet Nose Curve. 

18.5.1 The Cross Curve from the Tangent to an Ellipse 

 If through the points of intersection of a tangent to an ellipse with the two axes of 

the ellipse, lines perpendicular to each of the axes are drawn, the locus of the intersection 

point of those perpendiculars is the Cross Curve.  In simpler words, this says construct an 

ellipse and then construct its tangent.  Extend the semi-major and semi-minor axes of the 

ellipse until they intersect the tangent.  Drop perpendiculars to the two axes through those 

two intersection points.  Where the two perpendiculars intersect is a point on the Cross 

Curve, as the construction of Table 18-1 illustrates. 

 

 Steps 1 to 9 are the construction of the ellipse and its tangent, P1.  Line AD is the 

major axis of the ellipse while perpendicular P2 is the minor axis.  Points H and I are the 

two points where the ellipse’s tangent intersects the axes and perpendiculars P3 and P4 

are simply the two perpendiculars whose intersection point generates the Cross Curve.  
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Neat!  In step 8, if line segment AC and P1 do not intersect, simply drag point D until 

they do. 

Table 18-1: The Cross Curve from the Tangent to an Ellipse 

1.  Draw circle AB with center at A and passing through point B 11. Draw line segment AD 

2.  Let C be a random point on the circumference of circle AB 12. Let G be the midpoint of line segment AD 

3.  Draw line segment AC 13. Construct P2  to line AD through point G 

4.  Let D be a random point anywhere in the plane 14. Let H be the intersection of perpendicular P1 and line AD 

5.  Draw line segment CD 15. Let point I be the intersection of perpendiculars P1 and P2 

6.  Let E be the midpoint of line segment CD 16. Construct P3  to line AD through point H 

7.  Construct P1  to line segment CD through point E 17. Construct P4  to P2 through point I 

8.  Let F be the intersection of line segment AC and P1 18. Let point J be the intersection of perpendiculars P3 and P4 

9.  Construct the locus of point F as point C traverses circle AB 19. Trace point J and change its color 

10. Draw line AD 20. Animate point C around circle AB 

18.5.2 An Alternate Construction of the Cross Curve 

 Given a vertical line L, the Cross Curve is formed as the locus of points P such 

that the distance between P and the x-axis is the same as the distance from the origin, O, 

to where line OP intersects line L.  In other words, AP = OB in Figure 18-4.  The steps of 

Table 18-2 illustrate this construction. 

 

 

Figure 18-4: An Alternate Construction for the Cross Curve 

Table 18-2: An Alternate Construction for the Cross Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 10. Construct circle C2 centered at F of radius = line segment AE 

2.  Draw circle AB with center at A and passing through point B 11. Construct P2  to the x-axis through point F 

3.  Let C be a random point on the circumference of circle AB 12. Let G be one of the intersections of circle C2 with P2 

4.  Draw line AC 13. Construct P3  to the y-axis through point G 

5.  Let D be any random point on the x-axis 14. Let H be the intersection of perpendicular P3 and line AC 

6.  Construct P1  to the x-axis through point D 15. Trace point H and change its color 

7.  Let E be the intersection of perpendicular P1 and line AC 16. Let H' be the image when H is reflected across the x-axis 

8.  Let F be a second random point on the x-axis 17. Trace point H' 

9.  Draw line segment AE 18. Animate point C around circle AB 

 

 Point H only gives us the curve in two quadrants, hence we must create point H' 

in order to get all four branches. 
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18.5.3 The Tangent to the Cross Curve 

 Here, the tangent to the Cross Curve is constructed.  The construction of the curve 

itself is done slightly differently than that of the construction in section 18.5.1; however, 

it’s basically the same construction.  Refer to Table 18-3. 

Table 18-3: The Tangent to the Cross Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 13. Let point H be the intersection of perpendiculars P3 and P4 

2.  Draw circle AB with center at A and passing through point B 14. Trace point H and change its color 

3.  Draw circle AC centered at A passing through C and AC < AB 15. Let I be the intersection of perpendicular P3 and line AD 

4.  Let D be a random point on the circumference of circle AB 16. Let J be the intersection of perpendicular P4 and line AD 

5.  Draw line AD 17. Construct P5  to P3 through point I 

6.  Construct P1  to line AD through point D 18. Construct P6  to P4 through point J 

7.  Let point E be one of the intersections of circle AC and line AD 19. Let point K be the intersection of perpendiculars P5 and P6 

8.  Construct P2  to line AD through point E 20. Draw line AK 

9.  Let point F be the intersection of the x-axis and perpendicular P1 21. Construct P7  to line AK through point H 

10. Construct P3  to the x-axis through point F 22. Change the color of P7 and make it thick 

11. Let G be the intersection of the y-axis and perpendicular P2 23. Animate point D around circle AB 

12. Construct P4  to the y-axis through point G  

 

 Here we have simply used a different construction for the ellipse than we did in 

section 18.5.1.  If you drop a perpendicular from point E to the x-axis and another 

perpendicular to the y-axis from point D, the intersection of those two perpendiculars will 

trace the ellipse.  Although the ellipse’s tangent is not constructed, perpendiculars P1 and 

P2 are both parallel to that tangent so the effect is the same for determining a point on the 

Cross Curve. 

18.5.4 The Osculating Circle of the Cross Curve 

 This is a very complex construction, but well worth the effort.  As we have 

learned, to construct the osculating circle we first must locate the center of curvature.  So 

many other interesting things can be created once one has constructed the center of 

curvature: the radius of curvature, the osculating circle, the evolute, etc.  See Table 18-4. 

Table 18-4: The Osculating Circle of the Cross Curve 

1.  Create the x-y axes with origin A and unit point B = (1, 0) 22. Let point L be the intersection of perpendiculars P7 and P8 

2.  Draw circle AB with center at A and passing through point B 23. Draw line AL 

3.  Draw circle AC centered at A passing through C and AC < AB 24. Construct P9  to line AL through point A 

4.  Let D be a random point on the circumference of circle AB 25. Let M be the intersection of the y-axis with P6 

5.  Draw line AD 26. Draw circle AL with center at A and passing through L 

6.  Construct P1  to line AD through point D 27. Let N be the intersection of circle AL and perpendicular P9 

7.  Let point E be the intersection of the x-axis and perpendicular P1 28. Let G' be the image when G is translated by vector E → G 

8.  Construct P2  to the x-axis through point E 29. Construct P10  to the x-axis through point G' 

9.  Let point F be the intersection of perpendicular P2 and line AD 30. Let I' be the image when I is translated by vector A → I 

10. Construct P3  to line AD through point F 31. Construct P11  to the y-axis through point I' 

11. Let G be the intersection of the x-axis with perpendicular P3 32. Let O be the intersection of perpendiculars P10 and P11 

12. Let point H be one of the intersections of circle AC and line AD 33. Draw line OA 

13. Construct P4  to line AD through point H 34. Construct P12  to line AL through point O 

14. Let point I be the intersection of the y-axis with perpendicular P4 35. Let P be the intersection of perpendicular P12 and line AL 

15. Construct P5  to the y-axis through point I 36. Draw line PN 

16. Let point J be the intersection of perpendicular P5 and line AD 37. Construct P13  to line PN through point N 

17. Construct P6  to line AD through point J 38. Let Q be the intersection of perpendicular P13 and line AL 

18. Let point K be the intersection of perpendiculars P1 and P5 39. Let K' be the image when K is translated by vector Q → A 

19. Trace point K and change its color 40. Draw circle K'K centered at K' and passing through K 

20. Construct perpendicular P7 to the y-axis through point F 41. Make circle K'K thick and change its color 

21. Construct perpendicular P8 to the x-axis through point J 42. Animate point D around circle AB 
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 Of course, circle K'K is the osculating circle while point K' is the center of 

curvature.  Tracing point K' will draw the evolute of the Cross Curve. 

18.5.5 The Bullet Nose Curve 

 One might say that the ellipse is to the Cross Curve as the hyperbola is to the 

Bullet Nose Curve because, if you construct a hyperbola and then construct its tangent, 

and construct perpendiculars where the tangent intersects the coordinate axes, the locus 

of the intersection point of those two perpendiculars is the Bullet Nose Curve.  Sound 

familiar?  It should.  Substitute ellipse for hyperbola and substitute Cross Curve for 

Bullet Nose Curve and the statement is the one addressed in section 18.5.1.  If seeing is 

believing, try this construction (Table 18-5). 

Table 18-5: The Bullet Nose Curve 

1.  Draw horizontal line segment AB 11. Construct P3  to line segment AE through point F 

2.  Let C be a random point on line segment AB 12. Let G be the intersection of line BE and perpendicular P3 

3.  Draw circle BC with center at B and passing through point C 13. Trace point G and change its color 

4.  Let D be the midpoint of line segment AB 14. Let point H be the intersection of P3 and line segment AB 

5.  Let E be a random point on the circumference of circle BC 15. Let point I be the intersection of perpendiculars P1 and P3 

6.  Construct P1  to line segment AB through point D 16. Construct P4  to line segment AB through point H 

7.  Draw line BE 17. Construct P5  to P1 through point I 

8.  Draw line segment AE 18. Let point J be the intersection of perpendiculars P4 and P5 

9.  Construct P2  to line BE through point E 19. Trace point J and change its color 

10. Let F be the midpoint of line segment AE 20. Animate point E around circle BC 

 

 Steps 1 – 13 execute the construction of the hyperbola and its tangent, P3.  Steps 

14 – 17 locate the points where the hyperbola’s tangent intersects the axes and then drop 

perpendiculars to the axes through those points, namely, P4 and P5.  Finally, point J, the 

intersection of the two perpendiculars, is supposed to be a point on the Bullet Nose 

Curve.  Run the animation and, indeed, the Bullet Nose Curve is produced by the trace of 

point J. 

18.5.6 The Tangent to the Bullet Nose Curve 

 As an exercise in perseverance, Table 18-6 shows one way to construct the 

tangent to the Bullet Nose curve. 
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Table 18-6: The Tangent to the Bullet Nose Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 20. Let C' be the image when C is reflected across line AB' 

2.  Draw circle AB with center at A and passing through point B 21. Construct P7  to the x-axis through point C' 

3.  Let C be a random point on the circumference of circle AB 22. Let point J be the intersection of perpendiculars P6 and P7 

4.  Draw line AC 23. Draw line AJ 

5.  Draw circle AD centered at A passing through D and AD < AB 24. Construct L1 parallel to line AJ through point H 

6.  Construct P1  to line AC through point C 25. Let K be the intersection of parallel line L1 and the y-axis 

7.  Let point E be the intersection of perpendicular P1 and the x-axis 26. Construct P8  to the y-axis through point K 

8.  Construct P2  to the x-axis through point E 27. Let point L be the intersection of perpendiculars P5 and P8 

9.  Let F be the intersection of circle AD with the positive x-axis 28. Construct the locus of L as point C traverses circle AB 

10. Construct P3  to the x-axis through point F 29. Construct P9  to the y-axis through point C 

11. Let point G be the intersection of line AC and perpendicular P3 30. Let M be the intersection of P9 and the y-axis 

12. Construct P4  to the y-axis through point G 31. Construct P10  to line AC through point M 

13. Let point H be the intersection of perpendiculars P2 and P4 32. Let N be the intersection of perpendicular P10 and line AC 

14. Construct the locus of point H as point C traverses circle AB 33. Construct P11  to the y-axis through point N 

15. Construct P5  to the x-axis through point C 34. Let point O be the intersection of P3 and P11 

16. Let I be the intersections of the positive y-axis with circle AD 35. Draw line AO 

17. Construct P6  to the y-axis through point I 36. Construct P12  to line AO through point L 

18. Let B' be the image when B is rotated about point A by 45° 37. Make P12 thick and color it 

19. Draw line AB' 38. Animate point C around circle AB 

18.5.7 The Osculating Circle of the Bullet Nose Curve 

Table 18-7 is another exercise in perseverance, but well worth the effort.  We will 

not only construct the osculating circle and the curve, but also the curve’s tangent.  Give 

it a try. 

Table 18-7: The Osculating Circle of the Bullet Nose Curve 

1.  Draw circle AB centered at A and passing through point B 22. Construct P9  to line AH through point A 

2.  Let C be a random point on the circumference of circle AB 23. Draw circle AH centered at A and passing through point H 

3.  Draw line AB 24. Let I be either intersection of circle AH with P9 

4.  Construct P1  to line AB through point C 25. Let J be a random point on perpendicular P1 

5.  Let D be a random point on line AB 26. Let A1 be the image when A is translated by vector J → A 

6.  Construct P2  to line AB through point D 27. Let K be a second random point on perpendicular P1 

7.  Draw line AC 28. Let A2 be the image when A is translated by vector K → A 

8.  Construct P3  to line AC through point A 29. Draw line A1A2 

9.  Let point E be the intersection of perpendiculars P2 and P3 30. Let point L be the intersection of perpendiculars P3 and P7 

10. Construct P4  to P1 through point E 31. Let L' be the image when L is translated by vector G → L 

11. Let point F be the intersection of perpendiculars P1 and P4 32. Construct P10  to P1 through point L' 

12. Construct the locus of point F as point C traverses circle AB 33. Let point M be the intersection of line A1A2 and P10 

13. Make the locus thick and change its color 34. Construct P11  to Line AH through point M 

14. Construct P5  to P1 through point C 35. Let point N be the intersection of line AH and P11 

15. Construct P6  to P3 through point E 36. Draw line segment IN 

16. Let point G be the intersection of line AB and P6 37. Construct P12  to line segment IN through point I 

17. Construct P7  to line AB through point G 38. Let point O be the intersection of P12 and line AH 

18. Let point H be the intersection of perpendiculars P5 and P7 39. Let F1 be the image when F is translated by vector O → A 

19. Draw line AH 40. Draw circle F1F centered at F1 and passing through point F 

20. Construct P8  to line AH through point F 41. Make circle F1F thick and change its color 

21. Make P8 thick and change its color 42. Animate point C around circle AB 

18.5.8 Both Curves in One Construction 

The construction of Table 18-8 should seem familiar, but there is a nice surprise 

when finished. 
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Table 18-8: Both Curves in One Construction 

1.  Draw circle AB with center at A and passing through point B 10. Draw line segment AC 

2.  Let C be a random point anywhere outside of circle AB 11. Let G be the midpoint of line segment AC 

3.  Draw line AC 12. Construct P3  to line AC through point G 

4.  Let D be a random point on the circumference of circle AB 13. Let point H be the intersection of perpendiculars P1 and P3 

5.  Draw line segment CD 14. Construct P4  to P2 through point H 

6.  Let E be the midpoint of line segment CD 15. Let point I be the intersection of perpendiculars P2 and P4 

7.  Construct P1  to line segment CD through point E 16. Trace point I and change its color 

8.  Let F be the intersection of line AC and perpendicular P1 17. Animate point D around circle AB 

9.  Construct P2  to line AC through point F  

 

 Now, after having executed the animation above, drag point C so that it is inside 

of circle AB and rerun the animation.  Lo and behold—the Cross Curve! 
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Figure 18-5: The Solid of Revolution from the Bullet Nose Curve 

 

The Bullet Nose Curve was revolved about the y-axis to achieve the object pictured 

above.  The object was then placed so as to appear to be embedded in the desert-like 

landscape which extends to the horizon.  The object has been given a copper colored 

finish and light sources have been placed so as to cast the object’s shadow onto the 

landscape.  (Seeing this rendering, one can understand why the curve was named the 

Bullet Nose Curve.) 
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Chapter 19 – The Piriform Curve 
 

 

Figure 19-1: The Piriform as a Solid of Revolution 

 

Figure 19-1 is the solid of revolution created when the plane Piriform Curve is rotated 

about the x-axis.  The solid was then given a lustrous bright-blue finish and placed over 

the horizontally striped plane.  Light sources have been placed so as to cast the solid’s 

shadows onto the plane, one in the foreground and one in the background. 



 

Chapter 19: The Piriform  Playing With Dynamic Geometry   19-2 

19.1 Introduction 

 The Piriform is a quartic curve, often called the Pear-Shaped Quartic.  Actually, 

the curve looks to be shaped more like a Hershey Kiss than a pear; however, the Hershey 

Kiss shaped quartic sounds rather dull; Piriform is preferable.  In fact, pirum is Latin for 

pear and it is doubtful whether there is a Latin word for Hershey Kiss. 

 

 The first to study the curve was the French mathematician G. de Longchamps in 

1886, so this curve is of a much later vintage than most of the curves that we have 

encountered so far.  The curve is defined as follows (see Figure 19-2): Given point A on  

 

 

Figure 19-2: Definition of the Piriform Curve 

 

the circumference of a circle and a line L1 that is perpendicular to the diameter through 

point A, draw an arbitrary line L through point A that crosses L1 in point B.  Draw a line 

L2 perpendicular to L1 through point B that intersects the circle in point C.  Draw a line L3 

perpendicular to L2 through point C that intersects line L in point P.  The locus of P for all 

possible lines L is the Piriform. 

19.2 Equations and Graph of the Piriform Curve 

 Again, referring to Figure 19-2, if we assume that point A is the origin, the 

diameter through A is the x-axis, and the radius of the circle is a, then the equation of the 

circle is 

 

  222
ayax  . 

 

Further, if we assume that line L has equation y = mx, where m is the slope (the y-

intercept being the origin—zero), and that line L1 has equation x = a
2
/b, then point B, 
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which is on both lines L and L1, has coordinates (a
2
/b, a

2
m/b).  Similarly, point C which 

is both on line L2 and the circle, has coordinates 











b

ma
mab

b

a
a

2
222 , . 

 

And finally, point P which is both on L and L3 has coordinates 

 









 222222 , mab

b

am
ammab

b

a
a . 

If we now define the parameter t by the relationship am = bcost for – /2 ≤ t ≤ /2, we 

have as the coordinates of point P the following relationships: x = a (1 + sin t) and  

y = b cos t (1 + sin t), giving us a parametric representation of the Piriform, that is, 

    tbatyx cos,sin1,       2/32/   t      Equation 19-1 

Of course, to arrive at a Cartesian equation, we simply eliminate t from Equation 19-1.  

To do this, we write sin t = x/a – 1 and cos t = ay/bx, then square both quantities and add 

to give 

 xaxbya  23224
     Equation 19-2 

and the polar equation becomes 

 2432422 sincos2cos arabrb       Equation 19-3 

Figure 19-3 depicts the graph of the Piriform. 

 

 

Figure 19-3: Piriform Graph 
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And last but not least, the equation of the Piriform’s tangent at the point t = q is 

    
q

qqb
x

qa

qqb
y

cos

sin1sin

cos

sin21sin1 



      Equation 19-4 

19.3 Analytical and Physical Properties of the Piriform Curve 

Based on the Piriform’s parametric representation found in Equation 19-1, i.e.,  

x = a (1 + sint) and y = b cost (1 + sint), the following is an analysis of the Piriform 

curve. 

19.3.1 Derivatives of the Piriform Curve 

 tax cos . 

 

 .sin tax   

 

   ttby sin21sin1  . 

 

  ttby sin41cos  . 

 

 
  

ta

ttb
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sin21sin1 
 . 

 

 
 

ta

ttb
y

32

3

cos

1sin3sin2 
 . 

19.3.2 Metric Properties of the Piriform Curve 

 Since the Piriform is symmetric about the x-axis, the total area enclosed by the 

curve can be calculated by obtaining the area of the portion of the curve above the x-axis 

and then doubling the result.  The portion of the curve above the x-axis is generated by 

values of t such that – /2 ≤ t ≤ /2.  Hence, 

 

      .cossin122
2

2

2

2

2 abtdttabdttxtyA 









  
 

  

 Similarly, the volume of the solid of revolution obtained when the Piriform is 

rotated about the x-axis can be calculated by 

 

    
5

8 2
2

2

2

ab
dttxtyV








 


 . 

 If p denotes the distance from the origin to the Piriform’s tangent, then 

 

 

   22222

2

sin21sin1cos

sin1sin

ttbta

ttab
p




 . 
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 If r denotes the radial distance, then 

 

  tbatr 222 cossin1  . 

19.3.3 Curvature of the Piriform Curve 

 If ρ stands for the radius of curvature of the Piriform, then 

 

    
  1sin2sin2sin1

sin21sin1cos
2

22222 2
3





tttab

ttbta
. 

 

 If (α, β) denotes the coordinates of the center of curvature of the Piriform, then 

 

       
 1sin2sin2

sin21sin12sinsin1
2

322






tta

ttbtat
      and 

 

   
  1sin2sin2sin1

1sinsin1cossin6cos
2

2232






tttb

ttttbta
 . 

19.3.4 Angles for the Piriform Curve 

 If  represents the radial angle, then 

 

t
a

b
costan  . 

 If ψ denotes the tangential-radial angle, then 

 

 
   ttbat

ttab

sin21sin1cos

sin1sin
tan

22 


 . 

 

 If  denotes the tangential angle, then 

 

  
ta

ttb

cos

sin21sin1
tan


 . 

19.4 Geometric Properties of the Piriform Curve 

 Intercepts:   (– /2, 0, 0); (/2, 2a, 0); (3/2, 0, 0). 

 

 Extent:  – /2 ≤ t ≤ 3/2; 0 ≤ x ≤ 2a; 
4

33

4

33 b
y

b
 . 

 

 Symmetry:  y = 0. 

 

 Cusp:  (0, 0). 
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19.5 Dynamic Geometry of the Piriform Curve 

 Three dynamic geometry constructions follow; one to construct the curve, one to 

construct the curve’s tangent, and the other to construct the curve’s osculating circle. 

19.5.1 The Piriform Curve Based on the Definition 

 In the introduction to this chapter, we defined the Piriform curve (see section 19.1 

and Figure 19-2).  The following construction of Table 19-1 follows directly from that 

definition. 

Table 19-1: The Piriform Curve Directly from the Definition 

1.  Draw circle AB with center at A and passing through point B 8.  Let G be the intersection of perpendicular P2 and line CD 

2.  Let C be a random point external to circle AB 9.  Draw line EG 

3.  Draw horizontal line CD 10. Construct P3  to P1 through point F 

4.  Construct P1  to line CD through point A 11. Let H be the intersection of perpendicular P3 and line EG 

5.  Let E be one intersection of perpendicular P1 and circle AB  12. Trace point H and change its color 

6.  Let F be a random point on the circumference of circle AB 13. Animate point F around circle AB 

7.  Construct P2  to line CD through point F  

 

 Drag line CD up and/or down keeping it horizontal.  When it intersects point E, 

the curve degenerates to a straight line. 

19.5.2 The Tangent to the Piriform Curve 

 Table 19-2 contains a construction for the Piriform Curve and its tangent. 

Table 19-2: The Tangent to the Piriform Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 19. Let J be the midpoint of line segment HI 

2.  Draw circle AB with center at A, and passing through point B 20. Let J' be the image when point J is translated by vector A → J 

3.  Let C be a random point anywhere on the x-axis 21. Draw line segment AC 

4.  Construct P1  to the x-axis through point C 22. Let point K be the midpoint of line segment AC 

5.  Let D be a random point on the circumference of circle AB 23. Let K' be the image when K is translated by vector F → K 

6.  Construct P2  to P1 through point D 24. Let L be the intersection of the positive y-axis and circle AB 

7. Let point E be the intersection of perpendiculars P1 and P2 25. Draw line segment LJ' 

8.  Construct P3  to the x-axis through point D 26. Draw line segment LK' 

9.  Let point F be diametrically opposite to point B 27. Construct line L1 parallel to line segment LK' through point F 

10. Draw line EF 28. Let point M be the intersection of parallel L1 and the y-axis 

11. Let G be the intersection of line EF and perpendicular P3 29. Construct line L2 parallel to line segment LJ' through point M 

12. Trace point G and change its color 30. Let point N be the intersection of parallel L2 and the x-axis 

13. Draw line AD 31. Let O be the intersection of perpendicular P2 and the y-axis 

14. Let B' be the image when point B is reflected across line AD 32. Draw line NO 

15. Construct P4  to the x-axis through point B' 33. Construct P5  to line NO through point G 

16. Let H be the intersection of perpendicular P3 and the x-axis 34. Make perpendicular P5 thick and change its color 

17. Let I be the intersection of perpendicular P4 and the x-axis 35. Animate point D around circle AB 

18. Draw line segment HI  

 

 Drag point C to different positions of the plane to change the size of the Piriform. 

19.5.3 The Osculating Circle to the Piriform Curve 

Table 19-3 contains a construction for the osculating circle of the Piriform as well 

as the curve itself and the curve’s tangent.  The construction here for the curve is 

different from the previous two sections (as is the construction for the tangent different 

from the previous section).  However, this construction is very complex (maybe the most 

complex in the book), albeit interesting, and the resulting animation makes it completely 

worthwhile.  Of course, once we have constructed the Piriform’s osculating circle, it 
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implies that we have constructed the center of curvature (i.e., the center of the osculating 

circle) and, as we have learned, tracing the center of curvature traces the evolute.  That is 

worth doing here because the evolute of the Piriform is very, very weird.  Have a go at it! 

Table 19-3: The Piriform's Osculating Circle 

1. Create x-y axes with origin A and unit point B = (1, 0) 32. Let O' be the image when O is translated by vector N → O 

2.  Draw circle AB centered at A and passing through point B 33. Construct P8  to the y-axis through point O' 

3.  Let C be a random point on the circumference of circle AB 34. Let point P be the intersection of perpendiculars P5 and P8 

4.  Draw line AC 35. Draw line segment AP 

5.  Construct P1  to line AC through point A 36. Let line L1 be parallel to line segment AP through point I 

6.  Let D be either intersection of circle AB with P1 37. Make L1 thick and change its color 

7.  Construct P2  to the x-axis through point D 38. Let B' be the image when point B is reflected across line AC 

8.  Let E be the point diametrically opposed to point B 39. Construct P9  to the x-axis through point B' 

9.  Let point F be the intersection of the x-axis and P2 40. Let point Q be the intersection of the x-axis with P9 

10. Draw line segment EF 41. Let B'' be the image when B' is translated by vector Q → B' 

11. Let G be the midpoint of line segment EF 42. Construct P10  to the y-axis through point B'' 

12. Let G' be the image when G is translated by vector A → G 43. Let point R be the intersection of P10 and the y-axis 

13. Let A' be the image when A is translated by vector G' → A 44. Construct P11  to line segment AP through point A 

14. Draw circle AA' centered at A and passing through A' 45. Construct P12  to the y-axis through point D 

15. Let point H be either intersection of circle AA' with P1 46. Let point S be the intersection of P12 and the y-axis 

16. Construct P3  to the y-axis through point H 47. Draw line segment RS 

17. Construct P4  to the x-axis through point A' 48. Let T be the midpoint of line segment RS 

18, Let point I be the intersection of perpendiculars P3 and P4 49. Let T' be the image when T is translated by vector A → T 

19. Construct the locus of point I as point C traverses circle AB 50. Let A'' be the image when A is translated by vector T' → A 

20. Make the locus thick and change its color 51. Construct P13  to the y-axis through point A'' 

21. Construct P5  to the x-axis through point C 52. Let point U be the intersection of perpendiculars P2 and P13 

22. Let point J be the intersection of P5 and the x-axis 53. Construct P14  to P11 through point U 

23. Construct P6  to line AC through point J 54. Let point V be the intersection of perpendiculars P11 and P14 

24. Let point K be the intersection of line AC and P6 55. Draw line segment PV 

25. Draw circle AK centered at A and passing through point K 56. Construct P15  to line segment PV through point P 

26. Let point L be either intersection of the y-axis and circle AK 57. Let point W be the intersection of perpendiculars P11 and P15 

27. Let point M be either intersection of circle AA' with line AC 58. Let I' be the image when I is translated by vector W → A 

28. Construct P7  to the y-axis through point M 59. Draw circle I'I centered at I' and passing through point I 

29. Let point N be the intersection of the y-axis and P7 60. Make circle I'I thick and change its color 

30. Draw line segment AL 61. Animate point C around circle AB 

31. Let O be the midpoint of line segment AL  

 

Of course, point I' is the center of curvature.  As suggested earlier, trace it and 

rerun the animation to see the Piriform’s evolute. 
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Figure 19-4: The Piriform in Three Dimensions 

 

The Piriform has been extruded into the third dimension to render the object seen above.  

It was then placed above the vertically striped, multi-colored plane with light sources 

positioned so as to cast the shadows seen onto the plane.  Note how the cusp is rendered 

twice in shadows. 
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Chapter 20 – The Kappa Curve 
 

 

Figure 20-1: The Kappa Curve in Three Dimensions 

 

The Kappa Curve was extruded into the third dimension to create the object seen above.  

It was then given a silvery-metallic finish and light sources were located so as to reflect 

off of the finish and cast the shadows seen on the lower portion of the object.  A bright, 

summer sky was then used as the background. 
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20.1 Introduction 

 In this chapter we take up the curve called the Kappa Curve, so named because 

the curve somewhat resembles the Greek character kappa (κ).  Another name for the 

curve is Gutschoven's Curve, named after G. van Gutschoven, the first person who 

studied the curve in 1662.  Isaac Newton also studied the curve, as did Johann Bernoulli 

and de Sluze. 

 

 The Kappa Curve can be defined as follows (refer to Figure 20-2):  Let point A be 

the origin and let the line L1 be perpendicular to the y-axis, intersecting the y-axis in the 

point B.  Let line L be an arbitrary line passing through the origin and intersecting line L1 

in the point C.  If P is a point on line L such that AP = BC, then P is a point of the Kappa 

Curve. 

 

 

Figure 20-2: The Kappa Curve Definition 

In other words, the locus of the point P for all possible lines L where AP = BC is 

the Kappa Curve. 

20.2 Equations and Graph of the Kappa Curve 

 Assuming that the equation of line L1 is y = a and that of line L is y = mx, where m 

is the slope of line L, then the coordinates of point C are (a/m, a) and distance BC is 

simply a/m.  However, AP = (x
2
 + y

2
)
½
 which equals, by definition, BC.  Therefore, we 

have 

m

a
yx  22 . 
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Squaring and rearranging gives the Cartesian equation for the Kappa Curve as  

  22222 xayyx       Equation 20-1 

Making the usual substitutions of x = rcos and y = rsin, we easily get the polar 

equation of the Kappa Curve as 

cotar       Equation 20-2 

If in Equation 20-1 we make the substitution y = x tan t, we find that x = a cos t cot t and  

y = a cos t; therefore, a parametric representation for the Kappa Curve is 

    2t0     1 ,cotcos,  ttayx      Equation 20-3      

Finally, the Kappa Curve’s tangent at the point t = q is 

  qaxqyqq 232 cossinsin1cos       Equation 20-4 

Figure 20-3 shows a graph of the Kappa Curve. 

 

 

Figure 20-3: Graph of the Kappa Curve 

20.3 Analytical and Physical Properties of the Kappa Curve 

 Based on the Kappa Curve’s parametric representation found in Equation 20-3, 

i.e., x = acos tcot t and y = acos t, the following is an analysis of the Kappa Curve. 

20.3.1 Derivatives of the Kappa Curve 

  ttax 2csc1cos  . 
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  tttax sincsccsc2 3  . 

 

 .sin tay   

 

 tay cos . 

 

 
 tt

t
y

2

3

sin1cos

sin


 . 

 

 
 
 323

24

sin1cos

3sinsin

tta

tt
y




 . 

20.3.2 Metric Properties of the Kappa Curve 

 If r denotes the distance from the origin to the Kappa Curve, then 

 

tar cot . 

 

 If p denotes the distance from the origin to the tangent to the Kappa Curve, then 

 

.
sinsin1

cos

42

2

tt

ta
p


  

20.3.3 Curvature of the Kappa Curve 

 If ρ represents the radius of curvature of the Kappa Curve, then 

 

 
 tt

tta
24

42

sin3sin

sinsin1
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
 . 

 

 If (α, β) denotes the coordinates of the center of curvature for the Kappa Curve, 

then 

 

 
 

  
 3sinsin

sin31sin1cos
     and     

3sinsin

4sin3
24

22

2

2










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ttta
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 . 

20.3.4 Angles for the Kappa Curve 

 If  denotes the radial angle, then 

 = t. 

 

 If ψ denotes the tangential-radial angle, then 

 
.cossintan tt  
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 If  denotes the tangential angle, then 

 

 tt

t
2

3

sin1cos

sin
tan


 . 

20.4 Geometric Properties of the Kappa Curve 

 Intercepts:   (0, 0). 

 

 Extent:   0 < t < 2; –∞ < x < +∞; –a < y < a. 

 

 Symmetry: x = 0; y = 0; (0, 0).  

 

 Asymptotes: y = a; y = –a. 

 

 Cusp:  (0, 0). 

20.5 Dynamic Geometry of the Kappa Curve 

 The next four subsections delineate constructions involving the Kappa Curve. 

20.5.1 The Kappa Curve by Definition 

The following construction of Table 20-1 is based directly on the definition of the 

Kappa Curve that was given in section 20.1. 

Table 20-1: The Kappa Curve by Definition 

1.  Create x-y axes with origin A and unit point B = (1, 0) 7.  Let point F be the intersection of line AE and parallel L1 

2.  Let C be a random point on the y-axis 8.  Draw line segment CF 

3.  Construct line L1 parallel to the x-axis through point C 9.  Construct circle C2 centered at A and with radius equal to CF 

4.  Draw circle AD centered at A, and passing through point D 10. Let point G be either intersection of circle C2 and line AE 

5.  Let E be a random point on the circumference of circle AD 11. Trace point G and change its color 

6.  Draw line AE 12. Animate point E around circle AD 

20.5.2 An Alternate Construction of the Kappa Curve 

 At first glance, this construction (Table 20-2) may appear to be merely a minor 

variation of the previous construction—not so! 

Table 20-2: An Alternate Construction of the Kappa Curve 

1.  Create x-y axes with origin at A and unit point B = (1, 0) 6.  Let point D be either intersection of circle AB and P1 

2.  Draw circle AB with center at A and passing through point B 7.  Construct line L1 parallel to the x-axis through point D 

3.  Let C be a random point on the circumference of circle AB 8.  Let point E be the intersection of parallel L1 and line AC 

4.  Draw line AC 9.  Trace point E and change its color 

5.  Construct P1  to line AC through point A 10. Animate point C around circle AB 

 

 Notice the reaction of the tracing point when the animation is executed for this 

construction.  If the tracing point starts in the first quadrant, when it gets to the origin, it 

then traces the portion of the curve in the second quadrant, then the third quadrant, and 

finally, the fourth quadrant.  In the previous construction, if the tracing point starts in the 

first quadrant, when it gets to the origin, it continues tracing in the fourth quadrant, then 

the third quadrant, and finally the second quadrant.  A big difference between the two 

constructions! 
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20.5.3 The Tangent to the Kappa Curve 

 Table 20-3 contains a construction for the Kappa Curve and tangent. 

Table 20-3: The Tangent to the Kappa Curve 

1.  Create x-y axes with origin at A and unit point B = (1, 0) 9.  Construct the locus of point E as point C traverses circle AB 

2.  Draw circle AB with center at A and passing through point B 10. Construct P2  to line AC through point E 

3.  Let C be a random point on the circumference of circle AB 11. Construct P3  to the x-axis through point D 

4.  Draw line AC 12. Let point F be the intersection of perpendiculars P2 and P3 

5.  Construct P1  to line AC through point A 13. Draw line AF 

6.  Let point D be either intersection of circle AB and P1 14. Construct P4  to line AF through point E 

7.  Construct line L1 parallel to the x-axis through point D 15. Make perpendicular P4 thick and change its color 

8.  Let point E be the intersection of parallel L1 and line AC 16. Animate point C around circle AB 

 

 Of course, perpendicular P4, the last perpendicular constructed, is the tangent line. 

20.5.4 The Kappa Curve’s Osculating Circle 

 Table 20-4 contains a construction for the osculating circle of the Kappa Curve. 

Table 20-4: The Kappa Curve and Osculating Circle 

1.  Create x-y axes with origin at A and unit point B = (1, 0) 18. Let point H be the intersection of parallel L2 and line AC 

2.  Draw circle AB with center at A and passing through point B 19. Let H' be the image when H is translated by vector E → H 

3.  Let C be a random point on the circumference of circle AB 20. Let E1 be the image when E is translated by vector H' → E 

4.  Draw line AC 21. Let E2 be the image when E is translated by vector F → E 

5.  Construct P1  to line AC through point A 22. Let E3 be the image when E1 is translated by vector E2 → F 

6.  Let point D be either intersection of circle AB and P1 23. Draw line segment AE3 

7.  Construct line L1 parallel to the x-axis through point D 24. Construct line L3 parallel to segment AE3 through point G 

8.  Let point E be the intersection of parallel L1 and line AC 25. Draw line AF 

9.  Construct the locus of point E as point C traverses circle AB 26. Construct P5  to line AF through point E3 

10. Construct P2  to line AC through point E 27. Let point I be the intersection of perpendicular P5 and line AF 

11. Construct P3  to the x-axis through point D 28. Draw line segment GI 

12. Let point F be the intersection of perpendiculars P2 and P3 29. Construct P6  to line segment GI through point G 

13. Draw line segment AF 30. Let J be the intersection of perpendicular P6 and line AF 

14. Construct P4  to line segment AF through point A 31. Let E4 be the image when E is translated by vector A → J 

15. Draw circle AF with center at A and passing through point F 32. Draw circle E4E with center at E4 and passing through point E 

16. Let point G be either intersection of P4 with circle AF 33. Animate point C around circle AB 

17. Construct line L2 parallel to the x-axis through point F  

 

 Circle E4E is, of course, the osculating circle to the Kappa Curve.  Trace point E4 

to see the evolute of the Kappa Curve, which looks very much like the Cissoid of Diocles 

and its mirror image—the two cusps pointing at one another. 
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Figure 20-4: A Solid of Revolution of the Kappa Curve 

 

Looking like two large, elongated eggs, the Kappa Curve was rotated about the x-axis to 

form the solid of revolution seen above.  The object was then given a mottled yellow and 

white finish and placed just slightly above the brown plane which has just a hint of 

reflectivity.  Light sources were located so as to cast the object’s shadow onto the plane 

directly below the object. 
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Chapter 21 – Cayley’s Sextic 
 

 

Figure 21-1: Cayley's Sextic in Three Dimensions 

 

Cayley’s Sextic was extruded into the third dimension, given a copper finish, and placed 

over the blue and yellow plane to create the object seen in the figure above.  Light 

sources have been situated so as to cast shadows on the plane.  
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21.1 Introduction 

 This chapter is devoted to Cayley’s Sextic.  A Sextic curve is an algebraic curve 

of the sixth degree.  Arthur Cayley was an English mathematician born in 1821 who lived 

to be 74 years old, dying in 1895.  The curve named after him was first discovered by 

Colin Maclaurin, but it was Cayley who studied it in detail. 

21.2 Equations and Graph of Cayley’s Sextic 

 The Cartesian Equation for Cayley’s Sextic is given by 

   2222322 274 yxaaxyx       Equation 21-1 

For the polar equation, we have 

3

3cos4 ar       Equation 21-2 

And, a parametric representation is given by 

   ttayx t sin,coscos4,
3

3     0 < t < 3π      Equation 21-3 

The equation of the tangent at the point t = q is 

 
3

4

3

3

3

4
cotcossincos4cot

qqq
qqaxy       Equation 21-4 

Figure 21-2 portrays a graph of Cayley’s Sextic. 

 

 

Figure 21-2: Graph of Cayley's Sextic 
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21.3 Analytical and Physical Properties of Cayley’s Sextic 

 Based on the parametric representation found in Equation 21-3, i.e.,  

x = 4acos
3 

t/3cos t and y = 4acos
3 

t/3sin t, the following is an analysis of Cayley’s 

Sextic. 

21.3.1 Derivatives of Cayley’s Sextic 

 
3
4

3

2 sincos4 ttax   
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 
3
4cot ty   

 

 
3

2

3
43 cossin3

1
tta

y   

21.3.2 Metric Properties of Cayley’s Sextic 

 If r denotes the distance from the origin to the curve, then 

 

3

3cos4 tar   

 If p denotes the distance from the origin to the tangent, then 

 

3

4cos4 tap  . 

21.3.3 Curvature of Cayley’s Sextic 

 If ρ represents the radius of curvature for Cayley’s Sextic, then 

 

3

2cos3 ta . 

 

 If (, ) denotes the coordinates of the center of curvature for Cayley’s Sextic, 

then 

 

 
3

4

33

2 cos3coscos4cos ttt ta       and      
3

4

33

2 sin3sincos4cos ttt ta  . 
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21.3.4 Angles for Cayley’s Sextic 

 If  denotes the radial angle of Cayley’s Sextic, then 

 

 = t. 

 

 If  denotes the tangential angle of Cayley’s Sextic, then 

 

3
4cottan t . 

 

 Finally, if  denotes the tangential-radial angle of Cayley’s Sextic, then 
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21.4 Geometric Properties of Cayley’s Sextic 

 Intercepts:  (0, 0); (a, 0); (–a/8, 0); 













 a

8

33
,0  

 Extent:  │r│≤ a 

 

 Symmetry:  y = 0 

 

 Node:  (–a/8, 0). 

21.5 Dynamic Geometry of Cayley’s Sextic 

 The next four subsections contain dynamic geometry constructions dealing with 

Cayley’s Sextic. 

21.5.1 Cayley’s Sextic as the Pedal Curve of a Cardioid 

 As can be seen from the construction contained in Table 21-1, Cayley’s Sextic 

can be generated as the pedal curve of a Cardioid with respect to the Cardioid’s cusp. 

Table 21-1: Cayley's Sextic as the Pedal of a Cardioid 

1.  Draw circle AB with center at A and passing through point B 7.  Construct P1  to line segment CC' through point C' 

2.  Let C be a random point on the circumference of circle AB 8.  Construct P2  to P1 through point B 

3.  Let A' be the image when A is rotated about point C by 180º 9.  Let point D be the intersection of perpendiculars P1 and P2 

4.  Let C' be the image when C is rotated about A' by BAC 10. Trace point D and change its color 

5.  Construct the locus of point C' as point C traverses circle AB 11. Animate point C around circle AB 

6.  Draw line segment CC'  

 

 Of course, P1 is the tangent to the Cardioid and therefore the pedal curve with 

respect to the Cardioid’s cusp is simply the intersection of P1 and the perpendicular to it 

through point B, the cusp. 
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21.5.2 An Alternate Construction for Cayley’s Sextic 

 Cayley’s Sextic is the roulette of a Cardioid with respect to an equal Cardioid and 

the cusp.  Although GSP cannot produce a Cardioid rolling around another Cardioid, the 

construction of Table 21-2 is based on this concept. 

Table 21-2: An Alternate Construction of Cayley's Sextic 

1.  Draw circle AB with center at A and passing through point B 6.  Let C' be the image when C is translated by vector B' → C 

2.  Let C be a random point on the circumference of circle AB 7.  Construct P1  to line B'C through point C' 

3.  Draw line AC 8.  Let B'' be the image when B is reflected across P1 

4.  Let B' be the image when point B is reflected across line AC 9.  Trace point B'' and change its color 

5.  Draw line B'C 10. Animate point C around circle AB 

 

 Note that the locus of point C' as point C traverses circle AB is that of a Cardioid. 

21.5.3 A Tangent Construction for Cayley’s Sextic 

 Table 21-3 contains a construction for the tangent to Cayley’s Sextic. 

Table 21-3: A Tangent to Cayley's Sextic 

1.  Draw circle AB with center at A and passing through point B 11. Let E be the intersection of perpendicular P2 and line AB' 

2.  Let C be a random point on the circumference of circle AB 12. Construct P3  to line AC' through point E 

3.  Draw line AC 13. Let F be the intersection of perpendicular P3 and line AC' 

4.  Let B' be the image when point B is reflected across line AC 14. Trace point F and change its color 

5.  Draw line AB' 15. Let E' be the image when point E is reflected across line AC' 

6.  Let C' be the image when point C is reflected across line AB' 16. Draw line segment AE' 

7.  Draw line AC' 17. Construct P4  to segment line AE' through point F 

8.  Construct P1  to line AC' through point B' 18. Make P4 thick and change its color 

9.  Let point D be the intersection of P1 and line AC' 19. Animate point C around circle AB 

10. Construct P2  to line AB' through point D  

 

 Note that steps 1 – 14 are a third alternate construction of Cayley’s Sextic. 

21.5.4 The Osculating Circle to Cayley’s Sextic 

 Finally, the osculating circle for Cayley’s Sextic is found in Table 21-4. 

Table 21-4: The Osculating Circle to Cayley's Sextic 

1.  Draw circle AB with center at A and passing through point B 20. Let G be either intersection of circle AE' and P5 

2.  Let C be a random point on the circumference of circle AB 21. Construct P6  to P3 through point B' 

3.  Draw line AC 22. Let point H be the intersection of perpendiculars P3 and P6 

4.  Let B' be the image when point B is reflected across line AC 23. Let B'' be the image when B' is dilated about point H by ⅔ 

5.  Draw line AB' 24. Let F1 be the image when F is dilated about A by – 4/3 

6.  Let C' be the image when point C is reflected across line AB' 25. Let F2 be the image when F1 is translated by vector H → B'' 

7.  Draw line AC' 26. Let E'' be the image when E is translated by vector F → E 

8.  Construct P1  to line AC through point B' 27. Construct P7  to P3 through point E'' 

9.  Let D be the intersection of perpendicular P1 and line AC 28. Construct P8  to P7 through point F2 

10. Construct P2  to line AB' through point D 29. Let point I be the intersection of perpendiculars P7 and P8 

11. Let E be the intersection of perpendicular P2 and line AB' 30. Construct P9  to line AE' through point I 

12. Construct P3  to line AC' through point E 31. Let J be the intersection of line AE' and perpendicular P9 

13. Let F be the intersection of line AC' and perpendicular P3 32. Draw line segment GJ 

14. Construct the locus of point F as point C traverses circle AB 33. Construct P10  to line segment GJ through point G 

15. Let E' be the image when point E is reflected across line AC' 34. Let K be the intersection of perpendicular P10 and line AE' 

16. Draw line AE' 35. Let F3 be the image when F is translated by vector K → A 

17. Construct P4  to line AE' through point F 36. Draw circle F3F with center at F3 and passing through F 

18. Draw circle AE' with center at A and passing through point E' 37. Animate point C around circle AB 

19. Construct P5  to line AE' through point A  
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 Circle F3F is, of course, the osculating circle.  As we have learned, point F3 is the 

center of curvature and traces the evolute of, in this case, Cayley’s Sextic.  It is 

interesting to do so here.  Trace point F3 and rerun the animation.  Lo and behold!  The 

evolute is a Nephroid! 
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Figure 21-3: Cayley's Sextic as a Solid of Revolution 

Cayley’s Sextic was rotated about the x-axis to form the object seen above.  It was then 

given a shiny, yellow-green finish and placed so as to just rest on the plane that has been 

given a turbulent undulating pattern.  Note that the loop of Cayley’s Sextic is not visible, 

as it would be inside of the object, thereby giving the object an appearance much like that 

of a Cardioid of revolution.  
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Chapter 22 – The String Tie Curve 
 

 

Figure 22-1: The String Tie Curve in Three Dimensions 

 

The String Tie Curve has been extruded into the third dimension to render the object seen 

above.  The object has then been given a bright blue finish and placed with a red-

purplish background. 
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22.1 Introduction 

 A more apt name for this curve might be the Bowtie Curve; however, the 

Lemniscate of Gerono (Chapter 17) already has that nickname, so we are going to call 

this curve the String Tie Curve.  It does rather look like one of those string ties that are 

often seen being worn (ugh!) with western style shirts (mostly in the western part of the 

U.S.A.).  This curve is a much more modern curve then the majority that we have studied 

so far; it appears there is no official name for it. 

22.2 Equations and Graph of the String Tie Curve 

 The Cartesian equation for the String Tie is given by 

  0224  yxayx      Equation 22-1 

For the polar equation, we have 

  422 secsinsecsin  ar      Equation 22-2 

If we let y = xt, and make this substitution into Equation 22-1, we get a parametric 

representation for the String Tie of 

    ttatyx ,11, 2      Equation 22-3 

Finally, the equation of the tangent line to the String Tie at the point t = q is 

      2222222 1212311 qaqxqqyqqaq       Equation 22-4 

A graph of the String Tie is shown in Figure 22-2. 

 

 

Figure 22-2: Graph of the String Tie Curve 
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22.3 Analytical and Physical Properties of the String Tie Curve 

 Based on the parametric representation of Equation 22-3, i.e., x = at(1 – t
2
) and 

y = at
2 

(1 – t
2
), the next four subsections present an analysis of the String Tie Curve. 

22.3.1 Derivatives of the String Tie Curve 
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22.3.2 Metric Properties of the String Tie Curve 

 If r represents the distance from the origin to the String Tie, then 

 

  22 11 ttatr  . 

 

 If p denotes the distance from the origin to the String Tie’s tangent, then 
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22.3.3 Curvature of the String Tie Curve 

 If (α, β) denotes the coordinates of the center of curvature for the String Tie 

Curve, then 
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 If ρ denotes the radius of curvature of the String Tie Curve, then 
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22.3.4 Angles for the String Tie Curve 

 If ψ denotes the tangential-radial angle of the String Tie, then  

 

 
42

2

41

1
tan

tt
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


 . 

 If  denotes the radial angle of the String Tie, then 

 

ttan . 

 

 If  denotes the tangential angle of the String Tie Curve, then 
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
 . 

22.4 Geometric Properties of the String Tie Curve 

 Intercepts:  (0, 0). 

 

 Symmetry:  y-axis. 

 

 Extent:  – ∞ < y ≤ a/4; – ∞ < x < ∞. 

22.5 Dynamic Geometry of the String Tie Curve 

 Three constructions for the String Tie Curve follow. 

22.5.1 The Basic Construction of the String Tie Curve 

 This construction (see Table 22-1), as well as the two that follow, all construct the 

curve in the same way, which is the basic construction for the String Tie Curve. 

Table 22-1: The String Tie's Basic Construction 

1.  Create x-y axes with origin A and unit point B = (1, 0) 9.  Let F be the intersection of perpendicular P2 and line AC 

2.  Draw circle AB with center at A and passing through point B 10. Construct P3  to the y-axis through point F 

3.  Let C be a random point on the circumference of circle AB 11. Let point G be the intersection of perpendiculars P1 and P3 

4.  Draw line AC 12. Construct P4  to the x-axis through point G 

5.  Let D be the intersection of the positive y-axis and circle AB 13. Let H be the intersection of line AC and perpendicular P4 

6.  Construct P1  to line AC through point D 14. Trace point H and change its color 

7.  Let E be the intersection of perpendicular P1 and the x-axis 15. Animate point C around circle AB 

8.  Construct P2  to the x-axis through point E  

22.5.2 The Tangent Construction to the String Tie Curve 

 If you have done (and retained) the previous construction, continue with that 

sketch and step 15 of this construction; if not, you will have to begin this one at step 1.  In 

either case, this is a very nice construction and it’s quite spectacular to view the final 

animation.  Refer to Table 22-2. 
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Table 22-2: The Tangent to the String Tie Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 16. Construct P6  to the y-axis through point D 

2.  Draw circle AB with center at A and passing through point B 17. Let point I be the intersection of perpendiculars P5 and P6 

3.  Let C be a random point on the circumference of circle AB 18. Construct P7  to the y-axis through point H 

4.  Draw line AC 19. Let point J be the intersection of perpendiculars P1 and P7 

5.  Let D be the intersection of the positive y-axis and circle AB 20. Let J' be the image when J is dilated about point G by 4 

6.  Construct P1  to line AC through point D 21. Let G' be the image when G is translated by vector E → G 

7.  Let E be the intersection of perpendicular P1 and the x-axis 22. Let I' be the image when I is translated by vector G' → J' 

8.  Construct P2  to the x-axis through point E 23. Let I'' be the image when I' is reflected across line AC 

9.  Let F be the intersection of perpendicular P2 and line AC 24. Construct P8  to P5 through point I'' 

10. Construct P3  to the y-axis through point F 25. Construct P9  to P8 through point H 

11. Let point G be the intersection of perpendiculars P1 and P3 26. Let point K be the intersection of perpendiculars P8 and P9 

12. Construct P4  to the x-axis through point G 27. Draw line AK 

13. Let H be the intersection of line AC and perpendicular P4 28. Construct P10  to line AK through point H 

14. Construct the locus of point H as point C traverses circle AB 29. Make P10 thick and change its color 

15. Construct P5  to line AC through point A 30. Animate point C around circle AB 

22.5.3 The Osculating Circle to the String Tie Curve 

 Utilize the first 28 steps of the previous construction and continue with step 29 of 

this construction (Table 22-3), or start all over again. 

Table 22-3: The Osculating Circle of the String Tie Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 29. Let L be the intersection of perpendicular P1 and line AC 

2.  Draw circle AB with center at A and passing through point B 30. Let H1 be the image when H is translated by vector L → H 

3.  Let C be a random point on the circumference of circle AB 31. Let H2 be the image when H1 is dilated about point F by 9 

4.  Draw line AC 32. Let H3 be the image when H2 is translated by vector F → H2 

5.  Let D be the intersection of the positive y-axis and circle AB 33. Let H4 be the image when H3 is translated by vector F → H1 

6.  Construct P1  to line AC through point D 34. Let H5 be the image when H4 is translated by vector H → H1 

7.  Let E be the intersection of perpendicular P1 and the x-axis 35. Let F' be the image when F is translated by vector H5 → F 

8.  Construct P2  to the x-axis through point E 36. Draw line segment F'H 

9.  Let F be the intersection of perpendicular P2 and line AC 37. Let M be the midpoint of line segment F'H 

10. Construct P3  to the y-axis through point F 38. Let M' be the image when M is translated by vector A → M 

11. Let point G be the intersection of perpendiculars P1 and P3 39. Let A' be the image when A is translated by vector M' → A 

12. Construct P4  to the x-axis through point G 40. Let I''' be the image when I' is translated by vector A → I' 

13. Let H be the intersection of line AC and perpendicular P4 41. Construct P11  to P5 through point I''' 

14. Construct the locus of point H as point C traverses circle AB 42. Construct P12  to P11 through point A' 

15. Construct P5  to line AC through point A 43. Let point N be the intersection of perpendiculars P11 and P12 

16. Construct P6  to the y-axis through point D 44. Draw circle AK with center at A and passing through point K 

17. Let point I be the intersection of perpendiculars P5 and P6 45. Construct P13  to line AK through point A 

18. Construct P7  to the y-axis through point H 46. Let point O be one of the intersections of circle AK with P13 

19. Let point J be the intersection of perpendiculars P1 and P7 47. Construct P14  to line AK through point N 

20. Let J' be the image when J is dilated about point G by 4 48. Let P be the intersection of perpendicular P14 and line AK 

21. Let G' be the image when G is translated by vector E → G 49. Draw line segment OP 

22. Let I' be the image when I is translated by vector G' → J' 50. Construct P15  to line segment OP through point O 

23. Let I'' be the image when I' is reflected across line AC 51. Let Q be the intersection of perpendicular P15 and line AK 

24. Construct P8  to P5 through point I'' 52. Let H6 be the image when H is translated by vector Q → A 

25. Construct P9  to P8 through point H 53. Draw circle H6H with center at H6 and passing through H 

26. Let point K be the intersection of perpendiculars P8 and P9 54. Make circle H6H thick and change its color 

27. Draw line AK 55. Animate point C around circle AB 

28. Construct P10  to line AK through point H  

 

 You may replace steps 31 – 33 with the following:  Let point H4 be the image 

when point H1 is dilated about point F by a factor of 19.  Early versions of GSP will not 

allow for a dilation this large.  Steps 31 – 33 are a way around this limitation.  A very 

complex and difficult construction but a truly amazing and beautiful result! 
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Figure 22-3: The String Tie as a Solid of Revolution 

 

To obtain the object pictured above, the String Tie Curve was rotated about the y-axis.  

The upper, bowl-shaped portion is due to the revolution of the loop portion of the curve 

while the lower, rounded, conical portion is due to the revolution of the asymptotes.  The 

object was then given a background of clouds and a yellowish-glass texture.  The glass 

not only reflects the clouds, but reflects the upper bowl in the lower conical structure and 

vice-versa. 
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Chapter 23 – The Bowditch Curve 
 

 

Figure 23-1: The Bowditch Curve in Three Dimensions 

 

The Bowditch Curve specified by (a, b, d, k) = (9, 8, , ¼) was extruded into the third 

dimension (normal to the plane of the paper), given a golden finish, and placed so as to 

appear to be floating in a blue sky with scattered, wispy clouds.  Light sources have been 

placed so as to cast shadows. 
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23.1 Introduction 

 The Bowditch Curves are named for Nathaniel Bowditch, who was one of the first 

American mathematicians to receive international recognition.  Nathaniel Bowditch was 

born in Salem, Massachusetts in 1773 and died in Boston in 1838.  Bowditch studied the 

curves in 1815.  Bowditch curves are also sometimes referred to as Lissajous 

(pronounced liz·a·jew) curves because they were studied (independently from Bowditch) 

by Jules-Antoine Lissajous in 1857.  The curves have applications in physics, astronomy, 

and other sciences. 

23.2 Equations and Graph of the Bowditch Curve 

 Bowditch Curves are the family of curves specified by the parametric equations 

 

  tbydtkax sin     and      sin  ,  

 

where a, b, d, and k are constants, so that the 4-tuple (a, b, d, k) completely specifies the 

curve.  If the constant k is a rational number, then the curve is algebraic, and if k is not 

rational, the curve is transcendental.  Further, if k is rational, the interval of definition of 

the curve is a function of k.  That is, if k = m/n, where m and n are integers, then the 

interval of definition of the curve is –n ≤ t ≤ n.  Hence, we can conclude that for 

rational values of the constant k, a parametric representation of the Bowditch Curves is 
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Figures 23-2 to 23-6 depict a graph of the Bowditch Curves for a few selected values of 

the constants (a, b, d, k). 

 

 

Figure 23-2: Graph of the Bowditch Curve for (a, b, d, k) = (9, 8, 0, ½) 



 

Chapter 23: The Bowditch Curve  Playing With Dynamic Geometry   23-3 

 

Figure 23-3: Graph of the Bowditch Curve for (a, b, d, k) = (6, 5, 0, ¼) 

 

 

 

 

 

Figure 23-4: Graph of the Bowditch Curve for (a, b, d, k) = (4, 3, π/4, ¾) 
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Figure 23-5: Graph of the Bowditch Curve for (a, b, d, k) = (9, 8, π, 4/5) 

 

 

 

 

 

Figure 23-6: Graph of the Bowditch Curve for (a, b, d, k) = (7, 5, π/4, 1/5) 
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23.3 Analytical and Physical Properties of the Bowditch Curve 

 Based on the parametric representation of the Bowditch Curve found in Equation 

23-1, the following paragraphs delineate further properties and characteristics of the 

Bowditch Curve. 

23.3.1 Derivatives of the Bowditch Curve 
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23.3.2 Metric Properties of the Bowditch Curve 

 If r is the radial distance, then  
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 If p is the distance from the origin to the tangent of the Bowditch curve, then 
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23.3.3 Curvature of the Bowditch Curve 

 If  denotes the radius of curvature, then 
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 If (, ) denote the coordinates of the center of curvature, then 
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23.3.4 Angles for the Bowditch Curve 

 If  represents the tangential-radial angle, then 
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 If  denotes the radial angle, then for the Bowditch Curve 
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 If  denotes the tangential angle, then for he Bowditch Curve 
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23.4 Geometric Properties of the Bowditch Curve 

 The curve is algebraic and unicursal if k is rational, and transcendental otherwise.  

The curve is entirely contained within a rectangle defined by x a, y b. 

23.5 Dynamic Geometry of the Bowditch Curve 

 The next five subsections delineate constructions for the Bowditch Curve. 

23.5.1 The Bowditch Curve 

 Table 23-1 contains a construction for the Bowditch Curve. 
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Table 23-1: The Bowditch Curve 

1.  Draw circle AB with center at A and passing through point B 8.  Construct P1  to line AB through point C' 

2.  Let C be a random point on the circumference of circle AB 9.  Draw line AC' 

3.  Draw line AC 10. Let B'' be the image when point B' is reflected across line AC' 

4.  Let B' be the image when point B is reflected across line AC 11. Construct P2  to P1 through point B'' 

5.  Draw line AB' 12. Let point D be the intersection of perpendiculars P1 and P2 

6.  Let C' be the image when point C is reflected across line AB' 13. Trace point D and change its color 

7.  Draw line AB 14. Animate point C around circle AB 

 

 Note that for this construction, m/n = ¾. 

23.5.2 The Tangent to the Bowditch Curve 

 Based on the previous construction of the Bowditch Curve, Table 23-2 contains a 

construction for the tangent to the curve. 

Table 23-2: The Bowditch's Tangent 

1.  Draw circle AB with center at A and passing through point B 14. Make the locus thick and change its color 

2.  Let C be a random point on the circumference of circle AB 15. Construct P3  to P1 through point C' 

3.  Draw line AC 16. Construct P4 to  line AB through point B'' 

4.  Let B' be the image when point B is reflected across line AC 17. Let line L1 be the reflection of line AB across P3  

5.  Draw line AB' 18. Let line L2 be the reflection of P3 across line L1 

6.  Let C' be the image when point C is reflected across line AB' 19. Construct P5  to line AB through point A 

7.  Draw line AB 20. Let line L3 be the reflection of P5 across P4 

8.  Construct P1  to line AB through point C' 21. Let line L4 be the reflection of P5 across L3 

9.  Draw line AC' 22. Let point E be the intersection of lines L2 and L4 

10. Let B'' be the image when point B' is reflected across line AC' 23. Draw line AE 

11. Construct P2  to P1 through point B'' 24. Construct P6  to line AE through point D 

12. Let point D be the intersection of perpendiculars P1 and P2 25. Make P6 thick and change its color 

13. Construct the locus of point D as Point C traverses circle AB 26. Animate point C around circle AB 

 

 Perpendicular P6 is, of course, the tangent.  Again, note that for this construction,  

m/n = ¾. 

23.5.3 The Bowditch Curve as a Compass-Only Construction 

 Table 23-3 contains the GSP version of a compass-only construction for the 

Bowditch Curve. 

Table 23-3: The Bowditch Curve as a Compass-Only Construction 

1.  Draw circle AB with center at A and passing through point B 17. Draw line segment C1C2 

2.  Let C be a random point on the circumference of circle AB 18. Let B3 be the reflection of point B2 across line segment C1C2 

3.  Draw circle BC with center at B and passing through point C 19. Hide line segment C1C2 

4.  Draw circle CB with center at C and passing through point B 20. Draw circle B3B2 centered at B3 and passing through point B2 

5.  Draw line segment AC 21. Draw circle B2B3 centered at B2 and passing through point B3 

6.  Let B1 be the reflection of point B  across line segment AC 22. Let D and E be the intersections of circles B2B3 and B3B2 

7.  Draw circle B1C with center at B1 and passing through point C 23. Draw circle ED with center at E and passing through point D 

8.  Draw line segment AB1 24. Let F be the unlabeled intersection of circles ED and B2B3 

9.  Let C1 be the reflection of point C across line segment AB1 25. Draw circle FB3 with center at F and passing through point B3 

10. Draw circle C1B1 centered at C1 and passing through point B1 26. Let G and H be the two intersections of circles FB3 and B3B2 

11. Draw line segment AC1 27. Draw circle GB3 centered at G and passing through point B3 

12. Let B2 be the reflection of point B1 across line segment AC1 28. Draw circle HB3 centered at H and passing through point B3 

13. Draw circle BC1 centered at B and passing through point C1 29. Let I be the unlabeled intersection of circles HB3 and GB3 

14. Draw line segment AB 30. Trace point I and change its color 

15. Let C2 be the reflection of point C1 across line segment AB 31. Animate point C around circle AB 

16. Draw circle C2B2 centered at C2 and passing through point B2  

 

 This member of the Bowditch family of curves is the same member that is formed 

in the previous constructions, except this time the construction is the GSP version of a 
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compass-only construction.  The reason for hiding line segment C1C2 is because the 

location of point I in step 29 is ambiguous unless segment C1C2 is hidden.  In other 

words, circles HB3 and GB3 and line segment C1C2 all intersect at the same point.  GSP 

doesn’t allow the placement of a point under this kind of circumstance, but hiding the line 

segment resolves the ambiguity.  However, if this was a true compass-only construction, 

line segment C1C2 would not be present as point B3 would have been created as the 

intersection of circles C1B1 and C2B2 instead of as a reflection of point B3 across line 

segment C1C2. 

23.5.4 An Alternate Construction for the Bowditch Curve and Tangent 

At the risk of being redundant, here is an alternate construction for both the 

Bowditch Curve and its tangent (see Table 23-4). 

Table 23-4: An Alternate Construction of the Bowditch Curve and Tangent 

1.  Draw horizontal line AB 15. Let C8 be the image when C6 is rotated about point A by 90 

2.  Draw circle AB with center at A and passing through point B 16. Let E be the intersection of line AB and perpendicular P2 

3.  Let C be a random point on the circumference of circle AB 17. Let C9 be the image when C7 is dilated about point A by 1¼ 

4.  Let D also be a random point on circle AB 18. Let point F be the intersection of perpendiculars P1 and P3 

5.  Let C1 be the image when C is rotated about A by BAC 19. Construct the locus of F while point C traverses circle AB 

6.  Let C2 be the image when C1 is rotated about A by BAC 20. Make the locus thick and change its color 

7.  Let C3 be the image when C2 is rotated about A by BAC 21. Let C10 be the image when C9 is rotated about A by BAD 

8.  Let C4 be the image when C3 is rotated about A by BAC 22. Construct P4  to P1 through point C10 

9.  Construct P1  to line AB through point C3 23. Let point G be the intersection of perpendiculars P2 and P4 

10. Let C5 be the image when C3 is rotated about point A by 90 24. Draw line segment AG 

11. Let C6 be the image when C4 is rotated about A by BAD 25. Construct line L1 parallel to line segment AG through point F 

12. Construct P2  to line AB through point C5 26. Make line L1 thick and change its color 

13. Let C7 be the image when C4 is rotated about point A by 90 27. Animate point C around circle AB 

14. Construct P3  to P1 through point C6  

 

 Now, drag point D and rerun the animation.  Neat, huh? 

23.5.5 The Osculating Circle of the Bowditch Curve 

 Believe it or not, here is the osculating circle to this very complex curve (see 

Table 23-5). 



 

Chapter 23: The Bowditch Curve  Playing With Dynamic Geometry   23-9 

Table 23-5: The Osculating Circle of the Bowditch Curve 

1.  Create x-y axes with origin A and unit point B = (1, 0) 26. Let point F' be the image when F is dilated about H by 4 

2.  Draw circle AB centered at A and passing through point B 27. Construct P8  to P7 through point F' 

3.  Let C be a random point on the circumference of circle AB 28. Let point I be the intersection of perpendiculars P6 and P8 

4.  Draw line segment AC 29. Draw line segment AI 

5.  Let B' be the reflection of point B across line segment AC 30. Let point J be the intersection of the x-axis with P1 

6.  Draw line segment AB' 31. Let A' be the image when A is translated by vector J → A 

7.  Let C' be the reflection of point C across line segment AB' 32. Let A'' be the image when A' is dilated about point A by 9 

8.  Draw line AC' 33. Construct P9  to the x-axis through point A'' 

9.  Let B'' be the reflection of point B' across line AC' 34. Construct P10  to the x-axis through point B'' 

10. Draw line AB'' 35. Let point K be the intersection of the x-axis with P10 

11. Construct P1  to the x-axis through point C' 36. Let K1 be the image when K is translated by vector B'' → K 

12. Construct P2  to P1 through point B'' 37. Let K2 be the image when K1 is dilated about K by 4 

13. Let point D be the intersection of perpendiculars P1 and P2 38. Let K3 be the image when K2 is dilated about K by 4 

14. Construct the locus of point D as point C traverses circle AB 39. Construct P11  to P10 through point K3 

15. Make the locus thick and change its color 40. Let point L be the intersection of perpendiculars P9 and P11 

16. Construct P3  to line AC' through point A 41. Construct P12  to line segment AI through point A 

17. Construct P4  to line AB'' through point A 42. Construct P13  to P12 through point L 

18. Let point E be the intersection of circle AB with P3* 43. Let point M be the intersection of perpendiculars P12 and P13 

19. Let point F be the intersection of circle AB with P4* 44. Draw line segment IM 

20. Construct P5  to the x-axis through point E 45. Construct P14  to line segment IM through point I 

21. Let point G be the intersection of the x-axis and P5 46. Let point N be the intersection of perpendiculars P12 and P14 

22. Let G' be the image when G is dilated about point A by 3 47. Let D' be the image when D is translated by vector N → A 

23. Construct P6  to the x-axis through point G' 48. Draw circle D'D centered at D' and passing through point D 

24. Construct P7  to the x-axis through point F 49. Make circle D'D thick and change its color 

25. Let point H be the intersection of the x-axis with P7 50. Animate point C around circle AB 

* There are two intersections.  In order to select the correct intersection, do the following.  Position point C (by 

dragging it around circle AB) in the 1st quadrant so that point C' is in the 2nd quadrant and point B'' is in the 3rd 

quadrant.  Point E is then the intersection of P3 with circle AB that is below the x-axis.  Likewise, point F is the 

intersection of P4 with circle AB that is below the x-axis.  

 

 Trace point D' and rerun the animation to get a look at the evolute to the 

Bowditch Curve!  It’s quite complex, but, as you might suspect, very symmetrical.  Steps 

37 and 38 may be combined into one step if you can dilate by a factor of 16. 
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Figure 23-7: A Bowditch Curve Solid of Revolution 

 

The Bowditch Curve with parameters (a, b, d, k) = (9, 8, 0, ¼) has been rotated around 

the x-axis to form the solid of revolution seen in the picture above.  The solid of 

revolution was then placed above the blue and white checkered plane and given a silvery 

reflective finish.  Light sources have been placed so as to cast the shadows seen in the 

picture.  The blue and white checkered plane can be seen reflected in the object’s finish 

as well as adjacent lobes of the object itself. 
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Appendix 
 

A1. Inversion as a Geometric Construction 

 Throughout this text, various constructions call for the inversion of a point or 

possibly the inversion of an entire curve.  In particular, the constructions in Chapter 16, 

"The Folium of Descartes," all call for inversion.  Recall that the inversion of point C 

with respect to circle AB means that if point C' is the inverted point then AB
2
 = AC · AC' 

and C' will lie on line AC.  (AB represents the distance from point A to point B, AC 

represents the distance from point A to point C, and AC' denotes the distance from point 

A to point C'.)  The method generally used in the text to perform any inversion called for 

is an algebraic methodology involving the above calculation and then the subsequent 

translation of the point to be inverted by that calculated distance along the line connecting 

points A and C.  Here, we wish to show that inversion can be done by purely geometric 

means (i.e., with straight-edge and compass) and that the algebraic method used 

throughout the text is simply a shortcut for such a geometric method. 

 

 So, given circle AB (i.e., a circle with center at point A and passing through point 

B) and point C, a random point in the plane, this section shows that the inversion of point 

C with respect to circle AB is a straight-edge and compass construction. 

 
1 Draw circle CA with center at point C and passing through point A. 

2 Let D and E be the two intersections of circle AB and circle CA. 

3 Draw circle EA with center at point E and passing through point A. 

4 Draw circle DA with center at point D and passing through point A. 

5 Let point C' be the unlabeled intersection of circles DA and EA. 

6 Draw line AC'. 

 

 As one can see, the preceding six steps are obviously steps that can be 

accomplished with either a straight-edge (step 6) or a compass (steps 1 – 5).  Now, in 

order to prove that point C' is the inverse of point C, first measure m1, the distance from 

point A to point B, then measure m2, the distance from point A to point C, and finally, 

measure m3, the distance from point A to point C'.  Make the following two calculations, 

m4 = m1
2
 and m5 = m2·m3.  You will find that m4 = m5 and that by dragging point C, or 

point B, or both, all the values of the quantities change but m4 will remain equal to m5. 

A2. Verification of Formulas in the Text 

 The Preface alluded to the fact that almost all the derived formulas in the text 

have been verified by a process that uses Geometer’s Sketchpad (GSP).  This section 

explains that verification process.  All of the formulas presented with the exception of 

areas, arc lengths, and volumes have been verified by this method.  It should be 

emphasized that this verification process does not prove that the formula is necessarily 

correct; however, the nature of the process is such that it gives a very high degree of 

confidence that the stated formula is correct.  The verification process requires the curve, 
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whose formulas are to be verified, to be represented in parametric form, i.e., x = f (t) and 

y = g (t).  

 

 The first step in the process is to represent the parameter t by some GSP variable 

such as a dynamic point or angle.  For example, if the parameter t for the curve under 

consideration is defined as ranging over, say, the values 0 ≤ t ≤ 2 (many of the curves in 

the text are defined similarly), then let t be represented as the central angle of a circle 

where one of the non-vertex points comprising the angle can be dragged around the circle 

thereby varying the value of t.  If, on the other hand, t is defined as ranging over the 

values – ∞ < t < + ∞, then let t be represented by the y-coordinate of a variable point on a 

vertical line.  By dragging the point up and down the line, the y-coordinate assumes the 

appropriate values.  The next step in the process is to represent any parameters in f (t) and 

g (t) (other than t) as GSP constants.  For example, if a and b are constants, the 

parametric representation of the curve may more accurately be denoted by x = f (a, b, t) 

and y = g (a, b, t).  It is the a and b that we wish to denote as GSP constants.  We 

accomplish this by letting a and b (and any other constants in the parametric 

representation of the curve) be represented as the x-coordinates of points on the x-axis.   

  

 Let us pause in our explanation of this verification process and illustrate what has 

been said so far with an example.  The example we will use is the very first curve in the 

text, namely, the Cissoid of Diocles.  Recall that the parametric representation for the 

Cissoid of Diocles was given as x = 2asin
2
t and y = 2atant · sin

2
t for – /2 < t < /2, 

where a is the only constant.  Here are the corresponding GSP steps. 

 
1 Create x-y axes with point A as the origin and B as the unit point of the x-axis. 

2 In the lower right corner of the screen, draw circle CD with center at point C and 

passing through point D. 

3 Let E be a random point on the circumference of circle CD 

4 Draw line segments CD and CE. 

5 Measure DCE in radians. 

6 Relabel DCE as t. 

 

 To perform step 6, use the text tool and double click on DCE to obtain the 

Format Measurement window.  Select Text Format and type the letter t to replace 

Angle[DCE] and click on OK.  Having done this, note what happens when you drag point 

E around circle CD.  The process of dragging point E around circle CD causes DCE 

(and therefore t) to vary over the values – to +  at least within the granularity of GSP, 

and of course, this range includes –/2 < t < /2, the interval specified for the curve in its 

parametric representation. 

 
7 Let F be a random point on the positive x-axis. 

8 Measure the coordinates of point F. 

9 Extract the x-coordinate of point F and relabel it as a. 

 

 To perform step 9, open the Calculator and then click on the x-coordinate of point 

F.  This will enter xF into the Calculator.  Now click on OK and xF will be written to the 

screen.  Use the text tool to double click on xF to obtain the Format Measurement 

window.  Select Text Format and type the letter a to replace x[F] and click on OK.  We 
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now have the parameter a represented and although we do not intend to vary it, its value 

can be changed by dragging it along the x-axis. 

 

 The next step is to do a GSP calculation of f(t) and g(t) and then to plot the results 

as x and y, respectively, that is plot (f, g).  Then, trace the point (f, g) and animate the 

construction so that the variable point, the point representing the parameter t, assumes all 

of its allowable values. 

 
10 Calculate 2·a·sin

2
t. 

11 Calculate 2·a·tant·sin
2
t. 

12 Let point G be the result of plotting step 10 as x and step 11 as y. 

13 Trace point G and change its color. 

14 Animate point E around circle CD. 

 

 The resulting trace should be the curve under consideration and if it is, this is a 

pretty good indication that the parametric representation of the curve is correct.  That is, 

we have verified the parametric representation; however, we are not done yet.   

 

 The next step is to attempt to verify the equation of the curve’s tangent.  In the 

text, the equation of the curve’s tangent is given in the y-intercept form.  That is, in the 

form y = mx +c, where m is the slope of the tangent line (and the slope of the curve at that 

point of tangency) and c is the point where the tangent line intersects the y-axis.  We 

know all of these values except c; that is, we know the slope m as it is given as y', the first 

derivative of y with respect to x, and we know the values of y and x, which are simply f(t) 

and g(t).  So,    tfytgc   and by making this calculation for c and plotting the 

point (0,c) we can construct a straight line between (0,c) and the point that is tracing the 

curve (f, g), and that straight line should be the tangent and it should remain tangent as 

the animation is executed.  If it does remain tangent as the animation executes, it is a 

pretty good indication that not only is the equation of the tangent correct, but so is the 

slope, i.e., the calculation of y'.  Furthermore, if the slope is correct, this is a good 

indication that xy   and are also both correct since xyy  .  Hence we have verified the 

equation of the tangent, the formula denoting y', and the formulas denoting xy   and .  So, 

continuing our Cissoid of Diocles example, we have from the text that the equation of the 

curve at the point t is 2y = tan t sec
2
t (1 + 2cos

2
t)x – 2atan

3
t.  Further, the equation of 

the slope is given by y ½ tan t sec
2
t (1 + 2cos

2
t).  If we now calculate c, we find that  

c = –a·tan
3
t. 

 
15 Calculate c = –a·tan

3
t. 

16 Let point H be the result of plotting 0.000 as x and –atan
3
t as y. 

17 Draw line GH. 

18 Make line GH thick and change its color. 

19 Rerun the animation. 

 

 One way to obtain the quantity 0.000 is to simply open the Calculator, type in that 

value, and click OK. 
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 The next step in our verification process is to verify the radial distance, that is, the 

distance between the point (f, g) and the origin.  First, measure the coordinates of the 

point (f, g) and then take the square root of the sum of each coordinate squared (note that 

the measure of the coordinates is the same as the two values calculated in steps 10 and 

11); that is, calculate 22 gf  .  Then, make a second calculation, that is, calculate the 

formula given in the text as the radial distance, i.e., r.  Finally, make a third calculation 

which is the result of the first calculation minus the absolute value of the second 

calculation, that is, rgf  22 .  This quantity should be zero and remain zero as the 

animation is executed.  If it does, the formula for the radial distance is verified.  In our 

continuing example, these steps would be 

 
20 Measure the coordinates of point G. 

21 Calculate (xG
2
 + yG

2
)

½
. 

22 Calculate 2·a sint· tan t. 

23 Calculate (xG
2
 + yG

2
)

½
 – │2·a sint· tan t│. 

24 Rerun the animation. 

 

 We’re not done yet!  The next step is to verify the distance from the origin to the 

curve’s tangent.  This process is very similar to that of verifying the radial distance, 

however, we must first construct the distance to the tangent; that is, construct a 

perpendicular to the curve’s tangent through the origin and then locate the point where 

that perpendicular and the tangent intersect, then measure the coordinates of that 

intersection point and proceed as we did in the radial distance verification. 

 
25 Construct perpendicular P1 to line GH through point A. 

26 Let point I be the intersection of perpendicular P1 and line GH. 

27 Measure the coordinates of point I. 

28 Calculate (xI
2
 + yI

2
)

½
. 

29 Calculate –2·a·sin
3
t / (1 + 3·cos

2
t)

 ½
. 

30 Calculate (xI
2
 + yI

2
)

½
 –│–2·a·sin

3
t / (1 + 3·cos

2
t)

 ½
│. 

31 Rerun the animation. 

 

 We’re not done yet!  Next, let us verify the coordinates of the center of curvature, 

given in the text as α and β.  This is a relatively simple process.  We already have the 

tangent to the curve at point t.  Construct the curve’s normal at that point, calculate the 

values of α and β, and then plot α and β as x and y, respectively.  If the point that is the 

result of plotting α and β lies on the normal to the curve and stays on the normal to the 

curve as the animation executes, then that is a pretty good indication that the formulas for 

the center of curvature are correct.  Furthermore, verifying the formulas for the center of 

curvature also automatically verifies the formula for y' and y'' since neither α nor β could 

have been calculated correctly (in all probability) without a correct formula for y' or y'', 

i.e., recall that  

 

  
y

yy
x






2
1

  and
 
y

y
y






2
1

 . 

Continuing our example, 
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32 Construct perpendicular P2 to line GH through point G. 

33 Calculate α = –⅓·a·sin
2
t·sec

4
t·(1 + 5·cos

2
t). 

34 Calculate β = 8·a·tant / 3. 

35 Let point J be the result of plotting α and β as x and y, respectively. 

36 Rerun the animation and observe whether point J remains on the normal. 

 

 We’re not done yet!  It is now a relatively simple matter to verify the formula for 

the radius of curvature.  Recall that the radius of curvature, ρ, is the distance from the 

center of curvature to the curve.  This distance is the square root of the sum of the 

difference between their respective coordinates squared, that is,    22
gf   .  If 

we then compare this calculation with that of the formula in the text for the radius of 

curvature (as we did in the case of the radial distance and distance to the tangent), and 

find that the comparison calculation is zero as the animation executes, well voila, we 

have verified the radius of curvature.  Further, since the radius of curvature is a function 

of yyxx   and ,,,  (i.e., the radius of curvature requires these quantities for its own 

calculation), we have also verified them.  Continuing our example, 

 
37 Measure the coordinates of point J. 

38 Measure the coordinates of point G. 

39 Calculate [(xJ
2
 – xG

2
)

2
 + (yJ

2
 – yG

2
)

2
]

1/2
. 

40 Calculate ρ = ⅓·a·sint·sec
4
t·(1 + 3·cos

2
t)

3/2
. 

41 Calculate [(xJ
2
 – xG

2
)

2
 + (yJ

2
 – yG

2
)

2
]

1/2
 – │ρ│. 

42 Rerun the animation. 

 

 We’re not done yet!  The angle between the tangent and the radius vector, the so-

called tangential-radial angle, can also be verified.  This is done by measuring that angle 

on the display, calculating its tangent, and comparing that calculation with the formula in 

the text.  If their difference is zero and continues to be zero as the animation executes it’s 

a pretty good indication that the formula in the text is correct.  First, we must first find 

some way to designate the appropriate angle.  We can do this by drawing a line between 

the origin and the point (f, g) and then placing a random point on this line on the opposite 

side of the curve’s normal from the origin.  Similarly, we must also place a random point 

on the curve’s tangent but, again, on the opposite side of the curve’s normal from the 

origin.  The angle formed from these two random points with point (f, g) as the vertex is 

the desired angle.  Therefore, continuing our example, 

 
43 Draw line AG. 

44 Let point K be a random point on line AG but on the opposite side of P2 from point 

A. 

45 Let point L be a random point on line GH but on the opposite side of P2 from point 

A. 

46 Measure KGL in radians. 

47 Relabel KGL as psi. 

48 Calculate tan(psi). 

49 Calculate sint·cost / (1 + cos
2
t). 

50 Calculate │tan(psi)│ – │sint·cost / (1 + cos
2
t)│. 

51 Rerun the animation. 

 



 

Appendix A-6 Playing With Dynamic Geometry 

 We’re done!  At least done with this example; one more example ought to make 

this verification technique pretty clear.  We will use the Folium of Descartes as the 

second example.  Recall that the parametric equations for the Folium of Descartes are 

 

    


 tt
t

at
yx      ,1

1

3
,

3
. 

 

 Note that this parametric equation is defined over the interval –∞ to +∞ whereas 

in the previous example the equations were defined over the interval –/2 to +/2.  This 

makes a big difference in the way we define the variable t.  We cannot define t as the 

central angle of a circle (as was done in the previous example) because as the angle varies 

it will not assume all of the values necessary to trace the Folium of Descartes.  We 

therefore define it as the y-coordinate of a variable point on a vertical line.  As the point 

is dragged up and/or down the line, the y-coordinate, and therefore t, will assume the 

required values.  This alternate approach to defining the parameter t is the only difference 

in the verification technique between the previous example and this example. 

 

----- Verifying the parametric equations ----- 
1 Create axes with point A as the origin and B as the unit point of the x-axis. 

2 In the lower right, draw circle CD with center at point C and passing through point D. 

3 Let E be a random point on the circumference of circle CD. 

4 Let F be a random point on the x-axis. 

5 Construct perpendicular P1 to the x-axis through point F. 

6 Draw line CE. 

7 Let point G be the intersection of line CE and perpendicular P1. 

8 Measure the coordinates of point G. 

9 Extract the y-coordinate of point G and relabel it as t. 

10 Let H be a random point on the positive x-axis. 

11 Extract the x-coordinate of point H and relabel it as a. 

12 Calculate x = 3at / (1 + t
3
). 

13 Calculate y = 3at
2
 / (1 + t

3
). 

14 Let point I be the result of plotting (x, y). 

15 Trace point I and change its color. 

16 Animate point E around circle CD. 

----- Verifying the equation of the tangent, yxy   and ,,  ----- 

17 Calculate c = –3at
2
 / (1 – 2t

3
).     

18 Let point J be the result of plotting (0, c). 

19 Draw line IJ.      
20 Make line IJ thick and change its color. 

21 Rerun the animation and observe the motion of line IJ as a tangent. 

----- Verifying the formula for the radial distance ----- 
22 Measure the coordinates of point I. 

23 Calculate (xI
2
 +yI

2
)

1/2
. 

24 Calculate r = 3at (1 + t
2
)

1/2
 / (1 + t

3
). 

25 Calculate (xI
2
 +yI

2
)

1/2
 – │r│. 

26 Rerun the animation and observe that result of step 25 remains zero. 

----- Verifying the distance to the curve’s tangent ----- 
27 Construct perpendicular P2 to line IJ through point A. 

28 Let point K be the intersection of perpendicular P2 and line IJ. 

29 Measure the coordinates of point K. 

30 Calculate (xK
2
 + yK

2
)

1/2
. 
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31 Calculate p = –3at
2
 / (t

8
 + 4t

6
 -4t

5
 – 4t

3
 + 4t

2
 + 1)

1/2
. 

32 Calculate (xK
2
 + yK

2
)

1/2
 – │p│. 

33 Rerun the animation and observe that result of step 32 remains zero. 

----- Verifying the coordinates of the center of curvature and y''----- 
34 Construct perpendicular P3 to line IJ through point I. 

35 Calculate α = –3at
3
 (8 - 15t - 12t

3
 + 6t

4
 + 6t

6
 – 6t

7
 – t

9
) / [2(1 + t

3
)

4
]. 

36 Calculate β = 3a (1 + 6t
2
 – 6t

3
 – 6t

5
 + 12t

6
 + 15t

8
 – 8t

9
) / [2(1 + t

3
)

4
]. 

37 Let point L be the result of plotting (α, β). 

38 Rerun the animation and observe that point L is on P3 and remains on P3. 

----- Verifying the radius of curvature, yx   and ,  ----- 

39 Measure the coordinates of point L. 

40 Measure the coordinates of point I. 

41 Calculate [(xL - xI)
 2
 + (yL – yI)

 2
]

1/2
. 

42 Calculate ρ = 3a (1 + 4t
2
 – 4t

3
 – 4t

5
 + 4t

6
 + t

8
)

3/2
 / [2(1 + t

3
)

4
]. 

43 Calculate [(xL - xI)
 2
 + (yL – yI)

 2
]

1/2
 – │ρ│. 

44 Rerun the animation and observe that result of step 43 remains zero. 

----- Verifying the tangential-radial angle ----- 
45 Let point M be a random point on line IJ but on the opposite side of P3 from point A. 

46 Draw line AI. 

47 Let point N be a random point on line AI but on the opposite side of P3 from point A. 

48 Measure MIN in radians. 

49 Relabel MIN as psi. 

50 Calculate tan(psi). 

51 Calculate t(1 + t
3
) / (1 + 2t

2
 – 2t

3
 – t

5
). 

52 Calculate │tan(psi)│ – │t(1 + t
3
) / (1 + 2t

2
 – 2t

3
 – t

5
)│. 

53 Rerun the animation and observe that result of step 52 remains zero. 

 


